Defining parameters
Level: | \( N \) | \(=\) | \( 34 = 2 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 34.c (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 17 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(18\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(34, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 32 | 8 | 24 |
Cusp forms | 24 | 8 | 16 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(34, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
34.4.c.a | $2$ | $2.006$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(-6\) | \(-14\) | \(6\) | \(q-2 i q^{2}+(-3 i-3)q^{3}-4 q^{4}+\cdots\) |
34.4.c.b | $6$ | $2.006$ | \(\mathbb{Q}[x]/(x^{6} + \cdots)\) | None | \(0\) | \(4\) | \(-12\) | \(-14\) | \(q+2\beta _{1}q^{2}+(1+\beta _{1}-\beta _{2})q^{3}-4q^{4}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(34, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(34, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(17, [\chi])\)\(^{\oplus 2}\)