Properties

Label 34.4.c
Level $34$
Weight $4$
Character orbit 34.c
Rep. character $\chi_{34}(13,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $8$
Newform subspaces $2$
Sturm bound $18$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 34 = 2 \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 34.c (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 17 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 2 \)
Sturm bound: \(18\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(34, [\chi])\).

Total New Old
Modular forms 32 8 24
Cusp forms 24 8 16
Eisenstein series 8 0 8

Trace form

\( 8 q - 2 q^{3} - 32 q^{4} - 26 q^{5} - 20 q^{6} - 8 q^{7} - 4 q^{10} + 162 q^{11} + 8 q^{12} + 116 q^{13} - 40 q^{14} + 128 q^{16} - 102 q^{17} - 400 q^{18} + 104 q^{20} + 304 q^{21} + 236 q^{22} - 44 q^{23}+ \cdots + 3670 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(34, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
34.4.c.a 34.c 17.c $2$ $2.006$ \(\Q(\sqrt{-1}) \) None 34.4.c.a \(0\) \(-6\) \(-14\) \(6\) $\mathrm{SU}(2)[C_{4}]$ \(q-2 i q^{2}+(-3 i-3)q^{3}-4 q^{4}+\cdots\)
34.4.c.b 34.c 17.c $6$ $2.006$ \(\mathbb{Q}[x]/(x^{6} + \cdots)\) None 34.4.c.b \(0\) \(4\) \(-12\) \(-14\) $\mathrm{SU}(2)[C_{4}]$ \(q+2\beta _{1}q^{2}+(1+\beta _{1}-\beta _{2})q^{3}-4q^{4}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(34, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(34, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(17, [\chi])\)\(^{\oplus 2}\)