Properties

Label 3400.2.e.b
Level $3400$
Weight $2$
Character orbit 3400.e
Analytic conductor $27.149$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3400,2,Mod(2449,3400)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3400, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3400.2449"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3400 = 2^{3} \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3400.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0,0,0,0,-2,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(27.1491366872\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 680)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 i q^{3} - 2 i q^{7} - q^{9} - 2 q^{11} + 2 i q^{13} - i q^{17} - 8 q^{19} + 4 q^{21} - 6 i q^{23} + 4 i q^{27} + 2 q^{29} + 6 q^{31} - 4 i q^{33} + 2 i q^{37} - 4 q^{39} - 6 q^{41} - 8 i q^{43} + \cdots + 2 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{9} - 4 q^{11} - 16 q^{19} + 8 q^{21} + 4 q^{29} + 12 q^{31} - 8 q^{39} - 12 q^{41} + 6 q^{49} + 4 q^{51} - 20 q^{61} + 24 q^{69} + 12 q^{71} - 4 q^{79} - 22 q^{81} + 20 q^{89} + 8 q^{91} + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3400\mathbb{Z}\right)^\times\).

\(n\) \(1601\) \(1701\) \(2177\) \(2551\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2449.1
1.00000i
1.00000i
0 2.00000i 0 0 0 2.00000i 0 −1.00000 0
2449.2 0 2.00000i 0 0 0 2.00000i 0 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3400.2.e.b 2
5.b even 2 1 inner 3400.2.e.b 2
5.c odd 4 1 680.2.a.c 1
5.c odd 4 1 3400.2.a.a 1
15.e even 4 1 6120.2.a.k 1
20.e even 4 1 1360.2.a.c 1
20.e even 4 1 6800.2.a.x 1
40.i odd 4 1 5440.2.a.d 1
40.k even 4 1 5440.2.a.t 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
680.2.a.c 1 5.c odd 4 1
1360.2.a.c 1 20.e even 4 1
3400.2.a.a 1 5.c odd 4 1
3400.2.e.b 2 1.a even 1 1 trivial
3400.2.e.b 2 5.b even 2 1 inner
5440.2.a.d 1 40.i odd 4 1
5440.2.a.t 1 40.k even 4 1
6120.2.a.k 1 15.e even 4 1
6800.2.a.x 1 20.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3400, [\chi])\):

\( T_{3}^{2} + 4 \) Copy content Toggle raw display
\( T_{7}^{2} + 4 \) Copy content Toggle raw display
\( T_{11} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 4 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 4 \) Copy content Toggle raw display
$11$ \( (T + 2)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 4 \) Copy content Toggle raw display
$17$ \( T^{2} + 1 \) Copy content Toggle raw display
$19$ \( (T + 8)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 36 \) Copy content Toggle raw display
$29$ \( (T - 2)^{2} \) Copy content Toggle raw display
$31$ \( (T - 6)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 4 \) Copy content Toggle raw display
$41$ \( (T + 6)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 64 \) Copy content Toggle raw display
$47$ \( T^{2} + 64 \) Copy content Toggle raw display
$53$ \( T^{2} + 36 \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( (T + 10)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 144 \) Copy content Toggle raw display
$71$ \( (T - 6)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 196 \) Copy content Toggle raw display
$79$ \( (T + 2)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 64 \) Copy content Toggle raw display
$89$ \( (T - 10)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 4 \) Copy content Toggle raw display
show more
show less