Properties

Label 34.4.c.a
Level $34$
Weight $4$
Character orbit 34.c
Analytic conductor $2.006$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [34,4,Mod(13,34)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(34, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("34.13"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 34 = 2 \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 34.c (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.00606494020\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 i q^{2} + ( - 3 i - 3) q^{3} - 4 q^{4} + ( - 7 i - 7) q^{5} + (6 i - 6) q^{6} + ( - 3 i + 3) q^{7} + 8 i q^{8} - 9 i q^{9} + (14 i - 14) q^{10} + ( - 11 i + 11) q^{11} + (12 i + 12) q^{12} + 58 q^{13} + \cdots + ( - 99 i - 99) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{3} - 8 q^{4} - 14 q^{5} - 12 q^{6} + 6 q^{7} - 28 q^{10} + 22 q^{11} + 24 q^{12} + 116 q^{13} - 12 q^{14} + 32 q^{16} + 34 q^{17} - 36 q^{18} + 56 q^{20} - 36 q^{21} - 44 q^{22} - 34 q^{23} + 48 q^{24}+ \cdots - 198 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/34\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(i\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
13.1
1.00000i
1.00000i
2.00000i −3.00000 3.00000i −4.00000 −7.00000 7.00000i −6.00000 + 6.00000i 3.00000 3.00000i 8.00000i 9.00000i −14.0000 + 14.0000i
21.1 2.00000i −3.00000 + 3.00000i −4.00000 −7.00000 + 7.00000i −6.00000 6.00000i 3.00000 + 3.00000i 8.00000i 9.00000i −14.0000 14.0000i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.c even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 34.4.c.a 2
3.b odd 2 1 306.4.g.a 2
4.b odd 2 1 272.4.o.a 2
17.c even 4 1 inner 34.4.c.a 2
17.d even 8 2 578.4.a.j 2
17.d even 8 2 578.4.b.a 2
51.f odd 4 1 306.4.g.a 2
68.f odd 4 1 272.4.o.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
34.4.c.a 2 1.a even 1 1 trivial
34.4.c.a 2 17.c even 4 1 inner
272.4.o.a 2 4.b odd 2 1
272.4.o.a 2 68.f odd 4 1
306.4.g.a 2 3.b odd 2 1
306.4.g.a 2 51.f odd 4 1
578.4.a.j 2 17.d even 8 2
578.4.b.a 2 17.d even 8 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 6T_{3} + 18 \) acting on \(S_{4}^{\mathrm{new}}(34, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 4 \) Copy content Toggle raw display
$3$ \( T^{2} + 6T + 18 \) Copy content Toggle raw display
$5$ \( T^{2} + 14T + 98 \) Copy content Toggle raw display
$7$ \( T^{2} - 6T + 18 \) Copy content Toggle raw display
$11$ \( T^{2} - 22T + 242 \) Copy content Toggle raw display
$13$ \( (T - 58)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 34T + 4913 \) Copy content Toggle raw display
$19$ \( T^{2} + 8836 \) Copy content Toggle raw display
$23$ \( T^{2} + 34T + 578 \) Copy content Toggle raw display
$29$ \( T^{2} + 150T + 11250 \) Copy content Toggle raw display
$31$ \( T^{2} + 206T + 21218 \) Copy content Toggle raw display
$37$ \( T^{2} - 306T + 46818 \) Copy content Toggle raw display
$41$ \( T^{2} - 626T + 195938 \) Copy content Toggle raw display
$43$ \( T^{2} + 178084 \) Copy content Toggle raw display
$47$ \( (T - 512)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 67600 \) Copy content Toggle raw display
$59$ \( T^{2} + 280900 \) Copy content Toggle raw display
$61$ \( T^{2} - 906T + 410418 \) Copy content Toggle raw display
$67$ \( (T - 36)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} - 10T + 50 \) Copy content Toggle raw display
$73$ \( T^{2} + 1166 T + 679778 \) Copy content Toggle raw display
$79$ \( T^{2} + 482T + 116162 \) Copy content Toggle raw display
$83$ \( T^{2} + 1196836 \) Copy content Toggle raw display
$89$ \( (T + 714)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} - 1818 T + 1652562 \) Copy content Toggle raw display
show more
show less