Properties

Label 3420.2.f.e.1369.8
Level $3420$
Weight $2$
Character 3420.1369
Analytic conductor $27.309$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3420,2,Mod(1369,3420)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3420.1369"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3420, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3420 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3420.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(27.3088374913\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2x^{9} - 2x^{8} + 18x^{7} - 7x^{6} - 48x^{5} - 35x^{4} + 450x^{3} - 250x^{2} - 1250x + 3125 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 1140)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1369.8
Root \(-1.38485 + 1.75562i\) of defining polynomial
Character \(\chi\) \(=\) 3420.1369
Dual form 3420.2.f.e.1369.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.75562 + 1.38485i) q^{5} +0.408758i q^{7} -5.98891 q^{11} -5.17846i q^{13} -2.06892i q^{17} +1.00000 q^{19} +4.32169i q^{23} +(1.16437 + 4.86253i) q^{25} +8.83460 q^{29} -2.83863 q^{31} +(-0.566069 + 0.717622i) q^{35} -10.3388i q^{37} +5.50015 q^{41} -8.61371i q^{43} -1.25141i q^{47} +6.83292 q^{49} -1.65614i q^{53} +(-10.5142 - 8.29376i) q^{55} +5.02246 q^{59} -2.14491 q^{61} +(7.17140 - 9.09139i) q^{65} -5.02246i q^{67} +14.6997 q^{71} -10.1042i q^{73} -2.44802i q^{77} +0.955365 q^{79} -6.67861i q^{83} +(2.86515 - 3.63224i) q^{85} -3.81214 q^{89} +2.11674 q^{91} +(1.75562 + 1.38485i) q^{95} +13.8218i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 2 q^{5} - 12 q^{11} + 10 q^{19} - 8 q^{25} + 16 q^{31} + 22 q^{35} - 24 q^{41} - 6 q^{49} - 10 q^{55} - 12 q^{59} + 32 q^{65} - 4 q^{71} - 24 q^{79} - 10 q^{85} - 12 q^{89} + 32 q^{91} + 2 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3420\mathbb{Z}\right)^\times\).

\(n\) \(1711\) \(1901\) \(2737\) \(3061\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.75562 + 1.38485i 0.785135 + 0.619324i
\(6\) 0 0
\(7\) 0.408758i 0.154496i 0.997012 + 0.0772480i \(0.0246133\pi\)
−0.997012 + 0.0772480i \(0.975387\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −5.98891 −1.80573 −0.902863 0.429929i \(-0.858539\pi\)
−0.902863 + 0.429929i \(0.858539\pi\)
\(12\) 0 0
\(13\) 5.17846i 1.43625i −0.695916 0.718123i \(-0.745001\pi\)
0.695916 0.718123i \(-0.254999\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.06892i 0.501788i −0.968015 0.250894i \(-0.919275\pi\)
0.968015 0.250894i \(-0.0807245\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.32169i 0.901134i 0.892743 + 0.450567i \(0.148778\pi\)
−0.892743 + 0.450567i \(0.851222\pi\)
\(24\) 0 0
\(25\) 1.16437 + 4.86253i 0.232875 + 0.972507i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 8.83460 1.64054 0.820272 0.571973i \(-0.193822\pi\)
0.820272 + 0.571973i \(0.193822\pi\)
\(30\) 0 0
\(31\) −2.83863 −0.509832 −0.254916 0.966963i \(-0.582048\pi\)
−0.254916 + 0.966963i \(0.582048\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.566069 + 0.717622i −0.0956832 + 0.121300i
\(36\) 0 0
\(37\) 10.3388i 1.69968i −0.527038 0.849842i \(-0.676697\pi\)
0.527038 0.849842i \(-0.323303\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.50015 0.858978 0.429489 0.903072i \(-0.358694\pi\)
0.429489 + 0.903072i \(0.358694\pi\)
\(42\) 0 0
\(43\) 8.61371i 1.31358i −0.754075 0.656789i \(-0.771914\pi\)
0.754075 0.656789i \(-0.228086\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.25141i 0.182537i −0.995826 0.0912683i \(-0.970908\pi\)
0.995826 0.0912683i \(-0.0290921\pi\)
\(48\) 0 0
\(49\) 6.83292 0.976131
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.65614i 0.227489i −0.993510 0.113744i \(-0.963716\pi\)
0.993510 0.113744i \(-0.0362845\pi\)
\(54\) 0 0
\(55\) −10.5142 8.29376i −1.41774 1.11833i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 5.02246 0.653869 0.326935 0.945047i \(-0.393984\pi\)
0.326935 + 0.945047i \(0.393984\pi\)
\(60\) 0 0
\(61\) −2.14491 −0.274628 −0.137314 0.990528i \(-0.543847\pi\)
−0.137314 + 0.990528i \(0.543847\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 7.17140 9.09139i 0.889502 1.12765i
\(66\) 0 0
\(67\) 5.02246i 0.613592i −0.951775 0.306796i \(-0.900743\pi\)
0.951775 0.306796i \(-0.0992569\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 14.6997 1.74454 0.872268 0.489029i \(-0.162649\pi\)
0.872268 + 0.489029i \(0.162649\pi\)
\(72\) 0 0
\(73\) 10.1042i 1.18260i −0.806451 0.591301i \(-0.798614\pi\)
0.806451 0.591301i \(-0.201386\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.44802i 0.278977i
\(78\) 0 0
\(79\) 0.955365 0.107487 0.0537435 0.998555i \(-0.482885\pi\)
0.0537435 + 0.998555i \(0.482885\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 6.67861i 0.733072i −0.930404 0.366536i \(-0.880544\pi\)
0.930404 0.366536i \(-0.119456\pi\)
\(84\) 0 0
\(85\) 2.86515 3.63224i 0.310769 0.393971i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −3.81214 −0.404086 −0.202043 0.979377i \(-0.564758\pi\)
−0.202043 + 0.979377i \(0.564758\pi\)
\(90\) 0 0
\(91\) 2.11674 0.221894
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.75562 + 1.38485i 0.180122 + 0.142083i
\(96\) 0 0
\(97\) 13.8218i 1.40339i 0.712475 + 0.701697i \(0.247574\pi\)
−0.712475 + 0.701697i \(0.752426\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −11.2982 −1.12421 −0.562104 0.827066i \(-0.690008\pi\)
−0.562104 + 0.827066i \(0.690008\pi\)
\(102\) 0 0
\(103\) 0.137848i 0.0135826i 0.999977 + 0.00679130i \(0.00216176\pi\)
−0.999977 + 0.00679130i \(0.997838\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 14.4948i 1.40126i 0.713524 + 0.700631i \(0.247098\pi\)
−0.713524 + 0.700631i \(0.752902\pi\)
\(108\) 0 0
\(109\) 13.6658 1.30895 0.654475 0.756084i \(-0.272890\pi\)
0.654475 + 0.756084i \(0.272890\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 8.01306i 0.753806i −0.926253 0.376903i \(-0.876989\pi\)
0.926253 0.376903i \(-0.123011\pi\)
\(114\) 0 0
\(115\) −5.98489 + 7.58722i −0.558094 + 0.707512i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.845690 0.0775242
\(120\) 0 0
\(121\) 24.8671 2.26064
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −4.68969 + 10.1492i −0.419459 + 0.907774i
\(126\) 0 0
\(127\) 6.79534i 0.602989i 0.953468 + 0.301495i \(0.0974855\pi\)
−0.953468 + 0.301495i \(0.902514\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 12.7108 1.11055 0.555274 0.831667i \(-0.312613\pi\)
0.555274 + 0.831667i \(0.312613\pi\)
\(132\) 0 0
\(133\) 0.408758i 0.0354438i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1.81434i 0.155009i −0.996992 0.0775047i \(-0.975305\pi\)
0.996992 0.0775047i \(-0.0246953\pi\)
\(138\) 0 0
\(139\) 2.70784 0.229676 0.114838 0.993384i \(-0.463365\pi\)
0.114838 + 0.993384i \(0.463365\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 31.0134i 2.59347i
\(144\) 0 0
\(145\) 15.5102 + 12.2346i 1.28805 + 1.01603i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −7.22478 −0.591877 −0.295939 0.955207i \(-0.595632\pi\)
−0.295939 + 0.955207i \(0.595632\pi\)
\(150\) 0 0
\(151\) 7.50417 0.610681 0.305340 0.952243i \(-0.401230\pi\)
0.305340 + 0.952243i \(0.401230\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −4.98354 3.93108i −0.400287 0.315752i
\(156\) 0 0
\(157\) 17.0566i 1.36127i −0.732624 0.680634i \(-0.761704\pi\)
0.732624 0.680634i \(-0.238296\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −1.76652 −0.139222
\(162\) 0 0
\(163\) 8.49879i 0.665677i −0.942984 0.332838i \(-0.891994\pi\)
0.942984 0.332838i \(-0.108006\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 14.9792i 1.15912i 0.814928 + 0.579562i \(0.196776\pi\)
−0.814928 + 0.579562i \(0.803224\pi\)
\(168\) 0 0
\(169\) −13.8165 −1.06280
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 5.34415i 0.406308i −0.979147 0.203154i \(-0.934881\pi\)
0.979147 0.203154i \(-0.0651192\pi\)
\(174\) 0 0
\(175\) −1.98760 + 0.475947i −0.150248 + 0.0359782i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −13.6800 −1.02249 −0.511244 0.859436i \(-0.670815\pi\)
−0.511244 + 0.859436i \(0.670815\pi\)
\(180\) 0 0
\(181\) −7.91073 −0.588000 −0.294000 0.955805i \(-0.594987\pi\)
−0.294000 + 0.955805i \(0.594987\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 14.3177 18.1509i 1.05266 1.33448i
\(186\) 0 0
\(187\) 12.3906i 0.906091i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −15.3683 −1.11201 −0.556006 0.831179i \(-0.687667\pi\)
−0.556006 + 0.831179i \(0.687667\pi\)
\(192\) 0 0
\(193\) 6.95939i 0.500948i −0.968123 0.250474i \(-0.919414\pi\)
0.968123 0.250474i \(-0.0805864\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 25.5491i 1.82030i −0.414281 0.910149i \(-0.635967\pi\)
0.414281 0.910149i \(-0.364033\pi\)
\(198\) 0 0
\(199\) −18.9835 −1.34571 −0.672854 0.739776i \(-0.734932\pi\)
−0.672854 + 0.739776i \(0.734932\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 3.61122i 0.253458i
\(204\) 0 0
\(205\) 9.65614 + 7.61688i 0.674414 + 0.531986i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −5.98891 −0.414262
\(210\) 0 0
\(211\) 24.0342 1.65458 0.827290 0.561774i \(-0.189881\pi\)
0.827290 + 0.561774i \(0.189881\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 11.9287 15.1224i 0.813531 1.03134i
\(216\) 0 0
\(217\) 1.16031i 0.0787671i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −10.7138 −0.720691
\(222\) 0 0
\(223\) 7.03659i 0.471205i −0.971850 0.235602i \(-0.924294\pi\)
0.971850 0.235602i \(-0.0757063\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 20.6564i 1.37102i −0.728065 0.685508i \(-0.759580\pi\)
0.728065 0.685508i \(-0.240420\pi\)
\(228\) 0 0
\(229\) 23.5806 1.55825 0.779126 0.626867i \(-0.215663\pi\)
0.779126 + 0.626867i \(0.215663\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0.586927i 0.0384509i 0.999815 + 0.0192254i \(0.00612003\pi\)
−0.999815 + 0.0192254i \(0.993880\pi\)
\(234\) 0 0
\(235\) 1.73301 2.19699i 0.113049 0.143316i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −11.9889 −0.775498 −0.387749 0.921765i \(-0.626747\pi\)
−0.387749 + 0.921765i \(0.626747\pi\)
\(240\) 0 0
\(241\) −12.2643 −0.790012 −0.395006 0.918679i \(-0.629257\pi\)
−0.395006 + 0.918679i \(0.629257\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 11.9960 + 9.46257i 0.766395 + 0.604542i
\(246\) 0 0
\(247\) 5.17846i 0.329498i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 17.6239 1.11241 0.556207 0.831044i \(-0.312256\pi\)
0.556207 + 0.831044i \(0.312256\pi\)
\(252\) 0 0
\(253\) 25.8822i 1.62720i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 19.1955i 1.19739i −0.800979 0.598693i \(-0.795687\pi\)
0.800979 0.598693i \(-0.204313\pi\)
\(258\) 0 0
\(259\) 4.22606 0.262594
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 16.9314i 1.04403i 0.852935 + 0.522016i \(0.174820\pi\)
−0.852935 + 0.522016i \(0.825180\pi\)
\(264\) 0 0
\(265\) 2.29351 2.90755i 0.140889 0.178609i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −22.8205 −1.39139 −0.695695 0.718338i \(-0.744903\pi\)
−0.695695 + 0.718338i \(0.744903\pi\)
\(270\) 0 0
\(271\) 17.3150 1.05181 0.525905 0.850543i \(-0.323727\pi\)
0.525905 + 0.850543i \(0.323727\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −6.97334 29.1213i −0.420508 1.75608i
\(276\) 0 0
\(277\) 28.1413i 1.69085i 0.534096 + 0.845424i \(0.320652\pi\)
−0.534096 + 0.845424i \(0.679348\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 1.58942 0.0948166 0.0474083 0.998876i \(-0.484904\pi\)
0.0474083 + 0.998876i \(0.484904\pi\)
\(282\) 0 0
\(283\) 9.73984i 0.578974i −0.957182 0.289487i \(-0.906515\pi\)
0.957182 0.289487i \(-0.0934846\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2.24823i 0.132709i
\(288\) 0 0
\(289\) 12.7196 0.748209
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 17.7940i 1.03954i 0.854307 + 0.519768i \(0.173982\pi\)
−0.854307 + 0.519768i \(0.826018\pi\)
\(294\) 0 0
\(295\) 8.81752 + 6.95536i 0.513376 + 0.404957i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 22.3797 1.29425
\(300\) 0 0
\(301\) 3.52092 0.202943
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −3.76564 2.97038i −0.215620 0.170084i
\(306\) 0 0
\(307\) 18.7668i 1.07108i 0.844510 + 0.535539i \(0.179892\pi\)
−0.844510 + 0.535539i \(0.820108\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 24.3344 1.37988 0.689939 0.723867i \(-0.257637\pi\)
0.689939 + 0.723867i \(0.257637\pi\)
\(312\) 0 0
\(313\) 3.93290i 0.222301i −0.993804 0.111150i \(-0.964546\pi\)
0.993804 0.111150i \(-0.0354535\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 24.2851i 1.36399i −0.731358 0.681994i \(-0.761113\pi\)
0.731358 0.681994i \(-0.238887\pi\)
\(318\) 0 0
\(319\) −52.9097 −2.96237
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 2.06892i 0.115118i
\(324\) 0 0
\(325\) 25.1804 6.02966i 1.39676 0.334466i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0.511523 0.0282012
\(330\) 0 0
\(331\) −8.17579 −0.449382 −0.224691 0.974430i \(-0.572137\pi\)
−0.224691 + 0.974430i \(0.572137\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 6.95536 8.81752i 0.380012 0.481752i
\(336\) 0 0
\(337\) 22.4686i 1.22394i −0.790880 0.611971i \(-0.790377\pi\)
0.790880 0.611971i \(-0.209623\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 17.0003 0.920617
\(342\) 0 0
\(343\) 5.65432i 0.305304i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 17.1055i 0.918272i −0.888366 0.459136i \(-0.848159\pi\)
0.888366 0.459136i \(-0.151841\pi\)
\(348\) 0 0
\(349\) −1.88256 −0.100771 −0.0503855 0.998730i \(-0.516045\pi\)
−0.0503855 + 0.998730i \(0.516045\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 29.6578i 1.57852i 0.614056 + 0.789262i \(0.289537\pi\)
−0.614056 + 0.789262i \(0.710463\pi\)
\(354\) 0 0
\(355\) 25.8071 + 20.3569i 1.36970 + 1.08043i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −26.6323 −1.40560 −0.702799 0.711388i \(-0.748067\pi\)
−0.702799 + 0.711388i \(0.748067\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 13.9928 17.7390i 0.732414 0.928503i
\(366\) 0 0
\(367\) 32.4430i 1.69351i −0.531981 0.846756i \(-0.678552\pi\)
0.531981 0.846756i \(-0.321448\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0.676962 0.0351461
\(372\) 0 0
\(373\) 37.3276i 1.93275i 0.257133 + 0.966376i \(0.417222\pi\)
−0.257133 + 0.966376i \(0.582778\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 45.7496i 2.35623i
\(378\) 0 0
\(379\) 14.1429 0.726470 0.363235 0.931698i \(-0.381672\pi\)
0.363235 + 0.931698i \(0.381672\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 24.8073i 1.26760i −0.773499 0.633798i \(-0.781495\pi\)
0.773499 0.633798i \(-0.218505\pi\)
\(384\) 0 0
\(385\) 3.39014 4.29778i 0.172778 0.219035i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −18.5759 −0.941836 −0.470918 0.882177i \(-0.656077\pi\)
−0.470918 + 0.882177i \(0.656077\pi\)
\(390\) 0 0
\(391\) 8.94124 0.452178
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 1.67725 + 1.32304i 0.0843918 + 0.0665693i
\(396\) 0 0
\(397\) 23.4023i 1.17453i 0.809395 + 0.587264i \(0.199795\pi\)
−0.809395 + 0.587264i \(0.800205\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 4.13489 0.206486 0.103243 0.994656i \(-0.467078\pi\)
0.103243 + 0.994656i \(0.467078\pi\)
\(402\) 0 0
\(403\) 14.6997i 0.732245i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 61.9180i 3.06916i
\(408\) 0 0
\(409\) −12.1234 −0.599466 −0.299733 0.954023i \(-0.596898\pi\)
−0.299733 + 0.954023i \(0.596898\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 2.05297i 0.101020i
\(414\) 0 0
\(415\) 9.24888 11.7251i 0.454009 0.575561i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −22.9439 −1.12088 −0.560442 0.828194i \(-0.689369\pi\)
−0.560442 + 0.828194i \(0.689369\pi\)
\(420\) 0 0
\(421\) −0.401265 −0.0195565 −0.00977823 0.999952i \(-0.503113\pi\)
−0.00977823 + 0.999952i \(0.503113\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 10.0602 2.40900i 0.487992 0.116854i
\(426\) 0 0
\(427\) 0.876750i 0.0424289i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −15.6578 −0.754209 −0.377105 0.926171i \(-0.623080\pi\)
−0.377105 + 0.926171i \(0.623080\pi\)
\(432\) 0 0
\(433\) 18.5015i 0.889125i −0.895748 0.444563i \(-0.853359\pi\)
0.895748 0.444563i \(-0.146641\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 4.32169i 0.206734i
\(438\) 0 0
\(439\) −25.3713 −1.21091 −0.605454 0.795880i \(-0.707008\pi\)
−0.605454 + 0.795880i \(0.707008\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 16.3895i 0.778691i −0.921092 0.389345i \(-0.872701\pi\)
0.921092 0.389345i \(-0.127299\pi\)
\(444\) 0 0
\(445\) −6.69265 5.27925i −0.317262 0.250260i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −39.6155 −1.86957 −0.934787 0.355210i \(-0.884409\pi\)
−0.934787 + 0.355210i \(0.884409\pi\)
\(450\) 0 0
\(451\) −32.9399 −1.55108
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 3.71618 + 2.93137i 0.174217 + 0.137425i
\(456\) 0 0
\(457\) 31.1494i 1.45711i 0.684989 + 0.728553i \(0.259807\pi\)
−0.684989 + 0.728553i \(0.740193\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 20.8738 0.972189 0.486095 0.873906i \(-0.338421\pi\)
0.486095 + 0.873906i \(0.338421\pi\)
\(462\) 0 0
\(463\) 8.53519i 0.396664i 0.980135 + 0.198332i \(0.0635524\pi\)
−0.980135 + 0.198332i \(0.936448\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 37.9994i 1.75840i 0.476449 + 0.879202i \(0.341924\pi\)
−0.476449 + 0.879202i \(0.658076\pi\)
\(468\) 0 0
\(469\) 2.05297 0.0947975
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 51.5867i 2.37196i
\(474\) 0 0
\(475\) 1.16437 + 4.86253i 0.0534251 + 0.223108i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 7.52019 0.343606 0.171803 0.985131i \(-0.445041\pi\)
0.171803 + 0.985131i \(0.445041\pi\)
\(480\) 0 0
\(481\) −53.5389 −2.44116
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −19.1412 + 24.2658i −0.869156 + 1.10185i
\(486\) 0 0
\(487\) 26.8547i 1.21690i −0.793592 0.608451i \(-0.791791\pi\)
0.793592 0.608451i \(-0.208209\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 3.81485 0.172162 0.0860808 0.996288i \(-0.472566\pi\)
0.0860808 + 0.996288i \(0.472566\pi\)
\(492\) 0 0
\(493\) 18.2781i 0.823205i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 6.00863i 0.269524i
\(498\) 0 0
\(499\) −20.6186 −0.923014 −0.461507 0.887137i \(-0.652691\pi\)
−0.461507 + 0.887137i \(0.652691\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 2.27676i 0.101516i −0.998711 0.0507578i \(-0.983836\pi\)
0.998711 0.0507578i \(-0.0161637\pi\)
\(504\) 0 0
\(505\) −19.8352 15.6463i −0.882656 0.696250i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 38.6802 1.71447 0.857236 0.514925i \(-0.172180\pi\)
0.857236 + 0.514925i \(0.172180\pi\)
\(510\) 0 0
\(511\) 4.13016 0.182707
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −0.190900 + 0.242009i −0.00841204 + 0.0106642i
\(516\) 0 0
\(517\) 7.49457i 0.329611i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 11.8604 0.519615 0.259808 0.965660i \(-0.416341\pi\)
0.259808 + 0.965660i \(0.416341\pi\)
\(522\) 0 0
\(523\) 0.892661i 0.0390333i −0.999810 0.0195167i \(-0.993787\pi\)
0.999810 0.0195167i \(-0.00621274\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 5.87290i 0.255828i
\(528\) 0 0
\(529\) 4.32304 0.187958
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 28.4823i 1.23370i
\(534\) 0 0
\(535\) −20.0731 + 25.4472i −0.867836 + 1.10018i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −40.9218 −1.76262
\(540\) 0 0
\(541\) 25.4639 1.09478 0.547389 0.836878i \(-0.315622\pi\)
0.547389 + 0.836878i \(0.315622\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 23.9920 + 18.9251i 1.02770 + 0.810664i
\(546\) 0 0
\(547\) 41.8264i 1.78837i −0.447698 0.894185i \(-0.647756\pi\)
0.447698 0.894185i \(-0.352244\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 8.83460 0.376367
\(552\) 0 0
\(553\) 0.390513i 0.0166063i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 43.8854i 1.85948i 0.368212 + 0.929742i \(0.379970\pi\)
−0.368212 + 0.929742i \(0.620030\pi\)
\(558\) 0 0
\(559\) −44.6057 −1.88662
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0.258981i 0.0109148i −0.999985 0.00545738i \(-0.998263\pi\)
0.999985 0.00545738i \(-0.00173715\pi\)
\(564\) 0 0
\(565\) 11.0969 14.0679i 0.466850 0.591839i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 15.9134 0.667125 0.333563 0.942728i \(-0.391749\pi\)
0.333563 + 0.942728i \(0.391749\pi\)
\(570\) 0 0
\(571\) −25.2504 −1.05670 −0.528349 0.849027i \(-0.677189\pi\)
−0.528349 + 0.849027i \(0.677189\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −21.0143 + 5.03206i −0.876359 + 0.209851i
\(576\) 0 0
\(577\) 22.7838i 0.948503i 0.880389 + 0.474252i \(0.157281\pi\)
−0.880389 + 0.474252i \(0.842719\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 2.72993 0.113257
\(582\) 0 0
\(583\) 9.91850i 0.410782i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 5.61469i 0.231743i −0.993264 0.115871i \(-0.963034\pi\)
0.993264 0.115871i \(-0.0369661\pi\)
\(588\) 0 0
\(589\) −2.83863 −0.116964
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 9.68867i 0.397866i 0.980013 + 0.198933i \(0.0637476\pi\)
−0.980013 + 0.198933i \(0.936252\pi\)
\(594\) 0 0
\(595\) 1.48471 + 1.17115i 0.0608670 + 0.0480126i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −3.13249 −0.127990 −0.0639951 0.997950i \(-0.520384\pi\)
−0.0639951 + 0.997950i \(0.520384\pi\)
\(600\) 0 0
\(601\) 36.3326 1.48204 0.741019 0.671484i \(-0.234343\pi\)
0.741019 + 0.671484i \(0.234343\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 43.6571 + 34.4372i 1.77491 + 1.40007i
\(606\) 0 0
\(607\) 1.17048i 0.0475084i −0.999718 0.0237542i \(-0.992438\pi\)
0.999718 0.0237542i \(-0.00756190\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −6.48037 −0.262168
\(612\) 0 0
\(613\) 3.88144i 0.156770i −0.996923 0.0783849i \(-0.975024\pi\)
0.996923 0.0783849i \(-0.0249763\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 24.9233i 1.00338i −0.865049 0.501688i \(-0.832713\pi\)
0.865049 0.501688i \(-0.167287\pi\)
\(618\) 0 0
\(619\) −10.0530 −0.404063 −0.202032 0.979379i \(-0.564754\pi\)
−0.202032 + 0.979379i \(0.564754\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 1.55824i 0.0624297i
\(624\) 0 0
\(625\) −22.2885 + 11.3236i −0.891539 + 0.452945i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −21.3901 −0.852881
\(630\) 0 0
\(631\) 7.63495 0.303943 0.151971 0.988385i \(-0.451438\pi\)
0.151971 + 0.988385i \(0.451438\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −9.41054 + 11.9300i −0.373446 + 0.473428i
\(636\) 0 0
\(637\) 35.3840i 1.40196i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −24.3770 −0.962833 −0.481417 0.876492i \(-0.659878\pi\)
−0.481417 + 0.876492i \(0.659878\pi\)
\(642\) 0 0
\(643\) 5.63645i 0.222280i −0.993805 0.111140i \(-0.964550\pi\)
0.993805 0.111140i \(-0.0354502\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 8.72305i 0.342938i −0.985189 0.171469i \(-0.945149\pi\)
0.985189 0.171469i \(-0.0548514\pi\)
\(648\) 0 0
\(649\) −30.0791 −1.18071
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 18.2736i 0.715101i −0.933894 0.357550i \(-0.883612\pi\)
0.933894 0.357550i \(-0.116388\pi\)
\(654\) 0 0
\(655\) 22.3153 + 17.6026i 0.871930 + 0.687789i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −28.8373 −1.12334 −0.561671 0.827361i \(-0.689841\pi\)
−0.561671 + 0.827361i \(0.689841\pi\)
\(660\) 0 0
\(661\) 9.22176 0.358685 0.179343 0.983787i \(-0.442603\pi\)
0.179343 + 0.983787i \(0.442603\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −0.566069 + 0.717622i −0.0219512 + 0.0278282i
\(666\) 0 0
\(667\) 38.1804i 1.47835i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 12.8457 0.495902
\(672\) 0 0
\(673\) 3.68465i 0.142033i 0.997475 + 0.0710164i \(0.0226243\pi\)
−0.997475 + 0.0710164i \(0.977376\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 21.2522i 0.816787i 0.912806 + 0.408394i \(0.133911\pi\)
−0.912806 + 0.408394i \(0.866089\pi\)
\(678\) 0 0
\(679\) −5.64979 −0.216819
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 23.2086i 0.888053i 0.896014 + 0.444026i \(0.146450\pi\)
−0.896014 + 0.444026i \(0.853550\pi\)
\(684\) 0 0
\(685\) 2.51259 3.18528i 0.0960011 0.121703i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −8.57627 −0.326730
\(690\) 0 0
\(691\) 38.1744 1.45222 0.726111 0.687578i \(-0.241326\pi\)
0.726111 + 0.687578i \(0.241326\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 4.75393 + 3.74996i 0.180327 + 0.142244i
\(696\) 0 0
\(697\) 11.3794i 0.431025i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 21.3545 0.806549 0.403274 0.915079i \(-0.367872\pi\)
0.403274 + 0.915079i \(0.367872\pi\)
\(702\) 0 0
\(703\) 10.3388i 0.389934i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 4.61822i 0.173686i
\(708\) 0 0
\(709\) 39.6825 1.49031 0.745155 0.666892i \(-0.232376\pi\)
0.745155 + 0.666892i \(0.232376\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 12.2677i 0.459427i
\(714\) 0 0
\(715\) −42.9489 + 54.4475i −1.60620 + 2.03622i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −21.6098 −0.805910 −0.402955 0.915220i \(-0.632017\pi\)
−0.402955 + 0.915220i \(0.632017\pi\)
\(720\) 0 0
\(721\) −0.0563467 −0.00209846
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 10.2868 + 42.9586i 0.382042 + 1.59544i
\(726\) 0 0
\(727\) 22.0497i 0.817779i 0.912584 + 0.408889i \(0.134084\pi\)
−0.912584 + 0.408889i \(0.865916\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −17.8211 −0.659137
\(732\) 0 0
\(733\) 53.7342i 1.98472i −0.123387 0.992359i \(-0.539376\pi\)
0.123387 0.992359i \(-0.460624\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 30.0791i 1.10798i
\(738\) 0 0
\(739\) −33.7980 −1.24328 −0.621640 0.783303i \(-0.713533\pi\)
−0.621640 + 0.783303i \(0.713533\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 25.4016i 0.931893i −0.884813 0.465946i \(-0.845714\pi\)
0.884813 0.465946i \(-0.154286\pi\)
\(744\) 0 0
\(745\) −12.6839 10.0052i −0.464704 0.366564i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −5.92486 −0.216489
\(750\) 0 0
\(751\) −45.8986 −1.67486 −0.837431 0.546543i \(-0.815943\pi\)
−0.837431 + 0.546543i \(0.815943\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 13.1744 + 10.3922i 0.479467 + 0.378209i
\(756\) 0 0
\(757\) 5.75924i 0.209323i −0.994508 0.104662i \(-0.966624\pi\)
0.994508 0.104662i \(-0.0333759\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −0.0788741 −0.00285919 −0.00142959 0.999999i \(-0.500455\pi\)
−0.00142959 + 0.999999i \(0.500455\pi\)
\(762\) 0 0
\(763\) 5.58602i 0.202228i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 26.0086i 0.939117i
\(768\) 0 0
\(769\) 17.7396 0.639706 0.319853 0.947467i \(-0.396366\pi\)
0.319853 + 0.947467i \(0.396366\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 9.82224i 0.353282i −0.984275 0.176641i \(-0.943477\pi\)
0.984275 0.176641i \(-0.0565231\pi\)
\(774\) 0 0
\(775\) −3.30522 13.8029i −0.118727 0.495815i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 5.50015 0.197063
\(780\) 0 0
\(781\) −88.0353 −3.15015
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 23.6209 29.9449i 0.843066 1.06878i
\(786\) 0 0
\(787\) 55.4900i 1.97800i 0.147905 + 0.989002i \(0.452747\pi\)
−0.147905 + 0.989002i \(0.547253\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 3.27541 0.116460
\(792\) 0 0
\(793\) 11.1073i 0.394433i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 7.60757i 0.269474i 0.990881 + 0.134737i \(0.0430189\pi\)
−0.990881 + 0.134737i \(0.956981\pi\)
\(798\) 0 0
\(799\) −2.58907 −0.0915946
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 60.5129i 2.13546i
\(804\) 0 0
\(805\) −3.10134 2.44637i −0.109308 0.0862233i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 27.5125 0.967287 0.483644 0.875265i \(-0.339313\pi\)
0.483644 + 0.875265i \(0.339313\pi\)
\(810\) 0 0
\(811\) −20.2033 −0.709432 −0.354716 0.934974i \(-0.615423\pi\)
−0.354716 + 0.934974i \(0.615423\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 11.7696 14.9206i 0.412270 0.522646i
\(816\) 0 0
\(817\) 8.61371i 0.301355i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −47.2039 −1.64743 −0.823713 0.567007i \(-0.808101\pi\)
−0.823713 + 0.567007i \(0.808101\pi\)
\(822\) 0 0
\(823\) 52.0980i 1.81602i 0.418946 + 0.908011i \(0.362400\pi\)
−0.418946 + 0.908011i \(0.637600\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 3.07481i 0.106922i −0.998570 0.0534608i \(-0.982975\pi\)
0.998570 0.0534608i \(-0.0170252\pi\)
\(828\) 0 0
\(829\) −1.33446 −0.0463476 −0.0231738 0.999731i \(-0.507377\pi\)
−0.0231738 + 0.999731i \(0.507377\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 14.1368i 0.489811i
\(834\) 0 0
\(835\) −20.7439 + 26.2977i −0.717874 + 0.910069i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 21.2397 0.733276 0.366638 0.930364i \(-0.380509\pi\)
0.366638 + 0.930364i \(0.380509\pi\)
\(840\) 0 0
\(841\) 49.0502 1.69139
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −24.2564 19.1337i −0.834445 0.658220i
\(846\) 0 0
\(847\) 10.1646i 0.349261i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 44.6809 1.53164
\(852\) 0 0
\(853\) 13.8195i 0.473171i 0.971611 + 0.236585i \(0.0760283\pi\)
−0.971611 + 0.236585i \(0.923972\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1.12237i 0.0383394i −0.999816 0.0191697i \(-0.993898\pi\)
0.999816 0.0191697i \(-0.00610228\pi\)
\(858\) 0 0
\(859\) 39.2847 1.34038 0.670188 0.742191i \(-0.266213\pi\)
0.670188 + 0.742191i \(0.266213\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 12.7480i 0.433948i 0.976177 + 0.216974i \(0.0696186\pi\)
−0.976177 + 0.216974i \(0.930381\pi\)
\(864\) 0 0
\(865\) 7.40085 9.38227i 0.251636 0.319007i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −5.72160 −0.194092
\(870\) 0 0
\(871\) −26.0086 −0.881269
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −4.14858 1.91695i −0.140248 0.0648047i
\(876\) 0 0
\(877\) 7.48438i 0.252729i 0.991984 + 0.126365i \(0.0403310\pi\)
−0.991984 + 0.126365i \(0.959669\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −24.7242 −0.832981 −0.416490 0.909140i \(-0.636740\pi\)
−0.416490 + 0.909140i \(0.636740\pi\)
\(882\) 0 0
\(883\) 31.2232i 1.05074i 0.850872 + 0.525372i \(0.176074\pi\)
−0.850872 + 0.525372i \(0.823926\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 31.8215i 1.06846i 0.845339 + 0.534230i \(0.179398\pi\)
−0.845339 + 0.534230i \(0.820602\pi\)
\(888\) 0 0
\(889\) −2.77765 −0.0931595
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 1.25141i 0.0418768i
\(894\) 0 0
\(895\) −24.0168 18.9447i −0.802792 0.633252i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −25.0781 −0.836403
\(900\) 0 0
\(901\) −3.42643 −0.114151
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −13.8882 10.9552i −0.461659 0.364163i
\(906\) 0 0
\(907\) 30.5699i 1.01506i −0.861635 0.507529i \(-0.830559\pi\)
0.861635 0.507529i \(-0.169441\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −0.715809 −0.0237158 −0.0118579 0.999930i \(-0.503775\pi\)
−0.0118579 + 0.999930i \(0.503775\pi\)
\(912\) 0 0
\(913\) 39.9976i 1.32373i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 5.19564i 0.171575i
\(918\) 0 0
\(919\) 53.8718 1.77707 0.888533 0.458813i \(-0.151725\pi\)
0.888533 + 0.458813i \(0.151725\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 76.1219i 2.50558i
\(924\) 0 0
\(925\) 50.2726 12.0382i 1.65295 0.395814i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −28.6575 −0.940222 −0.470111 0.882607i \(-0.655786\pi\)
−0.470111 + 0.882607i \(0.655786\pi\)
\(930\) 0 0
\(931\) 6.83292 0.223940
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −17.1592 + 21.7532i −0.561164 + 0.711404i
\(936\) 0 0
\(937\) 37.2057i 1.21546i 0.794144 + 0.607729i \(0.207919\pi\)
−0.794144 + 0.607729i \(0.792081\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 13.5814 0.442740 0.221370 0.975190i \(-0.428947\pi\)
0.221370 + 0.975190i \(0.428947\pi\)
\(942\) 0 0
\(943\) 23.7699i 0.774054i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 14.7512i 0.479350i −0.970853 0.239675i \(-0.922959\pi\)
0.970853 0.239675i \(-0.0770408\pi\)
\(948\) 0 0
\(949\) −52.3240 −1.69851
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 24.3978i 0.790322i 0.918612 + 0.395161i \(0.129311\pi\)
−0.918612 + 0.395161i \(0.870689\pi\)
\(954\) 0 0
\(955\) −26.9808 21.2828i −0.873079 0.688695i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0.741625 0.0239483
\(960\) 0 0
\(961\) −22.9422 −0.740071
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 9.63772 12.2180i 0.310249 0.393312i
\(966\) 0 0
\(967\) 30.4732i 0.979954i −0.871735 0.489977i \(-0.837005\pi\)
0.871735 0.489977i \(-0.162995\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −35.8154 −1.14937 −0.574686 0.818374i \(-0.694876\pi\)
−0.574686 + 0.818374i \(0.694876\pi\)
\(972\) 0 0
\(973\) 1.10685i 0.0354841i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 9.99427i 0.319745i 0.987138 + 0.159872i \(0.0511083\pi\)
−0.987138 + 0.159872i \(0.948892\pi\)
\(978\) 0 0
\(979\) 22.8306 0.729669
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 9.83029i 0.313538i −0.987635 0.156769i \(-0.949892\pi\)
0.987635 0.156769i \(-0.0501077\pi\)
\(984\) 0 0
\(985\) 35.3817 44.8544i 1.12735 1.42918i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 37.2257 1.18371
\(990\) 0 0
\(991\) −12.2811 −0.390122 −0.195061 0.980791i \(-0.562491\pi\)
−0.195061 + 0.980791i \(0.562491\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −33.3278 26.2894i −1.05656 0.833429i
\(996\) 0 0
\(997\) 56.8743i 1.80123i 0.434622 + 0.900613i \(0.356882\pi\)
−0.434622 + 0.900613i \(0.643118\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3420.2.f.e.1369.8 10
3.2 odd 2 1140.2.f.b.229.2 10
5.4 even 2 inner 3420.2.f.e.1369.7 10
15.2 even 4 5700.2.a.bc.1.3 5
15.8 even 4 5700.2.a.bd.1.3 5
15.14 odd 2 1140.2.f.b.229.7 yes 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1140.2.f.b.229.2 10 3.2 odd 2
1140.2.f.b.229.7 yes 10 15.14 odd 2
3420.2.f.e.1369.7 10 5.4 even 2 inner
3420.2.f.e.1369.8 10 1.1 even 1 trivial
5700.2.a.bc.1.3 5 15.2 even 4
5700.2.a.bd.1.3 5 15.8 even 4