Properties

Label 12-3380e6-1.1-c0e6-0-3
Degree $12$
Conductor $1.491\times 10^{21}$
Sign $1$
Analytic cond. $23.0379$
Root an. cond. $1.29878$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 3·4-s + 9-s − 6·12-s + 6·16-s − 2·23-s − 3·25-s − 2·29-s − 3·36-s − 2·43-s + 12·48-s + 49-s − 2·61-s − 10·64-s − 4·69-s − 6·75-s − 4·87-s + 6·92-s + 9·100-s + 2·101-s − 2·103-s − 12·107-s + 6·116-s − 6·121-s + 127-s − 4·129-s + 131-s + ⋯
L(s)  = 1  + 2·3-s − 3·4-s + 9-s − 6·12-s + 6·16-s − 2·23-s − 3·25-s − 2·29-s − 3·36-s − 2·43-s + 12·48-s + 49-s − 2·61-s − 10·64-s − 4·69-s − 6·75-s − 4·87-s + 6·92-s + 9·100-s + 2·101-s − 2·103-s − 12·107-s + 6·116-s − 6·121-s + 127-s − 4·129-s + 131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 5^{6} \cdot 13^{12}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 5^{6} \cdot 13^{12}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(12\)
Conductor: \(2^{12} \cdot 5^{6} \cdot 13^{12}\)
Sign: $1$
Analytic conductor: \(23.0379\)
Root analytic conductor: \(1.29878\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((12,\ 2^{12} \cdot 5^{6} \cdot 13^{12} ,\ ( \ : [0]^{6} ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.2668850907\)
\(L(\frac12)\) \(\approx\) \(0.2668850907\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( ( 1 + T^{2} )^{3} \)
5 \( ( 1 + T^{2} )^{3} \)
13 \( 1 \)
good3 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} )^{2} \)
7 \( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} \)
11 \( ( 1 + T^{2} )^{6} \)
17 \( ( 1 - T )^{6}( 1 + T )^{6} \)
19 \( ( 1 + T^{2} )^{6} \)
23 \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} )^{2} \)
29 \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} )^{2} \)
31 \( ( 1 + T^{2} )^{6} \)
37 \( ( 1 + T^{2} )^{6} \)
41 \( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} \)
43 \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} )^{2} \)
47 \( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} \)
53 \( ( 1 - T )^{6}( 1 + T )^{6} \)
59 \( ( 1 + T^{2} )^{6} \)
61 \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} )^{2} \)
67 \( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} \)
71 \( ( 1 + T^{2} )^{6} \)
73 \( ( 1 + T^{2} )^{6} \)
79 \( ( 1 - T )^{6}( 1 + T )^{6} \)
83 \( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} \)
89 \( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} \)
97 \( ( 1 + T^{2} )^{6} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{12} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.35430304724716771314273027388, −4.31826993648652390912261914819, −4.26738629385921988574379984493, −4.19360945102866470251702266727, −4.06406645730127462301452459236, −3.94532162020417473331221551151, −3.75073924929334645425149785715, −3.74662933276159168977909475357, −3.57816615695919598562017957795, −3.42496891233539328951198816455, −3.28695519374942762769133435910, −2.99553382396427557280200997703, −2.85899966171900901489236454785, −2.80648897470402476188887719907, −2.47902888687541721978926717957, −2.45522742819875414823543959313, −2.42829251813710405773995315413, −1.98884143501409551172753126235, −1.78106214904955480164483772000, −1.46998425567382240049563333863, −1.45785148237982570896569069161, −1.32888475491935003320179518396, −1.32077722154743336168691680400, −0.36076550608344183664642903448, −0.27346358729708911816249016841, 0.27346358729708911816249016841, 0.36076550608344183664642903448, 1.32077722154743336168691680400, 1.32888475491935003320179518396, 1.45785148237982570896569069161, 1.46998425567382240049563333863, 1.78106214904955480164483772000, 1.98884143501409551172753126235, 2.42829251813710405773995315413, 2.45522742819875414823543959313, 2.47902888687541721978926717957, 2.80648897470402476188887719907, 2.85899966171900901489236454785, 2.99553382396427557280200997703, 3.28695519374942762769133435910, 3.42496891233539328951198816455, 3.57816615695919598562017957795, 3.74662933276159168977909475357, 3.75073924929334645425149785715, 3.94532162020417473331221551151, 4.06406645730127462301452459236, 4.19360945102866470251702266727, 4.26738629385921988574379984493, 4.31826993648652390912261914819, 4.35430304724716771314273027388

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.