Properties

Label 342.4.g.d.163.1
Level $342$
Weight $4$
Character 342.163
Analytic conductor $20.179$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [342,4,Mod(163,342)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("342.163"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(342, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 342 = 2 \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 342.g (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2,0,-4,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.1786532220\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 38)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 163.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 342.163
Dual form 342.4.g.d.235.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 - 1.73205i) q^{2} +(-2.00000 - 3.46410i) q^{4} +(1.50000 - 2.59808i) q^{5} -32.0000 q^{7} -8.00000 q^{8} +(-3.00000 - 5.19615i) q^{10} -4.00000 q^{11} +(34.5000 + 59.7558i) q^{13} +(-32.0000 + 55.4256i) q^{14} +(-8.00000 + 13.8564i) q^{16} +(9.50000 - 16.4545i) q^{17} +(76.0000 + 32.9090i) q^{19} -12.0000 q^{20} +(-4.00000 + 6.92820i) q^{22} +(33.5000 + 58.0237i) q^{23} +(58.0000 + 100.459i) q^{25} +138.000 q^{26} +(64.0000 + 110.851i) q^{28} +(25.5000 + 44.1673i) q^{29} -132.000 q^{31} +(16.0000 + 27.7128i) q^{32} +(-19.0000 - 32.9090i) q^{34} +(-48.0000 + 83.1384i) q^{35} -14.0000 q^{37} +(133.000 - 98.7269i) q^{38} +(-12.0000 + 20.7846i) q^{40} +(-206.500 + 357.668i) q^{41} +(-64.5000 + 111.717i) q^{43} +(8.00000 + 13.8564i) q^{44} +134.000 q^{46} +(-308.500 - 534.338i) q^{47} +681.000 q^{49} +232.000 q^{50} +(138.000 - 239.023i) q^{52} +(191.500 + 331.688i) q^{53} +(-6.00000 + 10.3923i) q^{55} +256.000 q^{56} +102.000 q^{58} +(-299.500 + 518.749i) q^{59} +(108.500 + 187.928i) q^{61} +(-132.000 + 228.631i) q^{62} +64.0000 q^{64} +207.000 q^{65} +(112.500 + 194.856i) q^{67} -76.0000 q^{68} +(96.0000 + 166.277i) q^{70} +(350.500 - 607.084i) q^{71} +(-507.500 + 879.016i) q^{73} +(-14.0000 + 24.2487i) q^{74} +(-38.0000 - 329.090i) q^{76} +128.000 q^{77} +(-174.500 + 302.243i) q^{79} +(24.0000 + 41.5692i) q^{80} +(413.000 + 715.337i) q^{82} +592.000 q^{83} +(-28.5000 - 49.3634i) q^{85} +(129.000 + 223.435i) q^{86} +32.0000 q^{88} +(-674.500 - 1168.27i) q^{89} +(-1104.00 - 1912.18i) q^{91} +(134.000 - 232.095i) q^{92} -1234.00 q^{94} +(199.500 - 148.090i) q^{95} +(306.500 - 530.874i) q^{97} +(681.000 - 1179.53i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 4 q^{4} + 3 q^{5} - 64 q^{7} - 16 q^{8} - 6 q^{10} - 8 q^{11} + 69 q^{13} - 64 q^{14} - 16 q^{16} + 19 q^{17} + 152 q^{19} - 24 q^{20} - 8 q^{22} + 67 q^{23} + 116 q^{25} + 276 q^{26} + 128 q^{28}+ \cdots + 1362 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/342\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(325\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 1.73205i 0.353553 0.612372i
\(3\) 0 0
\(4\) −2.00000 3.46410i −0.250000 0.433013i
\(5\) 1.50000 2.59808i 0.134164 0.232379i −0.791114 0.611669i \(-0.790498\pi\)
0.925278 + 0.379290i \(0.123832\pi\)
\(6\) 0 0
\(7\) −32.0000 −1.72784 −0.863919 0.503631i \(-0.831997\pi\)
−0.863919 + 0.503631i \(0.831997\pi\)
\(8\) −8.00000 −0.353553
\(9\) 0 0
\(10\) −3.00000 5.19615i −0.0948683 0.164317i
\(11\) −4.00000 −0.109640 −0.0548202 0.998496i \(-0.517459\pi\)
−0.0548202 + 0.998496i \(0.517459\pi\)
\(12\) 0 0
\(13\) 34.5000 + 59.7558i 0.736044 + 1.27487i 0.954264 + 0.298967i \(0.0966419\pi\)
−0.218219 + 0.975900i \(0.570025\pi\)
\(14\) −32.0000 + 55.4256i −0.610883 + 1.05808i
\(15\) 0 0
\(16\) −8.00000 + 13.8564i −0.125000 + 0.216506i
\(17\) 9.50000 16.4545i 0.135535 0.234753i −0.790267 0.612763i \(-0.790058\pi\)
0.925802 + 0.378010i \(0.123391\pi\)
\(18\) 0 0
\(19\) 76.0000 + 32.9090i 0.917663 + 0.397360i
\(20\) −12.0000 −0.134164
\(21\) 0 0
\(22\) −4.00000 + 6.92820i −0.0387638 + 0.0671408i
\(23\) 33.5000 + 58.0237i 0.303706 + 0.526034i 0.976972 0.213366i \(-0.0684427\pi\)
−0.673267 + 0.739400i \(0.735109\pi\)
\(24\) 0 0
\(25\) 58.0000 + 100.459i 0.464000 + 0.803672i
\(26\) 138.000 1.04092
\(27\) 0 0
\(28\) 64.0000 + 110.851i 0.431959 + 0.748176i
\(29\) 25.5000 + 44.1673i 0.163284 + 0.282816i 0.936045 0.351882i \(-0.114458\pi\)
−0.772761 + 0.634698i \(0.781125\pi\)
\(30\) 0 0
\(31\) −132.000 −0.764771 −0.382385 0.924003i \(-0.624897\pi\)
−0.382385 + 0.924003i \(0.624897\pi\)
\(32\) 16.0000 + 27.7128i 0.0883883 + 0.153093i
\(33\) 0 0
\(34\) −19.0000 32.9090i −0.0958374 0.165995i
\(35\) −48.0000 + 83.1384i −0.231814 + 0.401513i
\(36\) 0 0
\(37\) −14.0000 −0.0622050 −0.0311025 0.999516i \(-0.509902\pi\)
−0.0311025 + 0.999516i \(0.509902\pi\)
\(38\) 133.000 98.7269i 0.567775 0.421464i
\(39\) 0 0
\(40\) −12.0000 + 20.7846i −0.0474342 + 0.0821584i
\(41\) −206.500 + 357.668i −0.786582 + 1.36240i 0.141467 + 0.989943i \(0.454818\pi\)
−0.928049 + 0.372458i \(0.878515\pi\)
\(42\) 0 0
\(43\) −64.5000 + 111.717i −0.228748 + 0.396203i −0.957437 0.288641i \(-0.906796\pi\)
0.728689 + 0.684844i \(0.240130\pi\)
\(44\) 8.00000 + 13.8564i 0.0274101 + 0.0474757i
\(45\) 0 0
\(46\) 134.000 0.429505
\(47\) −308.500 534.338i −0.957433 1.65832i −0.728700 0.684833i \(-0.759875\pi\)
−0.228733 0.973489i \(-0.573458\pi\)
\(48\) 0 0
\(49\) 681.000 1.98542
\(50\) 232.000 0.656195
\(51\) 0 0
\(52\) 138.000 239.023i 0.368022 0.637433i
\(53\) 191.500 + 331.688i 0.496312 + 0.859638i 0.999991 0.00425305i \(-0.00135379\pi\)
−0.503679 + 0.863891i \(0.668020\pi\)
\(54\) 0 0
\(55\) −6.00000 + 10.3923i −0.0147098 + 0.0254781i
\(56\) 256.000 0.610883
\(57\) 0 0
\(58\) 102.000 0.230918
\(59\) −299.500 + 518.749i −0.660874 + 1.14467i 0.319512 + 0.947582i \(0.396481\pi\)
−0.980386 + 0.197086i \(0.936852\pi\)
\(60\) 0 0
\(61\) 108.500 + 187.928i 0.227738 + 0.394453i 0.957137 0.289635i \(-0.0935338\pi\)
−0.729400 + 0.684088i \(0.760200\pi\)
\(62\) −132.000 + 228.631i −0.270387 + 0.468325i
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) 207.000 0.395003
\(66\) 0 0
\(67\) 112.500 + 194.856i 0.205135 + 0.355305i 0.950176 0.311714i \(-0.100903\pi\)
−0.745041 + 0.667019i \(0.767570\pi\)
\(68\) −76.0000 −0.135535
\(69\) 0 0
\(70\) 96.0000 + 166.277i 0.163917 + 0.283913i
\(71\) 350.500 607.084i 0.585869 1.01475i −0.408898 0.912580i \(-0.634087\pi\)
0.994766 0.102175i \(-0.0325800\pi\)
\(72\) 0 0
\(73\) −507.500 + 879.016i −0.813676 + 1.40933i 0.0965979 + 0.995323i \(0.469204\pi\)
−0.910274 + 0.414005i \(0.864129\pi\)
\(74\) −14.0000 + 24.2487i −0.0219928 + 0.0380926i
\(75\) 0 0
\(76\) −38.0000 329.090i −0.0573539 0.496700i
\(77\) 128.000 0.189441
\(78\) 0 0
\(79\) −174.500 + 302.243i −0.248516 + 0.430443i −0.963114 0.269092i \(-0.913276\pi\)
0.714598 + 0.699535i \(0.246610\pi\)
\(80\) 24.0000 + 41.5692i 0.0335410 + 0.0580948i
\(81\) 0 0
\(82\) 413.000 + 715.337i 0.556198 + 0.963363i
\(83\) 592.000 0.782897 0.391448 0.920200i \(-0.371974\pi\)
0.391448 + 0.920200i \(0.371974\pi\)
\(84\) 0 0
\(85\) −28.5000 49.3634i −0.0363678 0.0629908i
\(86\) 129.000 + 223.435i 0.161749 + 0.280158i
\(87\) 0 0
\(88\) 32.0000 0.0387638
\(89\) −674.500 1168.27i −0.803335 1.39142i −0.917409 0.397946i \(-0.869723\pi\)
0.114074 0.993472i \(-0.463610\pi\)
\(90\) 0 0
\(91\) −1104.00 1912.18i −1.27177 2.20276i
\(92\) 134.000 232.095i 0.151853 0.263017i
\(93\) 0 0
\(94\) −1234.00 −1.35401
\(95\) 199.500 148.090i 0.215455 0.159934i
\(96\) 0 0
\(97\) 306.500 530.874i 0.320828 0.555691i −0.659831 0.751414i \(-0.729372\pi\)
0.980659 + 0.195723i \(0.0627054\pi\)
\(98\) 681.000 1179.53i 0.701953 1.21582i
\(99\) 0 0
\(100\) 232.000 401.836i 0.232000 0.401836i
\(101\) 617.500 + 1069.54i 0.608352 + 1.05370i 0.991512 + 0.130015i \(0.0415024\pi\)
−0.383160 + 0.923682i \(0.625164\pi\)
\(102\) 0 0
\(103\) 1632.00 1.56122 0.780610 0.625018i \(-0.214908\pi\)
0.780610 + 0.625018i \(0.214908\pi\)
\(104\) −276.000 478.046i −0.260231 0.450733i
\(105\) 0 0
\(106\) 766.000 0.701891
\(107\) −2060.00 −1.86119 −0.930597 0.366046i \(-0.880711\pi\)
−0.930597 + 0.366046i \(0.880711\pi\)
\(108\) 0 0
\(109\) −527.500 + 913.657i −0.463535 + 0.802867i −0.999134 0.0416060i \(-0.986753\pi\)
0.535599 + 0.844473i \(0.320086\pi\)
\(110\) 12.0000 + 20.7846i 0.0104014 + 0.0180158i
\(111\) 0 0
\(112\) 256.000 443.405i 0.215980 0.374088i
\(113\) −1006.00 −0.837491 −0.418746 0.908104i \(-0.637530\pi\)
−0.418746 + 0.908104i \(0.637530\pi\)
\(114\) 0 0
\(115\) 201.000 0.162986
\(116\) 102.000 176.669i 0.0816419 0.141408i
\(117\) 0 0
\(118\) 599.000 + 1037.50i 0.467309 + 0.809402i
\(119\) −304.000 + 526.543i −0.234182 + 0.405615i
\(120\) 0 0
\(121\) −1315.00 −0.987979
\(122\) 434.000 0.322070
\(123\) 0 0
\(124\) 264.000 + 457.261i 0.191193 + 0.331156i
\(125\) 723.000 0.517337
\(126\) 0 0
\(127\) −993.500 1720.79i −0.694164 1.20233i −0.970462 0.241256i \(-0.922441\pi\)
0.276297 0.961072i \(-0.410893\pi\)
\(128\) 64.0000 110.851i 0.0441942 0.0765466i
\(129\) 0 0
\(130\) 207.000 358.535i 0.139655 0.241889i
\(131\) −901.500 + 1561.44i −0.601255 + 1.04140i 0.391376 + 0.920231i \(0.371999\pi\)
−0.992631 + 0.121174i \(0.961334\pi\)
\(132\) 0 0
\(133\) −2432.00 1053.09i −1.58557 0.686573i
\(134\) 450.000 0.290105
\(135\) 0 0
\(136\) −76.0000 + 131.636i −0.0479187 + 0.0829977i
\(137\) −334.500 579.371i −0.208600 0.361307i 0.742673 0.669654i \(-0.233557\pi\)
−0.951274 + 0.308347i \(0.900224\pi\)
\(138\) 0 0
\(139\) 1362.50 + 2359.92i 0.831408 + 1.44004i 0.896922 + 0.442190i \(0.145798\pi\)
−0.0655134 + 0.997852i \(0.520869\pi\)
\(140\) 384.000 0.231814
\(141\) 0 0
\(142\) −701.000 1214.17i −0.414272 0.717540i
\(143\) −138.000 239.023i −0.0807003 0.139777i
\(144\) 0 0
\(145\) 153.000 0.0876273
\(146\) 1015.00 + 1758.03i 0.575356 + 0.996546i
\(147\) 0 0
\(148\) 28.0000 + 48.4974i 0.0155513 + 0.0269356i
\(149\) 35.5000 61.4878i 0.0195186 0.0338072i −0.856101 0.516808i \(-0.827120\pi\)
0.875620 + 0.483001i \(0.160453\pi\)
\(150\) 0 0
\(151\) −656.000 −0.353540 −0.176770 0.984252i \(-0.556565\pi\)
−0.176770 + 0.984252i \(0.556565\pi\)
\(152\) −608.000 263.272i −0.324443 0.140488i
\(153\) 0 0
\(154\) 128.000 221.703i 0.0669775 0.116008i
\(155\) −198.000 + 342.946i −0.102605 + 0.177717i
\(156\) 0 0
\(157\) 526.500 911.925i 0.267639 0.463564i −0.700613 0.713542i \(-0.747090\pi\)
0.968252 + 0.249978i \(0.0804233\pi\)
\(158\) 349.000 + 604.486i 0.175728 + 0.304369i
\(159\) 0 0
\(160\) 96.0000 0.0474342
\(161\) −1072.00 1856.76i −0.524754 0.908901i
\(162\) 0 0
\(163\) 68.0000 0.0326759 0.0163379 0.999867i \(-0.494799\pi\)
0.0163379 + 0.999867i \(0.494799\pi\)
\(164\) 1652.00 0.786582
\(165\) 0 0
\(166\) 592.000 1025.37i 0.276796 0.479424i
\(167\) −460.500 797.609i −0.213381 0.369586i 0.739390 0.673278i \(-0.235114\pi\)
−0.952770 + 0.303692i \(0.901781\pi\)
\(168\) 0 0
\(169\) −1282.00 + 2220.49i −0.583523 + 1.01069i
\(170\) −114.000 −0.0514318
\(171\) 0 0
\(172\) 516.000 0.228748
\(173\) −946.500 + 1639.39i −0.415960 + 0.720464i −0.995529 0.0944596i \(-0.969888\pi\)
0.579569 + 0.814923i \(0.303221\pi\)
\(174\) 0 0
\(175\) −1856.00 3214.69i −0.801717 1.38861i
\(176\) 32.0000 55.4256i 0.0137051 0.0237379i
\(177\) 0 0
\(178\) −2698.00 −1.13609
\(179\) 20.0000 0.00835123 0.00417562 0.999991i \(-0.498671\pi\)
0.00417562 + 0.999991i \(0.498671\pi\)
\(180\) 0 0
\(181\) −919.500 1592.62i −0.377602 0.654025i 0.613111 0.789997i \(-0.289918\pi\)
−0.990713 + 0.135971i \(0.956584\pi\)
\(182\) −4416.00 −1.79855
\(183\) 0 0
\(184\) −268.000 464.190i −0.107376 0.185981i
\(185\) −21.0000 + 36.3731i −0.00834568 + 0.0144551i
\(186\) 0 0
\(187\) −38.0000 + 65.8179i −0.0148601 + 0.0257384i
\(188\) −1234.00 + 2137.35i −0.478716 + 0.829161i
\(189\) 0 0
\(190\) −57.0000 493.634i −0.0217643 0.188484i
\(191\) −2992.00 −1.13347 −0.566737 0.823899i \(-0.691794\pi\)
−0.566737 + 0.823899i \(0.691794\pi\)
\(192\) 0 0
\(193\) 696.500 1206.37i 0.259768 0.449931i −0.706412 0.707801i \(-0.749687\pi\)
0.966180 + 0.257870i \(0.0830207\pi\)
\(194\) −613.000 1061.75i −0.226860 0.392933i
\(195\) 0 0
\(196\) −1362.00 2359.05i −0.496356 0.859713i
\(197\) 4214.00 1.52404 0.762018 0.647556i \(-0.224209\pi\)
0.762018 + 0.647556i \(0.224209\pi\)
\(198\) 0 0
\(199\) −383.500 664.241i −0.136611 0.236617i 0.789601 0.613621i \(-0.210288\pi\)
−0.926212 + 0.377004i \(0.876954\pi\)
\(200\) −464.000 803.672i −0.164049 0.284141i
\(201\) 0 0
\(202\) 2470.00 0.860340
\(203\) −816.000 1413.35i −0.282128 0.488660i
\(204\) 0 0
\(205\) 619.500 + 1073.01i 0.211062 + 0.365571i
\(206\) 1632.00 2826.71i 0.551975 0.956049i
\(207\) 0 0
\(208\) −1104.00 −0.368022
\(209\) −304.000 131.636i −0.100613 0.0435667i
\(210\) 0 0
\(211\) −1182.50 + 2048.15i −0.385814 + 0.668249i −0.991882 0.127164i \(-0.959413\pi\)
0.606068 + 0.795413i \(0.292746\pi\)
\(212\) 766.000 1326.75i 0.248156 0.429819i
\(213\) 0 0
\(214\) −2060.00 + 3568.02i −0.658031 + 1.13974i
\(215\) 193.500 + 335.152i 0.0613795 + 0.106312i
\(216\) 0 0
\(217\) 4224.00 1.32140
\(218\) 1055.00 + 1827.31i 0.327769 + 0.567712i
\(219\) 0 0
\(220\) 48.0000 0.0147098
\(221\) 1311.00 0.399038
\(222\) 0 0
\(223\) 1219.50 2112.24i 0.366205 0.634286i −0.622764 0.782410i \(-0.713990\pi\)
0.988969 + 0.148124i \(0.0473235\pi\)
\(224\) −512.000 886.810i −0.152721 0.264520i
\(225\) 0 0
\(226\) −1006.00 + 1742.44i −0.296098 + 0.512857i
\(227\) 1708.00 0.499401 0.249700 0.968323i \(-0.419668\pi\)
0.249700 + 0.968323i \(0.419668\pi\)
\(228\) 0 0
\(229\) 4618.00 1.33260 0.666301 0.745683i \(-0.267876\pi\)
0.666301 + 0.745683i \(0.267876\pi\)
\(230\) 201.000 348.142i 0.0576241 0.0998079i
\(231\) 0 0
\(232\) −204.000 353.338i −0.0577296 0.0999905i
\(233\) 1609.50 2787.74i 0.452540 0.783823i −0.546003 0.837783i \(-0.683851\pi\)
0.998543 + 0.0539608i \(0.0171846\pi\)
\(234\) 0 0
\(235\) −1851.00 −0.513812
\(236\) 2396.00 0.660874
\(237\) 0 0
\(238\) 608.000 + 1053.09i 0.165592 + 0.286813i
\(239\) 4236.00 1.14646 0.573230 0.819394i \(-0.305690\pi\)
0.573230 + 0.819394i \(0.305690\pi\)
\(240\) 0 0
\(241\) 1214.50 + 2103.58i 0.324618 + 0.562254i 0.981435 0.191796i \(-0.0614311\pi\)
−0.656817 + 0.754050i \(0.728098\pi\)
\(242\) −1315.00 + 2277.65i −0.349303 + 0.605011i
\(243\) 0 0
\(244\) 434.000 751.710i 0.113869 0.197227i
\(245\) 1021.50 1769.29i 0.266372 0.461371i
\(246\) 0 0
\(247\) 655.500 + 5676.80i 0.168860 + 1.46237i
\(248\) 1056.00 0.270387
\(249\) 0 0
\(250\) 723.000 1252.27i 0.182906 0.316803i
\(251\) 121.500 + 210.444i 0.0305538 + 0.0529208i 0.880898 0.473306i \(-0.156940\pi\)
−0.850344 + 0.526227i \(0.823606\pi\)
\(252\) 0 0
\(253\) −134.000 232.095i −0.0332984 0.0576746i
\(254\) −3974.00 −0.981697
\(255\) 0 0
\(256\) −128.000 221.703i −0.0312500 0.0541266i
\(257\) 523.500 + 906.729i 0.127062 + 0.220079i 0.922537 0.385908i \(-0.126112\pi\)
−0.795475 + 0.605987i \(0.792778\pi\)
\(258\) 0 0
\(259\) 448.000 0.107480
\(260\) −414.000 717.069i −0.0987507 0.171041i
\(261\) 0 0
\(262\) 1803.00 + 3122.89i 0.425152 + 0.736384i
\(263\) 952.500 1649.78i 0.223322 0.386805i −0.732493 0.680775i \(-0.761643\pi\)
0.955815 + 0.293970i \(0.0949766\pi\)
\(264\) 0 0
\(265\) 1149.00 0.266349
\(266\) −4256.00 + 3159.26i −0.981023 + 0.728221i
\(267\) 0 0
\(268\) 450.000 779.423i 0.102568 0.177652i
\(269\) −2916.50 + 5051.53i −0.661049 + 1.14497i 0.319292 + 0.947657i \(0.396555\pi\)
−0.980340 + 0.197314i \(0.936778\pi\)
\(270\) 0 0
\(271\) 1863.50 3227.68i 0.417711 0.723496i −0.577998 0.816038i \(-0.696166\pi\)
0.995709 + 0.0925421i \(0.0294993\pi\)
\(272\) 152.000 + 263.272i 0.0338837 + 0.0586882i
\(273\) 0 0
\(274\) −1338.00 −0.295006
\(275\) −232.000 401.836i −0.0508732 0.0881149i
\(276\) 0 0
\(277\) −5294.00 −1.14832 −0.574162 0.818742i \(-0.694672\pi\)
−0.574162 + 0.818742i \(0.694672\pi\)
\(278\) 5450.00 1.17579
\(279\) 0 0
\(280\) 384.000 665.108i 0.0819585 0.141956i
\(281\) 687.500 + 1190.78i 0.145953 + 0.252798i 0.929728 0.368247i \(-0.120042\pi\)
−0.783775 + 0.621045i \(0.786708\pi\)
\(282\) 0 0
\(283\) 653.500 1131.90i 0.137267 0.237753i −0.789194 0.614144i \(-0.789502\pi\)
0.926461 + 0.376390i \(0.122835\pi\)
\(284\) −2804.00 −0.585869
\(285\) 0 0
\(286\) −552.000 −0.114127
\(287\) 6608.00 11445.4i 1.35909 2.35401i
\(288\) 0 0
\(289\) 2276.00 + 3942.15i 0.463261 + 0.802391i
\(290\) 153.000 265.004i 0.0309809 0.0536605i
\(291\) 0 0
\(292\) 4060.00 0.813676
\(293\) −3818.00 −0.761263 −0.380631 0.924727i \(-0.624293\pi\)
−0.380631 + 0.924727i \(0.624293\pi\)
\(294\) 0 0
\(295\) 898.500 + 1556.25i 0.177331 + 0.307147i
\(296\) 112.000 0.0219928
\(297\) 0 0
\(298\) −71.0000 122.976i −0.0138017 0.0239053i
\(299\) −2311.50 + 4003.64i −0.447082 + 0.774369i
\(300\) 0 0
\(301\) 2064.00 3574.95i 0.395239 0.684574i
\(302\) −656.000 + 1136.23i −0.124995 + 0.216498i
\(303\) 0 0
\(304\) −1064.00 + 789.815i −0.200739 + 0.149010i
\(305\) 651.000 0.122217
\(306\) 0 0
\(307\) −436.500 + 756.040i −0.0811478 + 0.140552i −0.903743 0.428075i \(-0.859192\pi\)
0.822595 + 0.568627i \(0.192525\pi\)
\(308\) −256.000 443.405i −0.0473602 0.0820303i
\(309\) 0 0
\(310\) 396.000 + 685.892i 0.0725525 + 0.125665i
\(311\) −4180.00 −0.762142 −0.381071 0.924546i \(-0.624445\pi\)
−0.381071 + 0.924546i \(0.624445\pi\)
\(312\) 0 0
\(313\) 1582.50 + 2740.97i 0.285777 + 0.494980i 0.972797 0.231658i \(-0.0744150\pi\)
−0.687020 + 0.726638i \(0.741082\pi\)
\(314\) −1053.00 1823.85i −0.189249 0.327789i
\(315\) 0 0
\(316\) 1396.00 0.248516
\(317\) 2269.50 + 3930.89i 0.402107 + 0.696469i 0.993980 0.109562i \(-0.0349448\pi\)
−0.591873 + 0.806031i \(0.701611\pi\)
\(318\) 0 0
\(319\) −102.000 176.669i −0.0179025 0.0310081i
\(320\) 96.0000 166.277i 0.0167705 0.0290474i
\(321\) 0 0
\(322\) −4288.00 −0.742115
\(323\) 1263.50 937.906i 0.217656 0.161568i
\(324\) 0 0
\(325\) −4002.00 + 6931.67i −0.683049 + 1.18308i
\(326\) 68.0000 117.779i 0.0115527 0.0200098i
\(327\) 0 0
\(328\) 1652.00 2861.35i 0.278099 0.481681i
\(329\) 9872.00 + 17098.8i 1.65429 + 2.86531i
\(330\) 0 0
\(331\) 3660.00 0.607770 0.303885 0.952709i \(-0.401716\pi\)
0.303885 + 0.952709i \(0.401716\pi\)
\(332\) −1184.00 2050.75i −0.195724 0.339004i
\(333\) 0 0
\(334\) −1842.00 −0.301766
\(335\) 675.000 0.110087
\(336\) 0 0
\(337\) 2586.50 4479.95i 0.418088 0.724150i −0.577659 0.816278i \(-0.696034\pi\)
0.995747 + 0.0921285i \(0.0293671\pi\)
\(338\) 2564.00 + 4440.98i 0.412613 + 0.714667i
\(339\) 0 0
\(340\) −114.000 + 197.454i −0.0181839 + 0.0314954i
\(341\) 528.000 0.0838499
\(342\) 0 0
\(343\) −10816.0 −1.70265
\(344\) 516.000 893.738i 0.0808746 0.140079i
\(345\) 0 0
\(346\) 1893.00 + 3278.77i 0.294128 + 0.509445i
\(347\) −4295.50 + 7440.02i −0.664538 + 1.15101i 0.314873 + 0.949134i \(0.398038\pi\)
−0.979410 + 0.201879i \(0.935295\pi\)
\(348\) 0 0
\(349\) 6946.00 1.06536 0.532680 0.846317i \(-0.321185\pi\)
0.532680 + 0.846317i \(0.321185\pi\)
\(350\) −7424.00 −1.13380
\(351\) 0 0
\(352\) −64.0000 110.851i −0.00969094 0.0167852i
\(353\) 8226.00 1.24030 0.620150 0.784483i \(-0.287072\pi\)
0.620150 + 0.784483i \(0.287072\pi\)
\(354\) 0 0
\(355\) −1051.50 1821.25i −0.157205 0.272287i
\(356\) −2698.00 + 4673.07i −0.401668 + 0.695709i
\(357\) 0 0
\(358\) 20.0000 34.6410i 0.00295261 0.00511406i
\(359\) 5692.50 9859.70i 0.836876 1.44951i −0.0556169 0.998452i \(-0.517713\pi\)
0.892493 0.451060i \(-0.148954\pi\)
\(360\) 0 0
\(361\) 4693.00 + 5002.16i 0.684211 + 0.729285i
\(362\) −3678.00 −0.534009
\(363\) 0 0
\(364\) −4416.00 + 7648.74i −0.635883 + 1.10138i
\(365\) 1522.50 + 2637.05i 0.218332 + 0.378163i
\(366\) 0 0
\(367\) 1476.50 + 2557.37i 0.210007 + 0.363743i 0.951717 0.306978i \(-0.0993179\pi\)
−0.741709 + 0.670722i \(0.765985\pi\)
\(368\) −1072.00 −0.151853
\(369\) 0 0
\(370\) 42.0000 + 72.7461i 0.00590129 + 0.0102213i
\(371\) −6128.00 10614.0i −0.857547 1.48531i
\(372\) 0 0
\(373\) 5006.00 0.694908 0.347454 0.937697i \(-0.387046\pi\)
0.347454 + 0.937697i \(0.387046\pi\)
\(374\) 76.0000 + 131.636i 0.0105077 + 0.0181998i
\(375\) 0 0
\(376\) 2468.00 + 4274.70i 0.338504 + 0.586306i
\(377\) −1759.50 + 3047.54i −0.240368 + 0.416330i
\(378\) 0 0
\(379\) 6764.00 0.916737 0.458369 0.888762i \(-0.348434\pi\)
0.458369 + 0.888762i \(0.348434\pi\)
\(380\) −912.000 394.908i −0.123117 0.0533114i
\(381\) 0 0
\(382\) −2992.00 + 5182.30i −0.400744 + 0.694108i
\(383\) −2481.50 + 4298.08i −0.331067 + 0.573425i −0.982721 0.185091i \(-0.940742\pi\)
0.651654 + 0.758516i \(0.274075\pi\)
\(384\) 0 0
\(385\) 192.000 332.554i 0.0254162 0.0440221i
\(386\) −1393.00 2412.75i −0.183684 0.318149i
\(387\) 0 0
\(388\) −2452.00 −0.320828
\(389\) 1811.50 + 3137.61i 0.236110 + 0.408954i 0.959595 0.281386i \(-0.0907942\pi\)
−0.723485 + 0.690340i \(0.757461\pi\)
\(390\) 0 0
\(391\) 1273.00 0.164651
\(392\) −5448.00 −0.701953
\(393\) 0 0
\(394\) 4214.00 7298.86i 0.538828 0.933278i
\(395\) 523.500 + 906.729i 0.0666839 + 0.115500i
\(396\) 0 0
\(397\) 3814.50 6606.91i 0.482227 0.835242i −0.517564 0.855644i \(-0.673161\pi\)
0.999792 + 0.0204019i \(0.00649457\pi\)
\(398\) −1534.00 −0.193197
\(399\) 0 0
\(400\) −1856.00 −0.232000
\(401\) −4558.50 + 7895.55i −0.567682 + 0.983255i 0.429112 + 0.903251i \(0.358826\pi\)
−0.996795 + 0.0800035i \(0.974507\pi\)
\(402\) 0 0
\(403\) −4554.00 7887.76i −0.562905 0.974981i
\(404\) 2470.00 4278.17i 0.304176 0.526848i
\(405\) 0 0
\(406\) −3264.00 −0.398989
\(407\) 56.0000 0.00682019
\(408\) 0 0
\(409\) −2467.50 4273.84i −0.298313 0.516693i 0.677437 0.735581i \(-0.263091\pi\)
−0.975750 + 0.218887i \(0.929757\pi\)
\(410\) 2478.00 0.298487
\(411\) 0 0
\(412\) −3264.00 5653.41i −0.390305 0.676028i
\(413\) 9584.00 16600.0i 1.14188 1.97780i
\(414\) 0 0
\(415\) 888.000 1538.06i 0.105037 0.181929i
\(416\) −1104.00 + 1912.18i −0.130116 + 0.225367i
\(417\) 0 0
\(418\) −532.000 + 394.908i −0.0622511 + 0.0462095i
\(419\) −6516.00 −0.759731 −0.379866 0.925042i \(-0.624030\pi\)
−0.379866 + 0.925042i \(0.624030\pi\)
\(420\) 0 0
\(421\) −5457.50 + 9452.67i −0.631787 + 1.09429i 0.355399 + 0.934715i \(0.384345\pi\)
−0.987186 + 0.159572i \(0.948988\pi\)
\(422\) 2365.00 + 4096.30i 0.272811 + 0.472523i
\(423\) 0 0
\(424\) −1532.00 2653.50i −0.175473 0.303928i
\(425\) 2204.00 0.251552
\(426\) 0 0
\(427\) −3472.00 6013.68i −0.393494 0.681551i
\(428\) 4120.00 + 7136.05i 0.465298 + 0.805920i
\(429\) 0 0
\(430\) 774.000 0.0868037
\(431\) −2754.50 4770.93i −0.307841 0.533197i 0.670049 0.742317i \(-0.266273\pi\)
−0.977890 + 0.209120i \(0.932940\pi\)
\(432\) 0 0
\(433\) 1876.50 + 3250.19i 0.208265 + 0.360726i 0.951168 0.308673i \(-0.0998850\pi\)
−0.742903 + 0.669399i \(0.766552\pi\)
\(434\) 4224.00 7316.18i 0.467185 0.809189i
\(435\) 0 0
\(436\) 4220.00 0.463535
\(437\) 636.500 + 5512.25i 0.0696749 + 0.603402i
\(438\) 0 0
\(439\) −3906.50 + 6766.26i −0.424709 + 0.735617i −0.996393 0.0848566i \(-0.972957\pi\)
0.571685 + 0.820473i \(0.306290\pi\)
\(440\) 48.0000 83.1384i 0.00520071 0.00900789i
\(441\) 0 0
\(442\) 1311.00 2270.72i 0.141081 0.244360i
\(443\) −3058.50 5297.48i −0.328022 0.568151i 0.654097 0.756410i \(-0.273049\pi\)
−0.982119 + 0.188260i \(0.939715\pi\)
\(444\) 0 0
\(445\) −4047.00 −0.431115
\(446\) −2439.00 4224.47i −0.258946 0.448508i
\(447\) 0 0
\(448\) −2048.00 −0.215980
\(449\) 7146.00 0.751093 0.375546 0.926804i \(-0.377455\pi\)
0.375546 + 0.926804i \(0.377455\pi\)
\(450\) 0 0
\(451\) 826.000 1430.67i 0.0862413 0.149374i
\(452\) 2012.00 + 3484.89i 0.209373 + 0.362644i
\(453\) 0 0
\(454\) 1708.00 2958.34i 0.176565 0.305819i
\(455\) −6624.00 −0.682501
\(456\) 0 0
\(457\) −18118.0 −1.85454 −0.927269 0.374395i \(-0.877851\pi\)
−0.927269 + 0.374395i \(0.877851\pi\)
\(458\) 4618.00 7998.61i 0.471146 0.816049i
\(459\) 0 0
\(460\) −402.000 696.284i −0.0407464 0.0705748i
\(461\) 8467.50 14666.1i 0.855468 1.48171i −0.0207420 0.999785i \(-0.506603\pi\)
0.876210 0.481929i \(-0.160064\pi\)
\(462\) 0 0
\(463\) −7788.00 −0.781726 −0.390863 0.920449i \(-0.627823\pi\)
−0.390863 + 0.920449i \(0.627823\pi\)
\(464\) −816.000 −0.0816419
\(465\) 0 0
\(466\) −3219.00 5575.47i −0.319994 0.554246i
\(467\) −12500.0 −1.23861 −0.619305 0.785150i \(-0.712586\pi\)
−0.619305 + 0.785150i \(0.712586\pi\)
\(468\) 0 0
\(469\) −3600.00 6235.38i −0.354440 0.613909i
\(470\) −1851.00 + 3206.03i −0.181660 + 0.314645i
\(471\) 0 0
\(472\) 2396.00 4149.99i 0.233654 0.404701i
\(473\) 258.000 446.869i 0.0250800 0.0434399i
\(474\) 0 0
\(475\) 1102.00 + 9543.60i 0.106449 + 0.921875i
\(476\) 2432.00 0.234182
\(477\) 0 0
\(478\) 4236.00 7336.97i 0.405335 0.702061i
\(479\) −6052.50 10483.2i −0.577340 0.999982i −0.995783 0.0917390i \(-0.970757\pi\)
0.418443 0.908243i \(-0.362576\pi\)
\(480\) 0 0
\(481\) −483.000 836.581i −0.0457857 0.0793031i
\(482\) 4858.00 0.459078
\(483\) 0 0
\(484\) 2630.00 + 4555.29i 0.246995 + 0.427807i
\(485\) −919.500 1592.62i −0.0860873 0.149108i
\(486\) 0 0
\(487\) 296.000 0.0275422 0.0137711 0.999905i \(-0.495616\pi\)
0.0137711 + 0.999905i \(0.495616\pi\)
\(488\) −868.000 1503.42i −0.0805174 0.139460i
\(489\) 0 0
\(490\) −2043.00 3538.58i −0.188354 0.326238i
\(491\) 1606.50 2782.54i 0.147659 0.255752i −0.782703 0.622395i \(-0.786160\pi\)
0.930362 + 0.366643i \(0.119493\pi\)
\(492\) 0 0
\(493\) 969.000 0.0885224
\(494\) 10488.0 + 4541.44i 0.955217 + 0.413621i
\(495\) 0 0
\(496\) 1056.00 1829.05i 0.0955964 0.165578i
\(497\) −11216.0 + 19426.7i −1.01229 + 1.75333i
\(498\) 0 0
\(499\) −1508.50 + 2612.80i −0.135330 + 0.234399i −0.925724 0.378201i \(-0.876543\pi\)
0.790393 + 0.612600i \(0.209876\pi\)
\(500\) −1446.00 2504.55i −0.129334 0.224013i
\(501\) 0 0
\(502\) 486.000 0.0432096
\(503\) −3638.50 6302.07i −0.322530 0.558639i 0.658479 0.752599i \(-0.271200\pi\)
−0.981009 + 0.193960i \(0.937867\pi\)
\(504\) 0 0
\(505\) 3705.00 0.326476
\(506\) −536.000 −0.0470911
\(507\) 0 0
\(508\) −3974.00 + 6883.17i −0.347082 + 0.601164i
\(509\) −5346.50 9260.41i −0.465578 0.806406i 0.533649 0.845706i \(-0.320820\pi\)
−0.999227 + 0.0393005i \(0.987487\pi\)
\(510\) 0 0
\(511\) 16240.0 28128.5i 1.40590 2.43509i
\(512\) −512.000 −0.0441942
\(513\) 0 0
\(514\) 2094.00 0.179693
\(515\) 2448.00 4240.06i 0.209460 0.362795i
\(516\) 0 0
\(517\) 1234.00 + 2137.35i 0.104973 + 0.181819i
\(518\) 448.000 775.959i 0.0380000 0.0658179i
\(519\) 0 0
\(520\) −1656.00 −0.139655
\(521\) 7190.00 0.604606 0.302303 0.953212i \(-0.402245\pi\)
0.302303 + 0.953212i \(0.402245\pi\)
\(522\) 0 0
\(523\) −4323.50 7488.52i −0.361479 0.626100i 0.626726 0.779240i \(-0.284395\pi\)
−0.988204 + 0.153140i \(0.951061\pi\)
\(524\) 7212.00 0.601255
\(525\) 0 0
\(526\) −1905.00 3299.56i −0.157912 0.273512i
\(527\) −1254.00 + 2171.99i −0.103653 + 0.179532i
\(528\) 0 0
\(529\) 3839.00 6649.34i 0.315526 0.546506i
\(530\) 1149.00 1990.13i 0.0941686 0.163105i
\(531\) 0 0
\(532\) 1216.00 + 10530.9i 0.0990983 + 0.858216i
\(533\) −28497.0 −2.31584
\(534\) 0 0
\(535\) −3090.00 + 5352.04i −0.249705 + 0.432502i
\(536\) −900.000 1558.85i −0.0725263 0.125619i
\(537\) 0 0
\(538\) 5833.00 + 10103.1i 0.467432 + 0.809616i
\(539\) −2724.00 −0.217683
\(540\) 0 0
\(541\) −2021.50 3501.34i −0.160649 0.278252i 0.774453 0.632632i \(-0.218025\pi\)
−0.935102 + 0.354380i \(0.884692\pi\)
\(542\) −3727.00 6455.35i −0.295366 0.511589i
\(543\) 0 0
\(544\) 608.000 0.0479187
\(545\) 1582.50 + 2740.97i 0.124380 + 0.215432i
\(546\) 0 0
\(547\) 2694.50 + 4667.01i 0.210619 + 0.364803i 0.951908 0.306383i \(-0.0991188\pi\)
−0.741290 + 0.671185i \(0.765785\pi\)
\(548\) −1338.00 + 2317.48i −0.104300 + 0.180653i
\(549\) 0 0
\(550\) −928.000 −0.0719456
\(551\) 484.500 + 4195.89i 0.0374599 + 0.324412i
\(552\) 0 0
\(553\) 5584.00 9671.77i 0.429396 0.743735i
\(554\) −5294.00 + 9169.48i −0.405994 + 0.703202i
\(555\) 0 0
\(556\) 5450.00 9439.68i 0.415704 0.720021i
\(557\) 3363.50 + 5825.75i 0.255864 + 0.443169i 0.965130 0.261772i \(-0.0843068\pi\)
−0.709266 + 0.704941i \(0.750974\pi\)
\(558\) 0 0
\(559\) −8901.00 −0.673474
\(560\) −768.000 1330.22i −0.0579534 0.100378i
\(561\) 0 0
\(562\) 2750.00 0.206409
\(563\) 19908.0 1.49027 0.745135 0.666914i \(-0.232385\pi\)
0.745135 + 0.666914i \(0.232385\pi\)
\(564\) 0 0
\(565\) −1509.00 + 2613.66i −0.112361 + 0.194615i
\(566\) −1307.00 2263.79i −0.0970624 0.168117i
\(567\) 0 0
\(568\) −2804.00 + 4856.67i −0.207136 + 0.358770i
\(569\) 8730.00 0.643200 0.321600 0.946876i \(-0.395779\pi\)
0.321600 + 0.946876i \(0.395779\pi\)
\(570\) 0 0
\(571\) −4732.00 −0.346809 −0.173405 0.984851i \(-0.555477\pi\)
−0.173405 + 0.984851i \(0.555477\pi\)
\(572\) −552.000 + 956.092i −0.0403501 + 0.0698885i
\(573\) 0 0
\(574\) −13216.0 22890.8i −0.961019 1.66453i
\(575\) −3886.00 + 6730.75i −0.281839 + 0.488159i
\(576\) 0 0
\(577\) −23882.0 −1.72309 −0.861543 0.507685i \(-0.830502\pi\)
−0.861543 + 0.507685i \(0.830502\pi\)
\(578\) 9104.00 0.655150
\(579\) 0 0
\(580\) −306.000 530.008i −0.0219068 0.0379437i
\(581\) −18944.0 −1.35272
\(582\) 0 0
\(583\) −766.000 1326.75i −0.0544159 0.0942511i
\(584\) 4060.00 7032.13i 0.287678 0.498273i
\(585\) 0 0
\(586\) −3818.00 + 6612.97i −0.269147 + 0.466176i
\(587\) −8273.50 + 14330.1i −0.581744 + 1.00761i 0.413528 + 0.910491i \(0.364296\pi\)
−0.995273 + 0.0971194i \(0.969037\pi\)
\(588\) 0 0
\(589\) −10032.0 4343.98i −0.701802 0.303889i
\(590\) 3594.00 0.250784
\(591\) 0 0
\(592\) 112.000 193.990i 0.00777563 0.0134678i
\(593\) −7514.50 13015.5i −0.520377 0.901319i −0.999719 0.0236913i \(-0.992458\pi\)
0.479342 0.877628i \(-0.340875\pi\)
\(594\) 0 0
\(595\) 912.000 + 1579.63i 0.0628376 + 0.108838i
\(596\) −284.000 −0.0195186
\(597\) 0 0
\(598\) 4623.00 + 8007.27i 0.316135 + 0.547561i
\(599\) 6893.50 + 11939.9i 0.470218 + 0.814442i 0.999420 0.0340541i \(-0.0108418\pi\)
−0.529202 + 0.848496i \(0.677509\pi\)
\(600\) 0 0
\(601\) 11382.0 0.772515 0.386257 0.922391i \(-0.373768\pi\)
0.386257 + 0.922391i \(0.373768\pi\)
\(602\) −4128.00 7149.91i −0.279476 0.484067i
\(603\) 0 0
\(604\) 1312.00 + 2272.45i 0.0883850 + 0.153087i
\(605\) −1972.50 + 3416.47i −0.132551 + 0.229586i
\(606\) 0 0
\(607\) −25312.0 −1.69256 −0.846279 0.532740i \(-0.821162\pi\)
−0.846279 + 0.532740i \(0.821162\pi\)
\(608\) 304.000 + 2632.72i 0.0202777 + 0.175610i
\(609\) 0 0
\(610\) 651.000 1127.57i 0.0432102 0.0748423i
\(611\) 21286.5 36869.3i 1.40943 2.44120i
\(612\) 0 0
\(613\) 11748.5 20349.0i 0.774090 1.34076i −0.161214 0.986920i \(-0.551541\pi\)
0.935304 0.353844i \(-0.115126\pi\)
\(614\) 873.000 + 1512.08i 0.0573802 + 0.0993853i
\(615\) 0 0
\(616\) −1024.00 −0.0669775
\(617\) −6610.50 11449.7i −0.431327 0.747080i 0.565661 0.824638i \(-0.308621\pi\)
−0.996988 + 0.0775578i \(0.975288\pi\)
\(618\) 0 0
\(619\) 15316.0 0.994511 0.497255 0.867604i \(-0.334341\pi\)
0.497255 + 0.867604i \(0.334341\pi\)
\(620\) 1584.00 0.102605
\(621\) 0 0
\(622\) −4180.00 + 7239.97i −0.269458 + 0.466715i
\(623\) 21584.0 + 37384.6i 1.38803 + 2.40414i
\(624\) 0 0
\(625\) −6165.50 + 10679.0i −0.394592 + 0.683453i
\(626\) 6330.00 0.404150
\(627\) 0 0
\(628\) −4212.00 −0.267639
\(629\) −133.000 + 230.363i −0.00843093 + 0.0146028i
\(630\) 0 0
\(631\) 3024.50 + 5238.59i 0.190814 + 0.330499i 0.945520 0.325564i \(-0.105554\pi\)
−0.754706 + 0.656063i \(0.772221\pi\)
\(632\) 1396.00 2417.94i 0.0878638 0.152185i
\(633\) 0 0
\(634\) 9078.00 0.568665
\(635\) −5961.00 −0.372528
\(636\) 0 0
\(637\) 23494.5 + 40693.7i 1.46136 + 2.53115i
\(638\) −408.000 −0.0253180
\(639\) 0 0
\(640\) −192.000 332.554i −0.0118585 0.0205396i
\(641\) −12044.5 + 20861.7i −0.742167 + 1.28547i 0.209339 + 0.977843i \(0.432869\pi\)
−0.951507 + 0.307628i \(0.900465\pi\)
\(642\) 0 0
\(643\) −816.500 + 1414.22i −0.0500772 + 0.0867362i −0.889977 0.456005i \(-0.849280\pi\)
0.839900 + 0.542741i \(0.182613\pi\)
\(644\) −4288.00 + 7427.03i −0.262377 + 0.454451i
\(645\) 0 0
\(646\) −361.000 3126.35i −0.0219866 0.190410i
\(647\) −14592.0 −0.886663 −0.443331 0.896358i \(-0.646203\pi\)
−0.443331 + 0.896358i \(0.646203\pi\)
\(648\) 0 0
\(649\) 1198.00 2075.00i 0.0724586 0.125502i
\(650\) 8004.00 + 13863.3i 0.482989 + 0.836561i
\(651\) 0 0
\(652\) −136.000 235.559i −0.00816897 0.0141491i
\(653\) 23430.0 1.40411 0.702057 0.712121i \(-0.252265\pi\)
0.702057 + 0.712121i \(0.252265\pi\)
\(654\) 0 0
\(655\) 2704.50 + 4684.33i 0.161334 + 0.279438i
\(656\) −3304.00 5722.70i −0.196646 0.340600i
\(657\) 0 0
\(658\) 39488.0 2.33952
\(659\) 2067.50 + 3581.02i 0.122213 + 0.211679i 0.920640 0.390412i \(-0.127668\pi\)
−0.798427 + 0.602092i \(0.794334\pi\)
\(660\) 0 0
\(661\) 4142.50 + 7175.02i 0.243759 + 0.422203i 0.961782 0.273817i \(-0.0882861\pi\)
−0.718023 + 0.696019i \(0.754953\pi\)
\(662\) 3660.00 6339.31i 0.214879 0.372181i
\(663\) 0 0
\(664\) −4736.00 −0.276796
\(665\) −6384.00 + 4738.89i −0.372272 + 0.276340i
\(666\) 0 0
\(667\) −1708.50 + 2959.21i −0.0991805 + 0.171786i
\(668\) −1842.00 + 3190.44i −0.106690 + 0.184793i
\(669\) 0 0
\(670\) 675.000 1169.13i 0.0389217 0.0674143i
\(671\) −434.000 751.710i −0.0249693 0.0432481i
\(672\) 0 0
\(673\) 23990.0 1.37407 0.687033 0.726626i \(-0.258913\pi\)
0.687033 + 0.726626i \(0.258913\pi\)
\(674\) −5173.00 8959.90i −0.295633 0.512051i
\(675\) 0 0
\(676\) 10256.0 0.583523
\(677\) −690.000 −0.0391711 −0.0195856 0.999808i \(-0.506235\pi\)
−0.0195856 + 0.999808i \(0.506235\pi\)
\(678\) 0 0
\(679\) −9808.00 + 16988.0i −0.554339 + 0.960144i
\(680\) 228.000 + 394.908i 0.0128579 + 0.0222706i
\(681\) 0 0
\(682\) 528.000 914.523i 0.0296454 0.0513473i
\(683\) −5760.00 −0.322694 −0.161347 0.986898i \(-0.551584\pi\)
−0.161347 + 0.986898i \(0.551584\pi\)
\(684\) 0 0
\(685\) −2007.00 −0.111947
\(686\) −10816.0 + 18733.9i −0.601978 + 1.04266i
\(687\) 0 0
\(688\) −1032.00 1787.48i −0.0571870 0.0990507i
\(689\) −13213.5 + 22886.5i −0.730616 + 1.26546i
\(690\) 0 0
\(691\) 4348.00 0.239372 0.119686 0.992812i \(-0.461811\pi\)
0.119686 + 0.992812i \(0.461811\pi\)
\(692\) 7572.00 0.415960
\(693\) 0 0
\(694\) 8591.00 + 14880.0i 0.469899 + 0.813889i
\(695\) 8175.00 0.446180
\(696\) 0 0
\(697\) 3923.50 + 6795.70i 0.213218 + 0.369305i
\(698\) 6946.00 12030.8i 0.376662 0.652397i
\(699\) 0 0
\(700\) −7424.00 + 12858.7i −0.400858 + 0.694307i
\(701\) −5144.50 + 8910.54i −0.277183 + 0.480095i −0.970683 0.240361i \(-0.922734\pi\)
0.693501 + 0.720456i \(0.256067\pi\)
\(702\) 0 0
\(703\) −1064.00 460.726i −0.0570832 0.0247178i
\(704\) −256.000 −0.0137051
\(705\) 0 0
\(706\) 8226.00 14247.8i 0.438512 0.759525i
\(707\) −19760.0 34225.3i −1.05113 1.82062i
\(708\) 0 0
\(709\) 15372.5 + 26626.0i 0.814283 + 1.41038i 0.909842 + 0.414955i \(0.136203\pi\)
−0.0955593 + 0.995424i \(0.530464\pi\)
\(710\) −4206.00 −0.222322
\(711\) 0 0
\(712\) 5396.00 + 9346.15i 0.284022 + 0.491940i
\(713\) −4422.00 7659.13i −0.232265 0.402295i
\(714\) 0 0
\(715\) −828.000 −0.0433083
\(716\) −40.0000 69.2820i −0.00208781 0.00361619i
\(717\) 0 0
\(718\) −11385.0 19719.4i −0.591761 1.02496i
\(719\) 420.500 728.327i 0.0218109 0.0377775i −0.854914 0.518770i \(-0.826390\pi\)
0.876725 + 0.480992i \(0.159724\pi\)
\(720\) 0 0
\(721\) −52224.0 −2.69754
\(722\) 13357.0 3126.35i 0.688499 0.161151i
\(723\) 0 0
\(724\) −3678.00 + 6370.48i −0.188801 + 0.327013i
\(725\) −2958.00 + 5123.41i −0.151527 + 0.262453i
\(726\) 0 0
\(727\) 135.500 234.693i 0.00691254 0.0119729i −0.862548 0.505974i \(-0.831133\pi\)
0.869461 + 0.494002i \(0.164466\pi\)
\(728\) 8832.00 + 15297.5i 0.449637 + 0.778794i
\(729\) 0 0
\(730\) 6090.00 0.308769
\(731\) 1225.50 + 2122.63i 0.0620065 + 0.107398i
\(732\) 0 0
\(733\) −8102.00 −0.408259 −0.204130 0.978944i \(-0.565436\pi\)
−0.204130 + 0.978944i \(0.565436\pi\)
\(734\) 5906.00 0.296995
\(735\) 0 0
\(736\) −1072.00 + 1856.76i −0.0536881 + 0.0929905i
\(737\) −450.000 779.423i −0.0224911 0.0389558i
\(738\) 0 0
\(739\) −7824.50 + 13552.4i −0.389484 + 0.674607i −0.992380 0.123213i \(-0.960680\pi\)
0.602896 + 0.797820i \(0.294013\pi\)
\(740\) 168.000 0.00834568
\(741\) 0 0
\(742\) −24512.0 −1.21275
\(743\) −5167.50 + 8950.37i −0.255151 + 0.441934i −0.964937 0.262483i \(-0.915459\pi\)
0.709786 + 0.704418i \(0.248792\pi\)
\(744\) 0 0
\(745\) −106.500 184.463i −0.00523739 0.00907143i
\(746\) 5006.00 8670.65i 0.245687 0.425543i
\(747\) 0 0
\(748\) 304.000 0.0148601
\(749\) 65920.0 3.21584
\(750\) 0 0
\(751\) 7334.50 + 12703.7i 0.356378 + 0.617264i 0.987353 0.158539i \(-0.0506783\pi\)
−0.630975 + 0.775803i \(0.717345\pi\)
\(752\) 9872.00 0.478716
\(753\) 0 0
\(754\) 3519.00 + 6095.09i 0.169966 + 0.294390i
\(755\) −984.000 + 1704.34i −0.0474324 + 0.0821552i
\(756\) 0 0
\(757\) 20718.5 35885.5i 0.994751 1.72296i 0.408761 0.912641i \(-0.365961\pi\)
0.585990 0.810318i \(-0.300706\pi\)
\(758\) 6764.00 11715.6i 0.324115 0.561385i
\(759\) 0 0
\(760\) −1596.00 + 1184.72i −0.0761750 + 0.0565453i
\(761\) 34258.0 1.63187 0.815934 0.578145i \(-0.196223\pi\)
0.815934 + 0.578145i \(0.196223\pi\)
\(762\) 0 0
\(763\) 16880.0 29237.0i 0.800914 1.38722i
\(764\) 5984.00 + 10364.6i 0.283368 + 0.490809i
\(765\) 0 0
\(766\) 4963.00 + 8596.17i 0.234100 + 0.405473i
\(767\) −41331.0 −1.94573
\(768\) 0 0
\(769\) −3427.50 5936.60i −0.160727 0.278387i 0.774403 0.632693i \(-0.218050\pi\)
−0.935130 + 0.354306i \(0.884717\pi\)
\(770\) −384.000 665.108i −0.0179719 0.0311283i
\(771\) 0 0
\(772\) −5572.00 −0.259768
\(773\) −14728.5 25510.5i −0.685313 1.18700i −0.973338 0.229375i \(-0.926332\pi\)
0.288025 0.957623i \(-0.407001\pi\)
\(774\) 0 0
\(775\) −7656.00 13260.6i −0.354854 0.614625i
\(776\) −2452.00 + 4246.99i −0.113430 + 0.196467i
\(777\) 0 0
\(778\) 7246.00 0.333910
\(779\) −27464.5 + 20387.1i −1.26318 + 0.937669i
\(780\) 0 0
\(781\) −1402.00 + 2428.34i −0.0642350 + 0.111258i
\(782\) 1273.00 2204.90i 0.0582128 0.100827i
\(783\) 0 0
\(784\) −5448.00 + 9436.21i −0.248178 + 0.429857i
\(785\) −1579.50 2735.77i −0.0718150 0.124387i
\(786\) 0 0
\(787\) 20716.0 0.938305 0.469152 0.883117i \(-0.344560\pi\)
0.469152 + 0.883117i \(0.344560\pi\)
\(788\) −8428.00 14597.7i −0.381009 0.659927i
\(789\) 0 0
\(790\) 2094.00 0.0943053
\(791\) 32192.0 1.44705
\(792\) 0 0
\(793\) −7486.50 + 12967.0i −0.335250 + 0.580670i
\(794\) −7629.00 13213.8i −0.340986 0.590606i
\(795\) 0 0
\(796\) −1534.00 + 2656.97i −0.0683055 + 0.118309i
\(797\) −3722.00 −0.165420 −0.0827102 0.996574i \(-0.526358\pi\)
−0.0827102 + 0.996574i \(0.526358\pi\)
\(798\) 0 0
\(799\) −11723.0 −0.519061
\(800\) −1856.00 + 3214.69i −0.0820244 + 0.142070i
\(801\) 0 0
\(802\) 9117.00 + 15791.1i 0.401412 + 0.695266i
\(803\) 2030.00 3516.06i 0.0892119 0.154520i
\(804\) 0 0
\(805\) −6432.00 −0.281613
\(806\) −18216.0 −0.796069
\(807\) 0 0
\(808\) −4940.00 8556.33i −0.215085 0.372538i
\(809\) −11358.0 −0.493604 −0.246802 0.969066i \(-0.579380\pi\)
−0.246802 + 0.969066i \(0.579380\pi\)
\(810\) 0 0
\(811\) −4239.50 7343.03i −0.183562 0.317939i 0.759529 0.650474i \(-0.225430\pi\)
−0.943091 + 0.332534i \(0.892096\pi\)
\(812\) −3264.00 + 5653.41i −0.141064 + 0.244330i
\(813\) 0 0
\(814\) 56.0000 96.9948i 0.00241130 0.00417650i
\(815\) 102.000 176.669i 0.00438393 0.00759319i
\(816\) 0 0
\(817\) −8578.50 + 6367.88i −0.367348 + 0.272686i
\(818\) −9870.00 −0.421878
\(819\) 0 0
\(820\) 2478.00 4292.02i 0.105531 0.182785i
\(821\) 6685.50 + 11579.6i 0.284197 + 0.492243i 0.972414 0.233261i \(-0.0749398\pi\)
−0.688217 + 0.725505i \(0.741606\pi\)
\(822\) 0 0
\(823\) 13292.5 + 23023.3i 0.562998 + 0.975141i 0.997233 + 0.0743415i \(0.0236855\pi\)
−0.434235 + 0.900800i \(0.642981\pi\)
\(824\) −13056.0 −0.551975
\(825\) 0 0
\(826\) −19168.0 33199.9i −0.807433 1.39852i
\(827\) 18301.5 + 31699.1i 0.769535 + 1.33287i 0.937815 + 0.347135i \(0.112845\pi\)
−0.168280 + 0.985739i \(0.553821\pi\)
\(828\) 0 0
\(829\) 31238.0 1.30873 0.654367 0.756177i \(-0.272935\pi\)
0.654367 + 0.756177i \(0.272935\pi\)
\(830\) −1776.00 3076.12i −0.0742721 0.128643i
\(831\) 0 0
\(832\) 2208.00 + 3824.37i 0.0920056 + 0.159358i
\(833\) 6469.50 11205.5i 0.269094 0.466084i
\(834\) 0 0
\(835\) −2763.00 −0.114512
\(836\) 152.000 + 1316.36i 0.00628831 + 0.0544584i
\(837\) 0 0
\(838\) −6516.00 + 11286.0i −0.268606 + 0.465239i
\(839\) 15328.5 26549.7i 0.630749 1.09249i −0.356650 0.934238i \(-0.616081\pi\)
0.987399 0.158251i \(-0.0505857\pi\)
\(840\) 0 0
\(841\) 10894.0 18869.0i 0.446677 0.773667i
\(842\) 10915.0 + 18905.3i 0.446741 + 0.773778i
\(843\) 0 0
\(844\) 9460.00 0.385814
\(845\) 3846.00 + 6661.47i 0.156576 + 0.271197i
\(846\) 0 0
\(847\) 42080.0 1.70707
\(848\) −6128.00 −0.248156
\(849\) 0 0
\(850\) 2204.00 3817.44i 0.0889371 0.154044i
\(851\) −469.000 812.332i −0.0188920 0.0327219i
\(852\) 0 0
\(853\) −2221.50 + 3847.75i −0.0891708 + 0.154448i −0.907161 0.420784i \(-0.861755\pi\)
0.817990 + 0.575232i \(0.195088\pi\)
\(854\) −13888.0 −0.556484
\(855\) 0 0
\(856\) 16480.0 0.658031
\(857\) −3484.50 + 6035.33i −0.138889 + 0.240564i −0.927077 0.374872i \(-0.877687\pi\)
0.788187 + 0.615436i \(0.211020\pi\)
\(858\) 0 0
\(859\) −19659.5 34051.3i −0.780877 1.35252i −0.931431 0.363917i \(-0.881439\pi\)
0.150554 0.988602i \(-0.451894\pi\)
\(860\) 774.000 1340.61i 0.0306897 0.0531562i
\(861\) 0 0
\(862\) −11018.0 −0.435353
\(863\) −9380.00 −0.369987 −0.184994 0.982740i \(-0.559226\pi\)
−0.184994 + 0.982740i \(0.559226\pi\)
\(864\) 0 0
\(865\) 2839.50 + 4918.16i 0.111614 + 0.193321i
\(866\) 7506.00 0.294531
\(867\) 0 0
\(868\) −8448.00 14632.4i −0.330350 0.572183i
\(869\) 698.000 1208.97i 0.0272474 0.0471940i
\(870\) 0 0
\(871\) −7762.50 + 13445.0i −0.301977 + 0.523040i
\(872\) 4220.00 7309.25i 0.163884 0.283856i
\(873\) 0 0
\(874\) 10184.0 + 4409.80i 0.394141 + 0.170668i
\(875\) −23136.0 −0.893874
\(876\) 0 0
\(877\) 5124.50 8875.89i 0.197311 0.341753i −0.750344 0.661047i \(-0.770112\pi\)
0.947656 + 0.319294i \(0.103446\pi\)
\(878\) 7813.00 + 13532.5i 0.300314 + 0.520160i
\(879\) 0 0
\(880\) −96.0000 166.277i −0.00367745 0.00636954i
\(881\) 28698.0 1.09746 0.548729 0.836000i \(-0.315112\pi\)
0.548729 + 0.836000i \(0.315112\pi\)
\(882\) 0 0
\(883\) −15889.5 27521.4i −0.605577 1.04889i −0.991960 0.126551i \(-0.959609\pi\)
0.386383 0.922338i \(-0.373724\pi\)
\(884\) −2622.00 4541.44i −0.0997595 0.172789i
\(885\) 0 0
\(886\) −12234.0 −0.463893
\(887\) 1783.50 + 3089.11i 0.0675130 + 0.116936i 0.897806 0.440391i \(-0.145160\pi\)
−0.830293 + 0.557327i \(0.811827\pi\)
\(888\) 0 0
\(889\) 31792.0 + 55065.4i 1.19940 + 2.07743i
\(890\) −4047.00 + 7009.61i −0.152422 + 0.264003i
\(891\) 0 0
\(892\) −9756.00 −0.366205
\(893\) −5861.50 50762.1i −0.219650 1.90223i
\(894\) 0 0
\(895\) 30.0000 51.9615i 0.00112044 0.00194065i
\(896\) −2048.00 + 3547.24i −0.0763604 + 0.132260i
\(897\) 0 0
\(898\) 7146.00 12377.2i 0.265551 0.459948i
\(899\) −3366.00 5830.08i −0.124875 0.216289i
\(900\) 0 0
\(901\) 7277.00 0.269070
\(902\) −1652.00 2861.35i −0.0609818 0.105624i
\(903\) 0 0
\(904\) 8048.00 0.296098
\(905\) −5517.00 −0.202642
\(906\) 0 0
\(907\) 15539.5 26915.2i 0.568887 0.985341i −0.427789 0.903879i \(-0.640707\pi\)
0.996676 0.0814629i \(-0.0259592\pi\)
\(908\) −3416.00 5916.69i −0.124850 0.216247i
\(909\) 0 0
\(910\) −6624.00 + 11473.1i −0.241301 + 0.417945i
\(911\) −32856.0 −1.19492 −0.597458 0.801900i \(-0.703822\pi\)
−0.597458 + 0.801900i \(0.703822\pi\)
\(912\) 0 0
\(913\) −2368.00 −0.0858372
\(914\) −18118.0 + 31381.3i −0.655679 + 1.13567i
\(915\) 0 0
\(916\) −9236.00 15997.2i −0.333151 0.577034i
\(917\) 28848.0 49966.2i 1.03887 1.79938i
\(918\) 0 0
\(919\) −7736.00 −0.277679 −0.138840 0.990315i \(-0.544337\pi\)
−0.138840 + 0.990315i \(0.544337\pi\)
\(920\) −1608.00 −0.0576241
\(921\) 0 0
\(922\) −16935.0 29332.3i −0.604907 1.04773i
\(923\) 48369.0 1.72490
\(924\) 0 0
\(925\) −812.000 1406.43i −0.0288631 0.0499924i
\(926\) −7788.00 + 13489.2i −0.276382 + 0.478707i
\(927\) 0 0
\(928\) −816.000 + 1413.35i −0.0288648 + 0.0499953i
\(929\) 15259.5 26430.2i 0.538911 0.933421i −0.460052 0.887892i \(-0.652169\pi\)
0.998963 0.0455288i \(-0.0144973\pi\)
\(930\) 0 0
\(931\) 51756.0 + 22411.0i 1.82195 + 0.788927i
\(932\) −12876.0 −0.452540
\(933\) 0 0
\(934\) −12500.0 + 21650.6i −0.437915 + 0.758491i
\(935\) 114.000 + 197.454i 0.00398738 + 0.00690634i
\(936\) 0 0
\(937\) −4703.50 8146.70i −0.163988 0.284035i 0.772308 0.635249i \(-0.219102\pi\)
−0.936295 + 0.351214i \(0.885769\pi\)
\(938\) −14400.0 −0.501254
\(939\) 0 0
\(940\) 3702.00 + 6412.05i 0.128453 + 0.222487i
\(941\) 13407.5 + 23222.5i 0.464476 + 0.804496i 0.999178 0.0405447i \(-0.0129093\pi\)
−0.534702 + 0.845041i \(0.679576\pi\)
\(942\) 0 0
\(943\) −27671.0 −0.955559
\(944\) −4792.00 8299.99i −0.165219 0.286167i
\(945\) 0 0
\(946\) −516.000 893.738i −0.0177343 0.0307166i
\(947\) 8724.50 15111.3i 0.299375 0.518533i −0.676618 0.736334i \(-0.736555\pi\)
0.975993 + 0.217801i \(0.0698885\pi\)
\(948\) 0 0
\(949\) −70035.0 −2.39561
\(950\) 17632.0 + 7634.88i 0.602166 + 0.260745i
\(951\) 0 0
\(952\) 2432.00 4212.35i 0.0827958 0.143406i
\(953\) −19936.5 + 34531.0i −0.677656 + 1.17374i 0.298028 + 0.954557i \(0.403671\pi\)
−0.975685 + 0.219178i \(0.929662\pi\)
\(954\) 0 0
\(955\) −4488.00 + 7773.44i −0.152071 + 0.263396i
\(956\) −8472.00 14673.9i −0.286615 0.496432i
\(957\) 0 0
\(958\) −24210.0 −0.816482
\(959\) 10704.0 + 18539.9i 0.360428 + 0.624279i
\(960\) 0 0
\(961\) −12367.0 −0.415125
\(962\) −1932.00 −0.0647507
\(963\) 0 0
\(964\) 4858.00 8414.30i 0.162309 0.281127i
\(965\) −2089.50 3619.12i −0.0697030 0.120729i
\(966\) 0 0
\(967\) 5989.50 10374.1i 0.199182 0.344994i −0.749081 0.662478i \(-0.769505\pi\)
0.948264 + 0.317484i \(0.102838\pi\)
\(968\) 10520.0 0.349303
\(969\) 0 0
\(970\) −3678.00 −0.121746
\(971\) 9100.50 15762.5i 0.300771 0.520951i −0.675540 0.737324i \(-0.736089\pi\)
0.976311 + 0.216373i \(0.0694226\pi\)
\(972\) 0 0
\(973\) −43600.0 75517.4i −1.43654 2.48816i
\(974\) 296.000 512.687i 0.00973763 0.0168661i
\(975\) 0 0
\(976\) −3472.00 −0.113869
\(977\) −37398.0 −1.22463 −0.612317 0.790612i \(-0.709762\pi\)
−0.612317 + 0.790612i \(0.709762\pi\)
\(978\) 0 0
\(979\) 2698.00 + 4673.07i 0.0880781 + 0.152556i
\(980\) −8172.00 −0.266372
\(981\) 0 0
\(982\) −3213.00 5565.08i −0.104410 0.180844i
\(983\) 22018.5 38137.2i 0.714426 1.23742i −0.248754 0.968567i \(-0.580021\pi\)
0.963180 0.268856i \(-0.0866456\pi\)
\(984\) 0 0
\(985\) 6321.00 10948.3i 0.204471 0.354154i
\(986\) 969.000 1678.36i 0.0312974 0.0542087i
\(987\) 0 0
\(988\) 18354.0 13624.3i 0.591011 0.438712i
\(989\) −8643.00 −0.277888
\(990\) 0 0
\(991\) −4914.50 + 8512.16i −0.157532 + 0.272853i −0.933978 0.357330i \(-0.883687\pi\)
0.776446 + 0.630184i \(0.217020\pi\)
\(992\) −2112.00 3658.09i −0.0675968 0.117081i
\(993\) 0 0
\(994\) 22432.0 + 38853.4i 0.715795 + 1.23979i
\(995\) −2301.00 −0.0733132
\(996\) 0 0
\(997\) −19991.5 34626.3i −0.635042 1.09993i −0.986506 0.163724i \(-0.947649\pi\)
0.351464 0.936201i \(-0.385684\pi\)
\(998\) 3017.00 + 5225.60i 0.0956929 + 0.165745i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 342.4.g.d.163.1 2
3.2 odd 2 38.4.c.a.11.1 yes 2
12.11 even 2 304.4.i.b.49.1 2
19.7 even 3 inner 342.4.g.d.235.1 2
57.8 even 6 722.4.a.a.1.1 1
57.11 odd 6 722.4.a.e.1.1 1
57.26 odd 6 38.4.c.a.7.1 2
228.83 even 6 304.4.i.b.273.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
38.4.c.a.7.1 2 57.26 odd 6
38.4.c.a.11.1 yes 2 3.2 odd 2
304.4.i.b.49.1 2 12.11 even 2
304.4.i.b.273.1 2 228.83 even 6
342.4.g.d.163.1 2 1.1 even 1 trivial
342.4.g.d.235.1 2 19.7 even 3 inner
722.4.a.a.1.1 1 57.8 even 6
722.4.a.e.1.1 1 57.11 odd 6