Properties

Label 3380.1.g.d
Level $3380$
Weight $1$
Character orbit 3380.g
Analytic conductor $1.687$
Analytic rank $0$
Dimension $6$
Projective image $D_{7}$
CM discriminant -20
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3380,1,Mod(3379,3380)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3380.3379"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3380, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 3380 = 2^{2} \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3380.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.68683974270\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.153664.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 5x^{4} + 6x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{7}\)
Projective field: Galois closure of 7.1.38614472000.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{5} q^{2} + \beta_{4} q^{3} - q^{4} - \beta_{5} q^{5} + \beta_1 q^{6} - \beta_{3} q^{7} - \beta_{5} q^{8} + ( - \beta_{2} + 1) q^{9} + q^{10} - \beta_{4} q^{12} + (\beta_{4} + \beta_{2} - 1) q^{14}+ \cdots + ( - \beta_{5} + \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{3} - 6 q^{4} + 4 q^{9} + 6 q^{10} - 2 q^{12} - 2 q^{14} + 6 q^{16} - 2 q^{23} - 6 q^{25} + 4 q^{27} - 2 q^{29} + 2 q^{30} + 2 q^{35} - 4 q^{36} - 6 q^{40} + 4 q^{42} - 2 q^{43} + 2 q^{48} - 4 q^{49}+ \cdots - 2 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} + 5x^{4} + 6x^{2} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} + 3\nu \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} + 3\nu^{2} + 1 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{5} + 4\nu^{3} + 3\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} - 3\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} - 3\beta_{2} + 5 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{5} - 4\beta_{3} + 9\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3380\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(1691\) \(1861\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
3379.1
1.24698i
0.445042i
1.80194i
1.24698i
0.445042i
1.80194i
1.00000i −1.24698 −1.00000 1.00000i 1.24698i 1.80194i 1.00000i 0.554958 1.00000
3379.2 1.00000i 0.445042 −1.00000 1.00000i 0.445042i 1.24698i 1.00000i −0.801938 1.00000
3379.3 1.00000i 1.80194 −1.00000 1.00000i 1.80194i 0.445042i 1.00000i 2.24698 1.00000
3379.4 1.00000i −1.24698 −1.00000 1.00000i 1.24698i 1.80194i 1.00000i 0.554958 1.00000
3379.5 1.00000i 0.445042 −1.00000 1.00000i 0.445042i 1.24698i 1.00000i −0.801938 1.00000
3379.6 1.00000i 1.80194 −1.00000 1.00000i 1.80194i 0.445042i 1.00000i 2.24698 1.00000
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 3379.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
20.d odd 2 1 CM by \(\Q(\sqrt{-5}) \)
13.b even 2 1 inner
260.g odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3380.1.g.d 6
4.b odd 2 1 3380.1.g.c 6
5.b even 2 1 3380.1.g.c 6
13.b even 2 1 inner 3380.1.g.d 6
13.c even 3 2 3380.1.w.e 12
13.d odd 4 1 3380.1.h.c yes 3
13.d odd 4 1 3380.1.h.e yes 3
13.e even 6 2 3380.1.w.e 12
13.f odd 12 2 3380.1.v.d 6
13.f odd 12 2 3380.1.v.f 6
20.d odd 2 1 CM 3380.1.g.d 6
52.b odd 2 1 3380.1.g.c 6
52.f even 4 1 3380.1.h.b 3
52.f even 4 1 3380.1.h.d yes 3
52.i odd 6 2 3380.1.w.f 12
52.j odd 6 2 3380.1.w.f 12
52.l even 12 2 3380.1.v.e 6
52.l even 12 2 3380.1.v.g 6
65.d even 2 1 3380.1.g.c 6
65.g odd 4 1 3380.1.h.b 3
65.g odd 4 1 3380.1.h.d yes 3
65.l even 6 2 3380.1.w.f 12
65.n even 6 2 3380.1.w.f 12
65.s odd 12 2 3380.1.v.e 6
65.s odd 12 2 3380.1.v.g 6
260.g odd 2 1 inner 3380.1.g.d 6
260.u even 4 1 3380.1.h.c yes 3
260.u even 4 1 3380.1.h.e yes 3
260.v odd 6 2 3380.1.w.e 12
260.w odd 6 2 3380.1.w.e 12
260.bc even 12 2 3380.1.v.d 6
260.bc even 12 2 3380.1.v.f 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3380.1.g.c 6 4.b odd 2 1
3380.1.g.c 6 5.b even 2 1
3380.1.g.c 6 52.b odd 2 1
3380.1.g.c 6 65.d even 2 1
3380.1.g.d 6 1.a even 1 1 trivial
3380.1.g.d 6 13.b even 2 1 inner
3380.1.g.d 6 20.d odd 2 1 CM
3380.1.g.d 6 260.g odd 2 1 inner
3380.1.h.b 3 52.f even 4 1
3380.1.h.b 3 65.g odd 4 1
3380.1.h.c yes 3 13.d odd 4 1
3380.1.h.c yes 3 260.u even 4 1
3380.1.h.d yes 3 52.f even 4 1
3380.1.h.d yes 3 65.g odd 4 1
3380.1.h.e yes 3 13.d odd 4 1
3380.1.h.e yes 3 260.u even 4 1
3380.1.v.d 6 13.f odd 12 2
3380.1.v.d 6 260.bc even 12 2
3380.1.v.e 6 52.l even 12 2
3380.1.v.e 6 65.s odd 12 2
3380.1.v.f 6 13.f odd 12 2
3380.1.v.f 6 260.bc even 12 2
3380.1.v.g 6 52.l even 12 2
3380.1.v.g 6 65.s odd 12 2
3380.1.w.e 12 13.c even 3 2
3380.1.w.e 12 13.e even 6 2
3380.1.w.e 12 260.v odd 6 2
3380.1.w.e 12 260.w odd 6 2
3380.1.w.f 12 52.i odd 6 2
3380.1.w.f 12 52.j odd 6 2
3380.1.w.f 12 65.l even 6 2
3380.1.w.f 12 65.n even 6 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(3380, [\chi])\):

\( T_{3}^{3} - T_{3}^{2} - 2T_{3} + 1 \) Copy content Toggle raw display
\( T_{37} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 1)^{3} \) Copy content Toggle raw display
$3$ \( (T^{3} - T^{2} - 2 T + 1)^{2} \) Copy content Toggle raw display
$5$ \( (T^{2} + 1)^{3} \) Copy content Toggle raw display
$7$ \( T^{6} + 5 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{6} \) Copy content Toggle raw display
$13$ \( T^{6} \) Copy content Toggle raw display
$17$ \( T^{6} \) Copy content Toggle raw display
$19$ \( T^{6} \) Copy content Toggle raw display
$23$ \( (T^{3} + T^{2} - 2 T - 1)^{2} \) Copy content Toggle raw display
$29$ \( (T^{3} + T^{2} - 2 T - 1)^{2} \) Copy content Toggle raw display
$31$ \( T^{6} \) Copy content Toggle raw display
$37$ \( T^{6} \) Copy content Toggle raw display
$41$ \( T^{6} + 5 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$43$ \( (T^{3} + T^{2} - 2 T - 1)^{2} \) Copy content Toggle raw display
$47$ \( T^{6} + 5 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$53$ \( T^{6} \) Copy content Toggle raw display
$59$ \( T^{6} \) Copy content Toggle raw display
$61$ \( (T^{3} + T^{2} - 2 T - 1)^{2} \) Copy content Toggle raw display
$67$ \( T^{6} + 5 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$71$ \( T^{6} \) Copy content Toggle raw display
$73$ \( T^{6} \) Copy content Toggle raw display
$79$ \( T^{6} \) Copy content Toggle raw display
$83$ \( T^{6} + 5 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$89$ \( T^{6} + 5 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$97$ \( T^{6} \) Copy content Toggle raw display
show more
show less