Properties

Label 2-3420-5.4-c1-0-28
Degree $2$
Conductor $3420$
Sign $0.785 + 0.619i$
Analytic cond. $27.3088$
Root an. cond. $5.22578$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.75 + 1.38i)5-s + 0.408i·7-s − 5.98·11-s − 5.17i·13-s − 2.06i·17-s + 19-s + 4.32i·23-s + (1.16 + 4.86i)25-s + 8.83·29-s − 2.83·31-s + (−0.566 + 0.717i)35-s − 10.3i·37-s + 5.50·41-s − 8.61i·43-s − 1.25i·47-s + ⋯
L(s)  = 1  + (0.785 + 0.619i)5-s + 0.154i·7-s − 1.80·11-s − 1.43i·13-s − 0.501i·17-s + 0.229·19-s + 0.901i·23-s + (0.232 + 0.972i)25-s + 1.64·29-s − 0.509·31-s + (−0.0956 + 0.121i)35-s − 1.69i·37-s + 0.858·41-s − 1.31i·43-s − 0.182i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3420 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.785 + 0.619i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3420 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.785 + 0.619i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3420\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 19\)
Sign: $0.785 + 0.619i$
Analytic conductor: \(27.3088\)
Root analytic conductor: \(5.22578\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3420} (1369, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3420,\ (\ :1/2),\ 0.785 + 0.619i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.750050839\)
\(L(\frac12)\) \(\approx\) \(1.750050839\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + (-1.75 - 1.38i)T \)
19 \( 1 - T \)
good7 \( 1 - 0.408iT - 7T^{2} \)
11 \( 1 + 5.98T + 11T^{2} \)
13 \( 1 + 5.17iT - 13T^{2} \)
17 \( 1 + 2.06iT - 17T^{2} \)
23 \( 1 - 4.32iT - 23T^{2} \)
29 \( 1 - 8.83T + 29T^{2} \)
31 \( 1 + 2.83T + 31T^{2} \)
37 \( 1 + 10.3iT - 37T^{2} \)
41 \( 1 - 5.50T + 41T^{2} \)
43 \( 1 + 8.61iT - 43T^{2} \)
47 \( 1 + 1.25iT - 47T^{2} \)
53 \( 1 + 1.65iT - 53T^{2} \)
59 \( 1 - 5.02T + 59T^{2} \)
61 \( 1 + 2.14T + 61T^{2} \)
67 \( 1 + 5.02iT - 67T^{2} \)
71 \( 1 - 14.6T + 71T^{2} \)
73 \( 1 + 10.1iT - 73T^{2} \)
79 \( 1 - 0.955T + 79T^{2} \)
83 \( 1 + 6.67iT - 83T^{2} \)
89 \( 1 + 3.81T + 89T^{2} \)
97 \( 1 - 13.8iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.454480475464047047541739058966, −7.63639956321959748052059802041, −7.24353530171667505656941080090, −6.10664841852343051777079244984, −5.40864181866036078148217984444, −5.10481622631866821961175811785, −3.59084076862628067296105994013, −2.77227370035389245214037799858, −2.21652750694930749950950976423, −0.58957974566919118622576441844, 1.03817289928865530967769658143, 2.19309682977241132549001962749, 2.87273920584202898359894613672, 4.33134564091975923905779218384, 4.79570187138337033562747718281, 5.64252911176665884539203190962, 6.40291019511889095520050682021, 7.11834117390087308317739504384, 8.247829957946724367179528614334, 8.460819628591843147464497918990

Graph of the $Z$-function along the critical line