Properties

Label 338.5.d.g.239.3
Level $338$
Weight $5$
Character 338.239
Analytic conductor $34.939$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [338,5,Mod(99,338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(338, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 5, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("338.99"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 338.d (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,16,0,0,18] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(34.9390475223\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 494x^{6} + 90747x^{4} - 7343258x^{2} + 221087161 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 13^{2} \)
Twist minimal: no (minimal twist has level 26)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 239.3
Root \(12.0941 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 338.239
Dual form 338.5.d.g.99.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.00000 - 2.00000i) q^{2} +9.49600 q^{3} -8.00000i q^{4} +(19.2341 - 19.2341i) q^{5} +(18.9920 - 18.9920i) q^{6} +(13.9718 + 13.9718i) q^{7} +(-16.0000 - 16.0000i) q^{8} +9.17400 q^{9} -76.9364i q^{10} +(-23.2740 - 23.2740i) q^{11} -75.9680i q^{12} +55.8871 q^{14} +(182.647 - 182.647i) q^{15} -64.0000 q^{16} -214.962i q^{17} +(18.3480 - 18.3480i) q^{18} +(298.476 - 298.476i) q^{19} +(-153.873 - 153.873i) q^{20} +(132.676 + 132.676i) q^{21} -93.0960 q^{22} -962.105i q^{23} +(-151.936 - 151.936i) q^{24} -114.902i q^{25} -682.060 q^{27} +(111.774 - 111.774i) q^{28} +1544.79 q^{29} -730.588i q^{30} +(-750.040 + 750.040i) q^{31} +(-128.000 + 128.000i) q^{32} +(-221.010 - 221.010i) q^{33} +(-429.924 - 429.924i) q^{34} +537.469 q^{35} -73.3920i q^{36} +(498.332 + 498.332i) q^{37} -1193.90i q^{38} -615.491 q^{40} +(-401.607 + 401.607i) q^{41} +530.704 q^{42} -163.685i q^{43} +(-186.192 + 186.192i) q^{44} +(176.454 - 176.454i) q^{45} +(-1924.21 - 1924.21i) q^{46} +(1733.01 + 1733.01i) q^{47} -607.744 q^{48} -2010.58i q^{49} +(-229.804 - 229.804i) q^{50} -2041.28i q^{51} -4534.85 q^{53} +(-1364.12 + 1364.12i) q^{54} -895.309 q^{55} -447.097i q^{56} +(2834.33 - 2834.33i) q^{57} +(3089.57 - 3089.57i) q^{58} +(551.077 + 551.077i) q^{59} +(-1461.18 - 1461.18i) q^{60} +3948.46 q^{61} +3000.16i q^{62} +(128.177 + 128.177i) q^{63} +512.000i q^{64} -884.039 q^{66} +(-4874.72 + 4874.72i) q^{67} -1719.70 q^{68} -9136.15i q^{69} +(1074.94 - 1074.94i) q^{70} +(3902.47 - 3902.47i) q^{71} +(-146.784 - 146.784i) q^{72} +(2496.58 + 2496.58i) q^{73} +1993.33 q^{74} -1091.11i q^{75} +(-2387.81 - 2387.81i) q^{76} -650.358i q^{77} +6710.05 q^{79} +(-1230.98 + 1230.98i) q^{80} -7219.93 q^{81} +1606.43i q^{82} +(-1361.30 + 1361.30i) q^{83} +(1061.41 - 1061.41i) q^{84} +(-4134.61 - 4134.61i) q^{85} +(-327.370 - 327.370i) q^{86} +14669.3 q^{87} +744.768i q^{88} +(4416.84 + 4416.84i) q^{89} -705.815i q^{90} -7696.84 q^{92} +(-7122.38 + 7122.38i) q^{93} +6932.03 q^{94} -11481.8i q^{95} +(-1215.49 + 1215.49i) q^{96} +(-3419.23 + 3419.23i) q^{97} +(-4021.16 - 4021.16i) q^{98} +(-213.516 - 213.516i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 16 q^{2} + 18 q^{5} - 10 q^{7} - 128 q^{8} + 396 q^{9} + 378 q^{11} - 40 q^{14} - 600 q^{15} - 512 q^{16} + 792 q^{18} + 1190 q^{19} - 144 q^{20} + 678 q^{21} + 1512 q^{22} - 1404 q^{27} - 80 q^{28}+ \cdots + 55296 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/338\mathbb{Z}\right)^\times\).

\(n\) \(171\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 2.00000i 0.500000 0.500000i
\(3\) 9.49600 1.05511 0.527556 0.849521i \(-0.323109\pi\)
0.527556 + 0.849521i \(0.323109\pi\)
\(4\) 8.00000i 0.500000i
\(5\) 19.2341 19.2341i 0.769364 0.769364i −0.208630 0.977995i \(-0.566901\pi\)
0.977995 + 0.208630i \(0.0669005\pi\)
\(6\) 18.9920 18.9920i 0.527556 0.527556i
\(7\) 13.9718 + 13.9718i 0.285138 + 0.285138i 0.835154 0.550016i \(-0.185378\pi\)
−0.550016 + 0.835154i \(0.685378\pi\)
\(8\) −16.0000 16.0000i −0.250000 0.250000i
\(9\) 9.17400 0.113259
\(10\) 76.9364i 0.769364i
\(11\) −23.2740 23.2740i −0.192347 0.192347i 0.604362 0.796709i \(-0.293428\pi\)
−0.796709 + 0.604362i \(0.793428\pi\)
\(12\) 75.9680i 0.527556i
\(13\) 0 0
\(14\) 55.8871 0.285138
\(15\) 182.647 182.647i 0.811765 0.811765i
\(16\) −64.0000 −0.250000
\(17\) 214.962i 0.743814i −0.928270 0.371907i \(-0.878704\pi\)
0.928270 0.371907i \(-0.121296\pi\)
\(18\) 18.3480 18.3480i 0.0566296 0.0566296i
\(19\) 298.476 298.476i 0.826803 0.826803i −0.160270 0.987073i \(-0.551237\pi\)
0.987073 + 0.160270i \(0.0512365\pi\)
\(20\) −153.873 153.873i −0.384682 0.384682i
\(21\) 132.676 + 132.676i 0.300853 + 0.300853i
\(22\) −93.0960 −0.192347
\(23\) 962.105i 1.81872i −0.416005 0.909362i \(-0.636570\pi\)
0.416005 0.909362i \(-0.363430\pi\)
\(24\) −151.936 151.936i −0.263778 0.263778i
\(25\) 114.902i 0.183843i
\(26\) 0 0
\(27\) −682.060 −0.935610
\(28\) 111.774 111.774i 0.142569 0.142569i
\(29\) 1544.79 1.83684 0.918422 0.395601i \(-0.129464\pi\)
0.918422 + 0.395601i \(0.129464\pi\)
\(30\) 730.588i 0.811765i
\(31\) −750.040 + 750.040i −0.780479 + 0.780479i −0.979912 0.199432i \(-0.936090\pi\)
0.199432 + 0.979912i \(0.436090\pi\)
\(32\) −128.000 + 128.000i −0.125000 + 0.125000i
\(33\) −221.010 221.010i −0.202947 0.202947i
\(34\) −429.924 429.924i −0.371907 0.371907i
\(35\) 537.469 0.438750
\(36\) 73.3920i 0.0566296i
\(37\) 498.332 + 498.332i 0.364012 + 0.364012i 0.865288 0.501276i \(-0.167136\pi\)
−0.501276 + 0.865288i \(0.667136\pi\)
\(38\) 1193.90i 0.826803i
\(39\) 0 0
\(40\) −615.491 −0.384682
\(41\) −401.607 + 401.607i −0.238910 + 0.238910i −0.816398 0.577489i \(-0.804033\pi\)
0.577489 + 0.816398i \(0.304033\pi\)
\(42\) 530.704 0.300853
\(43\) 163.685i 0.0885264i −0.999020 0.0442632i \(-0.985906\pi\)
0.999020 0.0442632i \(-0.0140940\pi\)
\(44\) −186.192 + 186.192i −0.0961735 + 0.0961735i
\(45\) 176.454 176.454i 0.0871376 0.0871376i
\(46\) −1924.21 1924.21i −0.909362 0.909362i
\(47\) 1733.01 + 1733.01i 0.784521 + 0.784521i 0.980590 0.196069i \(-0.0628177\pi\)
−0.196069 + 0.980590i \(0.562818\pi\)
\(48\) −607.744 −0.263778
\(49\) 2010.58i 0.837392i
\(50\) −229.804 229.804i −0.0919214 0.0919214i
\(51\) 2041.28i 0.784806i
\(52\) 0 0
\(53\) −4534.85 −1.61440 −0.807200 0.590278i \(-0.799018\pi\)
−0.807200 + 0.590278i \(0.799018\pi\)
\(54\) −1364.12 + 1364.12i −0.467805 + 0.467805i
\(55\) −895.309 −0.295970
\(56\) 447.097i 0.142569i
\(57\) 2834.33 2834.33i 0.872369 0.872369i
\(58\) 3089.57 3089.57i 0.918422 0.918422i
\(59\) 551.077 + 551.077i 0.158310 + 0.158310i 0.781817 0.623507i \(-0.214293\pi\)
−0.623507 + 0.781817i \(0.714293\pi\)
\(60\) −1461.18 1461.18i −0.405882 0.405882i
\(61\) 3948.46 1.06113 0.530564 0.847645i \(-0.321980\pi\)
0.530564 + 0.847645i \(0.321980\pi\)
\(62\) 3000.16i 0.780479i
\(63\) 128.177 + 128.177i 0.0322946 + 0.0322946i
\(64\) 512.000i 0.125000i
\(65\) 0 0
\(66\) −884.039 −0.202947
\(67\) −4874.72 + 4874.72i −1.08592 + 1.08592i −0.0899815 + 0.995943i \(0.528681\pi\)
−0.995943 + 0.0899815i \(0.971319\pi\)
\(68\) −1719.70 −0.371907
\(69\) 9136.15i 1.91896i
\(70\) 1074.94 1074.94i 0.219375 0.219375i
\(71\) 3902.47 3902.47i 0.774145 0.774145i −0.204683 0.978828i \(-0.565616\pi\)
0.978828 + 0.204683i \(0.0656163\pi\)
\(72\) −146.784 146.784i −0.0283148 0.0283148i
\(73\) 2496.58 + 2496.58i 0.468489 + 0.468489i 0.901425 0.432936i \(-0.142522\pi\)
−0.432936 + 0.901425i \(0.642522\pi\)
\(74\) 1993.33 0.364012
\(75\) 1091.11i 0.193975i
\(76\) −2387.81 2387.81i −0.413402 0.413402i
\(77\) 650.358i 0.109691i
\(78\) 0 0
\(79\) 6710.05 1.07516 0.537578 0.843214i \(-0.319339\pi\)
0.537578 + 0.843214i \(0.319339\pi\)
\(80\) −1230.98 + 1230.98i −0.192341 + 0.192341i
\(81\) −7219.93 −1.10043
\(82\) 1606.43i 0.238910i
\(83\) −1361.30 + 1361.30i −0.197605 + 0.197605i −0.798972 0.601368i \(-0.794623\pi\)
0.601368 + 0.798972i \(0.294623\pi\)
\(84\) 1061.41 1061.41i 0.150426 0.150426i
\(85\) −4134.61 4134.61i −0.572264 0.572264i
\(86\) −327.370 327.370i −0.0442632 0.0442632i
\(87\) 14669.3 1.93808
\(88\) 744.768i 0.0961735i
\(89\) 4416.84 + 4416.84i 0.557611 + 0.557611i 0.928627 0.371016i \(-0.120990\pi\)
−0.371016 + 0.928627i \(0.620990\pi\)
\(90\) 705.815i 0.0871376i
\(91\) 0 0
\(92\) −7696.84 −0.909362
\(93\) −7122.38 + 7122.38i −0.823492 + 0.823492i
\(94\) 6932.03 0.784521
\(95\) 11481.8i 1.27223i
\(96\) −1215.49 + 1215.49i −0.131889 + 0.131889i
\(97\) −3419.23 + 3419.23i −0.363400 + 0.363400i −0.865063 0.501663i \(-0.832722\pi\)
0.501663 + 0.865063i \(0.332722\pi\)
\(98\) −4021.16 4021.16i −0.418696 0.418696i
\(99\) −213.516 213.516i −0.0217851 0.0217851i
\(100\) −919.214 −0.0919214
\(101\) 8429.89i 0.826379i −0.910645 0.413190i \(-0.864415\pi\)
0.910645 0.413190i \(-0.135585\pi\)
\(102\) −4082.56 4082.56i −0.392403 0.392403i
\(103\) 2398.45i 0.226076i 0.993591 + 0.113038i \(0.0360583\pi\)
−0.993591 + 0.113038i \(0.963942\pi\)
\(104\) 0 0
\(105\) 5103.81 0.462930
\(106\) −9069.70 + 9069.70i −0.807200 + 0.807200i
\(107\) 9412.21 0.822099 0.411049 0.911613i \(-0.365162\pi\)
0.411049 + 0.911613i \(0.365162\pi\)
\(108\) 5456.48i 0.467805i
\(109\) −14993.7 + 14993.7i −1.26199 + 1.26199i −0.311860 + 0.950128i \(0.600952\pi\)
−0.950128 + 0.311860i \(0.899048\pi\)
\(110\) −1790.62 + 1790.62i −0.147985 + 0.147985i
\(111\) 4732.16 + 4732.16i 0.384073 + 0.384073i
\(112\) −894.194 894.194i −0.0712846 0.0712846i
\(113\) −17564.9 −1.37559 −0.687795 0.725905i \(-0.741421\pi\)
−0.687795 + 0.725905i \(0.741421\pi\)
\(114\) 11337.3i 0.872369i
\(115\) −18505.2 18505.2i −1.39926 1.39926i
\(116\) 12358.3i 0.918422i
\(117\) 0 0
\(118\) 2204.31 0.158310
\(119\) 3003.40 3003.40i 0.212090 0.212090i
\(120\) −5844.71 −0.405882
\(121\) 13557.6i 0.926005i
\(122\) 7896.92 7896.92i 0.530564 0.530564i
\(123\) −3813.66 + 3813.66i −0.252076 + 0.252076i
\(124\) 6000.32 + 6000.32i 0.390240 + 0.390240i
\(125\) 9811.28 + 9811.28i 0.627922 + 0.627922i
\(126\) 512.708 0.0322946
\(127\) 16236.5i 1.00667i 0.864092 + 0.503334i \(0.167893\pi\)
−0.864092 + 0.503334i \(0.832107\pi\)
\(128\) 1024.00 + 1024.00i 0.0625000 + 0.0625000i
\(129\) 1554.35i 0.0934051i
\(130\) 0 0
\(131\) 9149.90 0.533180 0.266590 0.963810i \(-0.414103\pi\)
0.266590 + 0.963810i \(0.414103\pi\)
\(132\) −1768.08 + 1768.08i −0.101474 + 0.101474i
\(133\) 8340.48 0.471506
\(134\) 19498.9i 1.08592i
\(135\) −13118.8 + 13118.8i −0.719825 + 0.719825i
\(136\) −3439.39 + 3439.39i −0.185953 + 0.185953i
\(137\) −8330.28 8330.28i −0.443832 0.443832i 0.449466 0.893298i \(-0.351614\pi\)
−0.893298 + 0.449466i \(0.851614\pi\)
\(138\) −18272.3 18272.3i −0.959478 0.959478i
\(139\) −2026.81 −0.104902 −0.0524509 0.998624i \(-0.516703\pi\)
−0.0524509 + 0.998624i \(0.516703\pi\)
\(140\) 4299.75i 0.219375i
\(141\) 16456.6 + 16456.6i 0.827757 + 0.827757i
\(142\) 15609.9i 0.774145i
\(143\) 0 0
\(144\) −587.136 −0.0283148
\(145\) 29712.6 29712.6i 1.41320 1.41320i
\(146\) 9986.30 0.468489
\(147\) 19092.5i 0.883542i
\(148\) 3986.66 3986.66i 0.182006 0.182006i
\(149\) 16993.1 16993.1i 0.765419 0.765419i −0.211877 0.977296i \(-0.567958\pi\)
0.977296 + 0.211877i \(0.0679577\pi\)
\(150\) −2182.21 2182.21i −0.0969873 0.0969873i
\(151\) 1109.89 + 1109.89i 0.0486774 + 0.0486774i 0.731026 0.682349i \(-0.239042\pi\)
−0.682349 + 0.731026i \(0.739042\pi\)
\(152\) −9551.23 −0.413402
\(153\) 1972.06i 0.0842438i
\(154\) −1300.72 1300.72i −0.0548455 0.0548455i
\(155\) 28852.7i 1.20095i
\(156\) 0 0
\(157\) −17982.1 −0.729525 −0.364762 0.931101i \(-0.618850\pi\)
−0.364762 + 0.931101i \(0.618850\pi\)
\(158\) 13420.1 13420.1i 0.537578 0.537578i
\(159\) −43062.9 −1.70337
\(160\) 4923.93i 0.192341i
\(161\) 13442.3 13442.3i 0.518588 0.518588i
\(162\) −14439.9 + 14439.9i −0.550216 + 0.550216i
\(163\) 32929.1 + 32929.1i 1.23938 + 1.23938i 0.960254 + 0.279126i \(0.0900449\pi\)
0.279126 + 0.960254i \(0.409955\pi\)
\(164\) 3212.86 + 3212.86i 0.119455 + 0.119455i
\(165\) −8501.85 −0.312281
\(166\) 5445.20i 0.197605i
\(167\) 12360.2 + 12360.2i 0.443194 + 0.443194i 0.893084 0.449890i \(-0.148537\pi\)
−0.449890 + 0.893084i \(0.648537\pi\)
\(168\) 4245.63i 0.150426i
\(169\) 0 0
\(170\) −16538.4 −0.572264
\(171\) 2738.22 2738.22i 0.0936431 0.0936431i
\(172\) −1309.48 −0.0442632
\(173\) 32312.5i 1.07964i 0.841781 + 0.539820i \(0.181508\pi\)
−0.841781 + 0.539820i \(0.818492\pi\)
\(174\) 29338.6 29338.6i 0.969038 0.969038i
\(175\) 1605.38 1605.38i 0.0524206 0.0524206i
\(176\) 1489.54 + 1489.54i 0.0480868 + 0.0480868i
\(177\) 5233.02 + 5233.02i 0.167034 + 0.167034i
\(178\) 17667.4 0.557611
\(179\) 13337.3i 0.416258i 0.978101 + 0.208129i \(0.0667374\pi\)
−0.978101 + 0.208129i \(0.933263\pi\)
\(180\) −1411.63 1411.63i −0.0435688 0.0435688i
\(181\) 46226.0i 1.41101i 0.708706 + 0.705504i \(0.249279\pi\)
−0.708706 + 0.705504i \(0.750721\pi\)
\(182\) 0 0
\(183\) 37494.6 1.11961
\(184\) −15393.7 + 15393.7i −0.454681 + 0.454681i
\(185\) 19170.0 0.560116
\(186\) 28489.5i 0.823492i
\(187\) −5003.03 + 5003.03i −0.143070 + 0.143070i
\(188\) 13864.1 13864.1i 0.392260 0.392260i
\(189\) −9529.58 9529.58i −0.266778 0.266778i
\(190\) −22963.7 22963.7i −0.636113 0.636113i
\(191\) 11917.0 0.326664 0.163332 0.986571i \(-0.447776\pi\)
0.163332 + 0.986571i \(0.447776\pi\)
\(192\) 4861.95i 0.131889i
\(193\) 29776.3 + 29776.3i 0.799385 + 0.799385i 0.982999 0.183614i \(-0.0587795\pi\)
−0.183614 + 0.982999i \(0.558779\pi\)
\(194\) 13676.9i 0.363400i
\(195\) 0 0
\(196\) −16084.6 −0.418696
\(197\) 39055.8 39055.8i 1.00636 1.00636i 0.00637973 0.999980i \(-0.497969\pi\)
0.999980 0.00637973i \(-0.00203074\pi\)
\(198\) −854.062 −0.0217851
\(199\) 67507.8i 1.70470i 0.522971 + 0.852350i \(0.324823\pi\)
−0.522971 + 0.852350i \(0.675177\pi\)
\(200\) −1838.43 + 1838.43i −0.0459607 + 0.0459607i
\(201\) −46290.3 + 46290.3i −1.14577 + 1.14577i
\(202\) −16859.8 16859.8i −0.413190 0.413190i
\(203\) 21583.4 + 21583.4i 0.523755 + 0.523755i
\(204\) −16330.2 −0.392403
\(205\) 15449.1i 0.367617i
\(206\) 4796.89 + 4796.89i 0.113038 + 0.113038i
\(207\) 8826.35i 0.205987i
\(208\) 0 0
\(209\) −13893.5 −0.318066
\(210\) 10207.6 10207.6i 0.231465 0.231465i
\(211\) −4367.34 −0.0980961 −0.0490481 0.998796i \(-0.515619\pi\)
−0.0490481 + 0.998796i \(0.515619\pi\)
\(212\) 36278.8i 0.807200i
\(213\) 37057.8 37057.8i 0.816809 0.816809i
\(214\) 18824.4 18824.4i 0.411049 0.411049i
\(215\) −3148.34 3148.34i −0.0681090 0.0681090i
\(216\) 10913.0 + 10913.0i 0.233902 + 0.233902i
\(217\) −20958.8 −0.445089
\(218\) 59974.7i 1.26199i
\(219\) 23707.5 + 23707.5i 0.494307 + 0.494307i
\(220\) 7162.47i 0.147985i
\(221\) 0 0
\(222\) 18928.7 0.384073
\(223\) 16161.8 16161.8i 0.324998 0.324998i −0.525683 0.850681i \(-0.676190\pi\)
0.850681 + 0.525683i \(0.176190\pi\)
\(224\) −3576.77 −0.0712846
\(225\) 1054.11i 0.0208219i
\(226\) −35129.8 + 35129.8i −0.687795 + 0.687795i
\(227\) −31231.7 + 31231.7i −0.606099 + 0.606099i −0.941924 0.335825i \(-0.890985\pi\)
0.335825 + 0.941924i \(0.390985\pi\)
\(228\) −22674.6 22674.6i −0.436185 0.436185i
\(229\) 10025.3 + 10025.3i 0.191172 + 0.191172i 0.796202 0.605030i \(-0.206839\pi\)
−0.605030 + 0.796202i \(0.706839\pi\)
\(230\) −74020.9 −1.39926
\(231\) 6175.80i 0.115736i
\(232\) −24716.6 24716.6i −0.459211 0.459211i
\(233\) 3033.83i 0.0558829i −0.999610 0.0279415i \(-0.991105\pi\)
0.999610 0.0279415i \(-0.00889520\pi\)
\(234\) 0 0
\(235\) 66665.7 1.20716
\(236\) 4408.61 4408.61i 0.0791549 0.0791549i
\(237\) 63718.6 1.13441
\(238\) 12013.6i 0.212090i
\(239\) 27446.8 27446.8i 0.480503 0.480503i −0.424789 0.905292i \(-0.639652\pi\)
0.905292 + 0.424789i \(0.139652\pi\)
\(240\) −11689.4 + 11689.4i −0.202941 + 0.202941i
\(241\) 40981.9 + 40981.9i 0.705600 + 0.705600i 0.965607 0.260007i \(-0.0837249\pi\)
−0.260007 + 0.965607i \(0.583725\pi\)
\(242\) −27115.3 27115.3i −0.463003 0.463003i
\(243\) −13313.6 −0.225468
\(244\) 31587.7i 0.530564i
\(245\) −38671.7 38671.7i −0.644260 0.644260i
\(246\) 15254.6i 0.252076i
\(247\) 0 0
\(248\) 24001.3 0.390240
\(249\) −12926.9 + 12926.9i −0.208495 + 0.208495i
\(250\) 39245.1 0.627922
\(251\) 55670.2i 0.883639i −0.897104 0.441820i \(-0.854333\pi\)
0.897104 0.441820i \(-0.145667\pi\)
\(252\) 1025.42 1025.42i 0.0161473 0.0161473i
\(253\) −22392.0 + 22392.0i −0.349826 + 0.349826i
\(254\) 32473.1 + 32473.1i 0.503334 + 0.503334i
\(255\) −39262.2 39262.2i −0.603802 0.603802i
\(256\) 4096.00 0.0625000
\(257\) 19950.7i 0.302059i −0.988529 0.151030i \(-0.951741\pi\)
0.988529 0.151030i \(-0.0482589\pi\)
\(258\) −3108.71 3108.71i −0.0467026 0.0467026i
\(259\) 13925.2i 0.207588i
\(260\) 0 0
\(261\) 14171.9 0.208040
\(262\) 18299.8 18299.8i 0.266590 0.266590i
\(263\) −118460. −1.71261 −0.856305 0.516470i \(-0.827246\pi\)
−0.856305 + 0.516470i \(0.827246\pi\)
\(264\) 7072.31i 0.101474i
\(265\) −87223.8 + 87223.8i −1.24206 + 1.24206i
\(266\) 16681.0 16681.0i 0.235753 0.235753i
\(267\) 41942.3 + 41942.3i 0.588342 + 0.588342i
\(268\) 38997.7 + 38997.7i 0.542962 + 0.542962i
\(269\) −12860.0 −0.177720 −0.0888600 0.996044i \(-0.528322\pi\)
−0.0888600 + 0.996044i \(0.528322\pi\)
\(270\) 52475.2i 0.719825i
\(271\) −11279.4 11279.4i −0.153585 0.153585i 0.626132 0.779717i \(-0.284637\pi\)
−0.779717 + 0.626132i \(0.784637\pi\)
\(272\) 13757.6i 0.185953i
\(273\) 0 0
\(274\) −33321.1 −0.443832
\(275\) −2674.22 + 2674.22i −0.0353616 + 0.0353616i
\(276\) −73089.2 −0.959478
\(277\) 60933.3i 0.794136i 0.917789 + 0.397068i \(0.129972\pi\)
−0.917789 + 0.397068i \(0.870028\pi\)
\(278\) −4053.62 + 4053.62i −0.0524509 + 0.0524509i
\(279\) −6880.87 + 6880.87i −0.0883965 + 0.0883965i
\(280\) −8599.51 8599.51i −0.109688 0.109688i
\(281\) 30774.2 + 30774.2i 0.389739 + 0.389739i 0.874594 0.484855i \(-0.161128\pi\)
−0.484855 + 0.874594i \(0.661128\pi\)
\(282\) 65826.5 0.827757
\(283\) 110848.i 1.38407i −0.721866 0.692033i \(-0.756715\pi\)
0.721866 0.692033i \(-0.243285\pi\)
\(284\) −31219.7 31219.7i −0.387073 0.387073i
\(285\) 109032.i 1.34234i
\(286\) 0 0
\(287\) −11222.3 −0.136245
\(288\) −1174.27 + 1174.27i −0.0141574 + 0.0141574i
\(289\) 37312.3 0.446741
\(290\) 118850.i 1.41320i
\(291\) −32469.0 + 32469.0i −0.383428 + 0.383428i
\(292\) 19972.6 19972.6i 0.234244 0.234244i
\(293\) 23920.9 + 23920.9i 0.278639 + 0.278639i 0.832566 0.553926i \(-0.186871\pi\)
−0.553926 + 0.832566i \(0.686871\pi\)
\(294\) −38184.9 38184.9i −0.441771 0.441771i
\(295\) 21198.9 0.243596
\(296\) 15946.6i 0.182006i
\(297\) 15874.2 + 15874.2i 0.179962 + 0.179962i
\(298\) 67972.3i 0.765419i
\(299\) 0 0
\(300\) −8728.86 −0.0969873
\(301\) 2286.97 2286.97i 0.0252423 0.0252423i
\(302\) 4439.57 0.0486774
\(303\) 80050.3i 0.871922i
\(304\) −19102.5 + 19102.5i −0.206701 + 0.206701i
\(305\) 75945.1 75945.1i 0.816395 0.816395i
\(306\) −3944.13 3944.13i −0.0421219 0.0421219i
\(307\) −98055.5 98055.5i −1.04039 1.04039i −0.999149 0.0412382i \(-0.986870\pi\)
−0.0412382 0.999149i \(-0.513130\pi\)
\(308\) −5202.86 −0.0548455
\(309\) 22775.6i 0.238536i
\(310\) 57705.4 + 57705.4i 0.600473 + 0.600473i
\(311\) 68074.1i 0.703819i 0.936034 + 0.351910i \(0.114468\pi\)
−0.936034 + 0.351910i \(0.885532\pi\)
\(312\) 0 0
\(313\) −55684.0 −0.568383 −0.284192 0.958767i \(-0.591725\pi\)
−0.284192 + 0.958767i \(0.591725\pi\)
\(314\) −35964.1 + 35964.1i −0.364762 + 0.364762i
\(315\) 4930.74 0.0496926
\(316\) 53680.4i 0.537578i
\(317\) 23137.2 23137.2i 0.230246 0.230246i −0.582549 0.812795i \(-0.697945\pi\)
0.812795 + 0.582549i \(0.197945\pi\)
\(318\) −86125.8 + 86125.8i −0.851685 + 0.851685i
\(319\) −35953.3 35953.3i −0.353312 0.353312i
\(320\) 9847.86 + 9847.86i 0.0961705 + 0.0961705i
\(321\) 89378.4 0.867406
\(322\) 53769.3i 0.518588i
\(323\) −64161.0 64161.0i −0.614988 0.614988i
\(324\) 57759.5i 0.550216i
\(325\) 0 0
\(326\) 131716. 1.23938
\(327\) −142380. + 142380.i −1.33154 + 1.33154i
\(328\) 12851.4 0.119455
\(329\) 48426.4i 0.447394i
\(330\) −17003.7 + 17003.7i −0.156141 + 0.156141i
\(331\) 54201.8 54201.8i 0.494718 0.494718i −0.415071 0.909789i \(-0.636243\pi\)
0.909789 + 0.415071i \(0.136243\pi\)
\(332\) 10890.4 + 10890.4i 0.0988024 + 0.0988024i
\(333\) 4571.70 + 4571.70i 0.0412277 + 0.0412277i
\(334\) 49441.0 0.443194
\(335\) 187522.i 1.67094i
\(336\) −8491.26 8491.26i −0.0752131 0.0752131i
\(337\) 15606.4i 0.137418i 0.997637 + 0.0687090i \(0.0218880\pi\)
−0.997637 + 0.0687090i \(0.978112\pi\)
\(338\) 0 0
\(339\) −166796. −1.45140
\(340\) −33076.8 + 33076.8i −0.286132 + 0.286132i
\(341\) 34912.9 0.300246
\(342\) 10952.9i 0.0936431i
\(343\) 61637.6 61637.6i 0.523911 0.523911i
\(344\) −2618.96 + 2618.96i −0.0221316 + 0.0221316i
\(345\) −175726. 175726.i −1.47638 1.47638i
\(346\) 64625.0 + 64625.0i 0.539820 + 0.539820i
\(347\) 7141.58 0.0593110 0.0296555 0.999560i \(-0.490559\pi\)
0.0296555 + 0.999560i \(0.490559\pi\)
\(348\) 117354.i 0.969038i
\(349\) −127134. 127134.i −1.04378 1.04378i −0.998997 0.0447840i \(-0.985740\pi\)
−0.0447840 0.998997i \(-0.514260\pi\)
\(350\) 6421.53i 0.0524206i
\(351\) 0 0
\(352\) 5958.14 0.0480868
\(353\) −148458. + 148458.i −1.19139 + 1.19139i −0.214714 + 0.976677i \(0.568882\pi\)
−0.976677 + 0.214714i \(0.931118\pi\)
\(354\) 20932.1 0.167034
\(355\) 150121.i 1.19120i
\(356\) 35334.7 35334.7i 0.278806 0.278806i
\(357\) 28520.3 28520.3i 0.223778 0.223778i
\(358\) 26674.6 + 26674.6i 0.208129 + 0.208129i
\(359\) 111995. + 111995.i 0.868976 + 0.868976i 0.992359 0.123383i \(-0.0393744\pi\)
−0.123383 + 0.992359i \(0.539374\pi\)
\(360\) −5646.52 −0.0435688
\(361\) 47854.8i 0.367207i
\(362\) 92452.1 + 92452.1i 0.705504 + 0.705504i
\(363\) 128743.i 0.977038i
\(364\) 0 0
\(365\) 96038.8 0.720877
\(366\) 74989.2 74989.2i 0.559804 0.559804i
\(367\) 58977.6 0.437880 0.218940 0.975738i \(-0.429740\pi\)
0.218940 + 0.975738i \(0.429740\pi\)
\(368\) 61574.7i 0.454681i
\(369\) −3684.34 + 3684.34i −0.0270587 + 0.0270587i
\(370\) 38339.9 38339.9i 0.280058 0.280058i
\(371\) −63359.9 63359.9i −0.460327 0.460327i
\(372\) 56979.1 + 56979.1i 0.411746 + 0.411746i
\(373\) −55999.7 −0.402502 −0.201251 0.979540i \(-0.564501\pi\)
−0.201251 + 0.979540i \(0.564501\pi\)
\(374\) 20012.1i 0.143070i
\(375\) 93167.9 + 93167.9i 0.662528 + 0.662528i
\(376\) 55456.2i 0.392260i
\(377\) 0 0
\(378\) −38118.3 −0.266778
\(379\) 74798.6 74798.6i 0.520733 0.520733i −0.397060 0.917793i \(-0.629969\pi\)
0.917793 + 0.397060i \(0.129969\pi\)
\(380\) −91854.7 −0.636113
\(381\) 154182.i 1.06215i
\(382\) 23834.0 23834.0i 0.163332 0.163332i
\(383\) 139190. 139190.i 0.948879 0.948879i −0.0498768 0.998755i \(-0.515883\pi\)
0.998755 + 0.0498768i \(0.0158829\pi\)
\(384\) 9723.90 + 9723.90i 0.0659444 + 0.0659444i
\(385\) −12509.1 12509.1i −0.0843923 0.0843923i
\(386\) 119105. 0.799385
\(387\) 1501.65i 0.0100264i
\(388\) 27353.9 + 27353.9i 0.181700 + 0.181700i
\(389\) 178816.i 1.18170i −0.806780 0.590852i \(-0.798792\pi\)
0.806780 0.590852i \(-0.201208\pi\)
\(390\) 0 0
\(391\) −206816. −1.35279
\(392\) −32169.3 + 32169.3i −0.209348 + 0.209348i
\(393\) 86887.5 0.562564
\(394\) 156223.i 1.00636i
\(395\) 129062. 129062.i 0.827186 0.827186i
\(396\) −1708.12 + 1708.12i −0.0108925 + 0.0108925i
\(397\) −179758. 179758.i −1.14053 1.14053i −0.988353 0.152178i \(-0.951371\pi\)
−0.152178 0.988353i \(-0.548629\pi\)
\(398\) 135016. + 135016.i 0.852350 + 0.852350i
\(399\) 79201.2 0.497492
\(400\) 7353.71i 0.0459607i
\(401\) −31188.8 31188.8i −0.193959 0.193959i 0.603445 0.797404i \(-0.293794\pi\)
−0.797404 + 0.603445i \(0.793794\pi\)
\(402\) 185161.i 1.14577i
\(403\) 0 0
\(404\) −67439.1 −0.413190
\(405\) −138869. + 138869.i −0.846633 + 0.846633i
\(406\) 86333.6 0.523755
\(407\) 23196.4i 0.140033i
\(408\) −32660.5 + 32660.5i −0.196202 + 0.196202i
\(409\) −85034.0 + 85034.0i −0.508330 + 0.508330i −0.914014 0.405684i \(-0.867034\pi\)
0.405684 + 0.914014i \(0.367034\pi\)
\(410\) 30898.2 + 30898.2i 0.183808 + 0.183808i
\(411\) −79104.3 79104.3i −0.468292 0.468292i
\(412\) 19187.6 0.113038
\(413\) 15399.0i 0.0902804i
\(414\) −17652.7 17652.7i −0.102994 0.102994i
\(415\) 52366.8i 0.304060i
\(416\) 0 0
\(417\) −19246.6 −0.110683
\(418\) −27786.9 + 27786.9i −0.159033 + 0.159033i
\(419\) −161655. −0.920789 −0.460394 0.887714i \(-0.652292\pi\)
−0.460394 + 0.887714i \(0.652292\pi\)
\(420\) 40830.5i 0.231465i
\(421\) −80144.5 + 80144.5i −0.452178 + 0.452178i −0.896077 0.443899i \(-0.853595\pi\)
0.443899 + 0.896077i \(0.353595\pi\)
\(422\) −8734.68 + 8734.68i −0.0490481 + 0.0490481i
\(423\) 15898.6 + 15898.6i 0.0888543 + 0.0888543i
\(424\) 72557.6 + 72557.6i 0.403600 + 0.403600i
\(425\) −24699.5 −0.136745
\(426\) 148231.i 0.816809i
\(427\) 55167.0 + 55167.0i 0.302568 + 0.302568i
\(428\) 75297.7i 0.411049i
\(429\) 0 0
\(430\) −12593.4 −0.0681090
\(431\) 61470.4 61470.4i 0.330911 0.330911i −0.522021 0.852932i \(-0.674822\pi\)
0.852932 + 0.522021i \(0.174822\pi\)
\(432\) 43651.8 0.233902
\(433\) 215352.i 1.14861i −0.818641 0.574305i \(-0.805272\pi\)
0.818641 0.574305i \(-0.194728\pi\)
\(434\) −41917.6 + 41917.6i −0.222544 + 0.222544i
\(435\) 282151. 282151.i 1.49109 1.49109i
\(436\) 119949. + 119949.i 0.630994 + 0.630994i
\(437\) −287165. 287165.i −1.50373 1.50373i
\(438\) 94829.9 0.494307
\(439\) 294420.i 1.52770i −0.645394 0.763850i \(-0.723307\pi\)
0.645394 0.763850i \(-0.276693\pi\)
\(440\) 14324.9 + 14324.9i 0.0739925 + 0.0739925i
\(441\) 18445.1i 0.0948424i
\(442\) 0 0
\(443\) −75284.4 −0.383617 −0.191808 0.981432i \(-0.561435\pi\)
−0.191808 + 0.981432i \(0.561435\pi\)
\(444\) 37857.3 37857.3i 0.192037 0.192037i
\(445\) 169908. 0.858012
\(446\) 64647.3i 0.324998i
\(447\) 161366. 161366.i 0.807602 0.807602i
\(448\) −7153.55 + 7153.55i −0.0356423 + 0.0356423i
\(449\) 99431.0 + 99431.0i 0.493207 + 0.493207i 0.909315 0.416108i \(-0.136606\pi\)
−0.416108 + 0.909315i \(0.636606\pi\)
\(450\) −2108.22 2108.22i −0.0104110 0.0104110i
\(451\) 18694.0 0.0919071
\(452\) 140519.i 0.687795i
\(453\) 10539.5 + 10539.5i 0.0513600 + 0.0513600i
\(454\) 124927.i 0.606099i
\(455\) 0 0
\(456\) −90698.5 −0.436185
\(457\) 137724. 137724.i 0.659441 0.659441i −0.295807 0.955248i \(-0.595589\pi\)
0.955248 + 0.295807i \(0.0955885\pi\)
\(458\) 40101.0 0.191172
\(459\) 146617.i 0.695920i
\(460\) −148042. + 148042.i −0.699631 + 0.699631i
\(461\) −231925. + 231925.i −1.09130 + 1.09130i −0.0959131 + 0.995390i \(0.530577\pi\)
−0.995390 + 0.0959131i \(0.969423\pi\)
\(462\) −12351.6 12351.6i −0.0578681 0.0578681i
\(463\) −195600. 195600.i −0.912447 0.912447i 0.0840177 0.996464i \(-0.473225\pi\)
−0.996464 + 0.0840177i \(0.973225\pi\)
\(464\) −98866.3 −0.459211
\(465\) 273985.i 1.26713i
\(466\) −6067.66 6067.66i −0.0279415 0.0279415i
\(467\) 213346.i 0.978252i −0.872213 0.489126i \(-0.837316\pi\)
0.872213 0.489126i \(-0.162684\pi\)
\(468\) 0 0
\(469\) −136217. −0.619278
\(470\) 133331. 133331.i 0.603582 0.603582i
\(471\) −170758. −0.769730
\(472\) 17634.5i 0.0791549i
\(473\) −3809.61 + 3809.61i −0.0170278 + 0.0170278i
\(474\) 127437. 127437.i 0.567204 0.567204i
\(475\) −34295.4 34295.4i −0.152002 0.152002i
\(476\) −24027.2 24027.2i −0.106045 0.106045i
\(477\) −41602.7 −0.182846
\(478\) 109787.i 0.480503i
\(479\) −102057. 102057.i −0.444805 0.444805i 0.448818 0.893623i \(-0.351845\pi\)
−0.893623 + 0.448818i \(0.851845\pi\)
\(480\) 46757.6i 0.202941i
\(481\) 0 0
\(482\) 163928. 0.705600
\(483\) 127648. 127648.i 0.547168 0.547168i
\(484\) −108461. −0.463003
\(485\) 131532.i 0.559174i
\(486\) −26627.3 + 26627.3i −0.112734 + 0.112734i
\(487\) −57040.7 + 57040.7i −0.240507 + 0.240507i −0.817060 0.576553i \(-0.804397\pi\)
0.576553 + 0.817060i \(0.304397\pi\)
\(488\) −63175.4 63175.4i −0.265282 0.265282i
\(489\) 312695. + 312695.i 1.30768 + 1.30768i
\(490\) −154687. −0.644260
\(491\) 326366.i 1.35376i −0.736093 0.676880i \(-0.763331\pi\)
0.736093 0.676880i \(-0.236669\pi\)
\(492\) 30509.3 + 30509.3i 0.126038 + 0.126038i
\(493\) 332071.i 1.36627i
\(494\) 0 0
\(495\) −8213.56 −0.0335213
\(496\) 48002.6 48002.6i 0.195120 0.195120i
\(497\) 109049. 0.441477
\(498\) 51707.6i 0.208495i
\(499\) −321163. + 321163.i −1.28981 + 1.28981i −0.354902 + 0.934904i \(0.615486\pi\)
−0.934904 + 0.354902i \(0.884514\pi\)
\(500\) 78490.3 78490.3i 0.313961 0.313961i
\(501\) 117373. + 117373.i 0.467619 + 0.467619i
\(502\) −111340. 111340.i −0.441820 0.441820i
\(503\) 77129.2 0.304848 0.152424 0.988315i \(-0.451292\pi\)
0.152424 + 0.988315i \(0.451292\pi\)
\(504\) 4101.67i 0.0161473i
\(505\) −162141. 162141.i −0.635787 0.635787i
\(506\) 89568.1i 0.349826i
\(507\) 0 0
\(508\) 129892. 0.503334
\(509\) −258772. + 258772.i −0.998807 + 0.998807i −0.999999 0.00119244i \(-0.999620\pi\)
0.00119244 + 0.999999i \(0.499620\pi\)
\(510\) −157049. −0.603802
\(511\) 69763.2i 0.267168i
\(512\) 8192.00 8192.00i 0.0312500 0.0312500i
\(513\) −203578. + 203578.i −0.773565 + 0.773565i
\(514\) −39901.4 39901.4i −0.151030 0.151030i
\(515\) 46131.9 + 46131.9i 0.173935 + 0.173935i
\(516\) −12434.8 −0.0467026
\(517\) 80668.0i 0.301801i
\(518\) 27850.4 + 27850.4i 0.103794 + 0.103794i
\(519\) 306840.i 1.13914i
\(520\) 0 0
\(521\) 384986. 1.41830 0.709152 0.705055i \(-0.249078\pi\)
0.709152 + 0.705055i \(0.249078\pi\)
\(522\) 28343.7 28343.7i 0.104020 0.104020i
\(523\) 101902. 0.372546 0.186273 0.982498i \(-0.440359\pi\)
0.186273 + 0.982498i \(0.440359\pi\)
\(524\) 73199.2i 0.266590i
\(525\) 15244.7 15244.7i 0.0553096 0.0553096i
\(526\) −236919. + 236919.i −0.856305 + 0.856305i
\(527\) 161230. + 161230.i 0.580531 + 0.580531i
\(528\) 14144.6 + 14144.6i 0.0507369 + 0.0507369i
\(529\) −645805. −2.30776
\(530\) 348895.i 1.24206i
\(531\) 5055.58 + 5055.58i 0.0179301 + 0.0179301i
\(532\) 66723.8i 0.235753i
\(533\) 0 0
\(534\) 167769. 0.588342
\(535\) 181035. 181035.i 0.632494 0.632494i
\(536\) 155991. 0.542962
\(537\) 126651.i 0.439198i
\(538\) −25720.0 + 25720.0i −0.0888600 + 0.0888600i
\(539\) −46794.2 + 46794.2i −0.161070 + 0.161070i
\(540\) 104950. + 104950.i 0.359912 + 0.359912i
\(541\) 52761.7 + 52761.7i 0.180270 + 0.180270i 0.791474 0.611203i \(-0.209314\pi\)
−0.611203 + 0.791474i \(0.709314\pi\)
\(542\) −45117.8 −0.153585
\(543\) 438962.i 1.48877i
\(544\) 27515.2 + 27515.2i 0.0929767 + 0.0929767i
\(545\) 576780.i 1.94186i
\(546\) 0 0
\(547\) 414681. 1.38592 0.692961 0.720975i \(-0.256306\pi\)
0.692961 + 0.720975i \(0.256306\pi\)
\(548\) −66642.2 + 66642.2i −0.221916 + 0.221916i
\(549\) 36223.2 0.120183
\(550\) 10696.9i 0.0353616i
\(551\) 461082. 461082.i 1.51871 1.51871i
\(552\) −146178. + 146178.i −0.479739 + 0.479739i
\(553\) 93751.3 + 93751.3i 0.306568 + 0.306568i
\(554\) 121867. + 121867.i 0.397068 + 0.397068i
\(555\) 182038. 0.590984
\(556\) 16214.5i 0.0524509i
\(557\) 164211. + 164211.i 0.529287 + 0.529287i 0.920360 0.391073i \(-0.127896\pi\)
−0.391073 + 0.920360i \(0.627896\pi\)
\(558\) 27523.5i 0.0883965i
\(559\) 0 0
\(560\) −34398.0 −0.109688
\(561\) −47508.7 + 47508.7i −0.150955 + 0.150955i
\(562\) 123097. 0.389739
\(563\) 479081.i 1.51144i 0.654893 + 0.755721i \(0.272714\pi\)
−0.654893 + 0.755721i \(0.727286\pi\)
\(564\) 131653. 131653.i 0.413878 0.413878i
\(565\) −337845. + 337845.i −1.05833 + 1.05833i
\(566\) −221697. 221697.i −0.692033 0.692033i
\(567\) −100875. 100875.i −0.313775 0.313775i
\(568\) −124879. −0.387073
\(569\) 131129.i 0.405019i 0.979280 + 0.202510i \(0.0649097\pi\)
−0.979280 + 0.202510i \(0.935090\pi\)
\(570\) −218063. 218063.i −0.671170 0.671170i
\(571\) 131069.i 0.402003i −0.979591 0.201002i \(-0.935580\pi\)
0.979591 0.201002i \(-0.0644196\pi\)
\(572\) 0 0
\(573\) 113164. 0.344667
\(574\) −22444.6 + 22444.6i −0.0681223 + 0.0681223i
\(575\) −110548. −0.334359
\(576\) 4697.09i 0.0141574i
\(577\) −265150. + 265150.i −0.796416 + 0.796416i −0.982528 0.186112i \(-0.940411\pi\)
0.186112 + 0.982528i \(0.440411\pi\)
\(578\) 74624.5 74624.5i 0.223371 0.223371i
\(579\) 282756. + 282756.i 0.843440 + 0.843440i
\(580\) −237701. 237701.i −0.706601 0.706601i
\(581\) −38039.6 −0.112689
\(582\) 129876.i 0.383428i
\(583\) 105544. + 105544.i 0.310525 + 0.310525i
\(584\) 79890.4i 0.234244i
\(585\) 0 0
\(586\) 95683.6 0.278639
\(587\) 396373. 396373.i 1.15034 1.15034i 0.163860 0.986484i \(-0.447606\pi\)
0.986484 0.163860i \(-0.0523945\pi\)
\(588\) −152740. −0.441771
\(589\) 447738.i 1.29061i
\(590\) 42397.9 42397.9i 0.121798 0.121798i
\(591\) 370874. 370874.i 1.06182 1.06182i
\(592\) −31893.3 31893.3i −0.0910030 0.0910030i
\(593\) 284953. + 284953.i 0.810335 + 0.810335i 0.984684 0.174349i \(-0.0557821\pi\)
−0.174349 + 0.984684i \(0.555782\pi\)
\(594\) 63497.0 0.179962
\(595\) 115536.i 0.326349i
\(596\) −135945. 135945.i −0.382710 0.382710i
\(597\) 641054.i 1.79865i
\(598\) 0 0
\(599\) −311888. −0.869251 −0.434625 0.900611i \(-0.643119\pi\)
−0.434625 + 0.900611i \(0.643119\pi\)
\(600\) −17457.7 + 17457.7i −0.0484936 + 0.0484936i
\(601\) −348543. −0.964957 −0.482478 0.875908i \(-0.660263\pi\)
−0.482478 + 0.875908i \(0.660263\pi\)
\(602\) 9147.89i 0.0252423i
\(603\) −44720.7 + 44720.7i −0.122991 + 0.122991i
\(604\) 8879.14 8879.14i 0.0243387 0.0243387i
\(605\) −260769. 260769.i −0.712435 0.712435i
\(606\) −160101. 160101.i −0.435961 0.435961i
\(607\) 375731. 1.01976 0.509882 0.860244i \(-0.329689\pi\)
0.509882 + 0.860244i \(0.329689\pi\)
\(608\) 76409.8i 0.206701i
\(609\) 204956. + 204956.i 0.552619 + 0.552619i
\(610\) 303780.i 0.816395i
\(611\) 0 0
\(612\) −15776.5 −0.0421219
\(613\) −281017. + 281017.i −0.747845 + 0.747845i −0.974074 0.226229i \(-0.927360\pi\)
0.226229 + 0.974074i \(0.427360\pi\)
\(614\) −392222. −1.04039
\(615\) 146705.i 0.387877i
\(616\) −10405.7 + 10405.7i −0.0274228 + 0.0274228i
\(617\) −387417. + 387417.i −1.01767 + 1.01767i −0.0178316 + 0.999841i \(0.505676\pi\)
−0.999841 + 0.0178316i \(0.994324\pi\)
\(618\) 45551.3 + 45551.3i 0.119268 + 0.119268i
\(619\) −104044. 104044.i −0.271540 0.271540i 0.558180 0.829720i \(-0.311500\pi\)
−0.829720 + 0.558180i \(0.811500\pi\)
\(620\) 230822. 0.600473
\(621\) 656213.i 1.70162i
\(622\) 136148. + 136148.i 0.351910 + 0.351910i
\(623\) 123422.i 0.317993i
\(624\) 0 0
\(625\) 449236. 1.15004
\(626\) −111368. + 111368.i −0.284192 + 0.284192i
\(627\) −131932. −0.335595
\(628\) 143856.i 0.364762i
\(629\) 107123. 107123.i 0.270757 0.270757i
\(630\) 9861.49 9861.49i 0.0248463 0.0248463i
\(631\) 278260. + 278260.i 0.698863 + 0.698863i 0.964165 0.265302i \(-0.0854718\pi\)
−0.265302 + 0.964165i \(0.585472\pi\)
\(632\) −107361. 107361.i −0.268789 0.268789i
\(633\) −41472.2 −0.103502
\(634\) 92548.8i 0.230246i
\(635\) 312295. + 312295.i 0.774494 + 0.774494i
\(636\) 344503.i 0.851685i
\(637\) 0 0
\(638\) −143813. −0.353312
\(639\) 35801.2 35801.2i 0.0876791 0.0876791i
\(640\) 39391.5 0.0961705
\(641\) 97107.8i 0.236340i 0.992993 + 0.118170i \(0.0377028\pi\)
−0.992993 + 0.118170i \(0.962297\pi\)
\(642\) 178757. 178757.i 0.433703 0.433703i
\(643\) 174688. 174688.i 0.422513 0.422513i −0.463555 0.886068i \(-0.653426\pi\)
0.886068 + 0.463555i \(0.153426\pi\)
\(644\) −107539. 107539.i −0.259294 0.259294i
\(645\) −29896.6 29896.6i −0.0718626 0.0718626i
\(646\) −256644. −0.614988
\(647\) 110830.i 0.264759i 0.991199 + 0.132379i \(0.0422617\pi\)
−0.991199 + 0.132379i \(0.957738\pi\)
\(648\) 115519. + 115519.i 0.275108 + 0.275108i
\(649\) 25651.5i 0.0609009i
\(650\) 0 0
\(651\) −199025. −0.469618
\(652\) 263433. 263433.i 0.619690 0.619690i
\(653\) −173437. −0.406739 −0.203370 0.979102i \(-0.565189\pi\)
−0.203370 + 0.979102i \(0.565189\pi\)
\(654\) 569520.i 1.33154i
\(655\) 175990. 175990.i 0.410210 0.410210i
\(656\) 25702.8 25702.8i 0.0597274 0.0597274i
\(657\) 22903.6 + 22903.6i 0.0530607 + 0.0530607i
\(658\) 96852.7 + 96852.7i 0.223697 + 0.223697i
\(659\) 98603.7 0.227051 0.113525 0.993535i \(-0.463786\pi\)
0.113525 + 0.993535i \(0.463786\pi\)
\(660\) 68014.8i 0.156141i
\(661\) −556659. 556659.i −1.27405 1.27405i −0.943944 0.330107i \(-0.892915\pi\)
−0.330107 0.943944i \(-0.607085\pi\)
\(662\) 216807.i 0.494718i
\(663\) 0 0
\(664\) 43561.6 0.0988024
\(665\) 160422. 160422.i 0.362760 0.362760i
\(666\) 18286.8 0.0412277
\(667\) 1.48625e6i 3.34071i
\(668\) 98882.0 98882.0i 0.221597 0.221597i
\(669\) 153473. 153473.i 0.342909 0.342909i
\(670\) 375043. + 375043.i 0.835472 + 0.835472i
\(671\) −91896.4 91896.4i −0.204105 0.204105i
\(672\) −33965.0 −0.0752131
\(673\) 491994.i 1.08625i −0.839652 0.543125i \(-0.817241\pi\)
0.839652 0.543125i \(-0.182759\pi\)
\(674\) 31212.9 + 31212.9i 0.0687090 + 0.0687090i
\(675\) 78369.9i 0.172005i
\(676\) 0 0
\(677\) −556471. −1.21413 −0.607065 0.794652i \(-0.707653\pi\)
−0.607065 + 0.794652i \(0.707653\pi\)
\(678\) −333593. + 333593.i −0.725700 + 0.725700i
\(679\) −95545.5 −0.207239
\(680\) 132307.i 0.286132i
\(681\) −296576. + 296576.i −0.639502 + 0.639502i
\(682\) 69825.7 69825.7i 0.150123 0.150123i
\(683\) 331221. + 331221.i 0.710029 + 0.710029i 0.966541 0.256512i \(-0.0825732\pi\)
−0.256512 + 0.966541i \(0.582573\pi\)
\(684\) −21905.7 21905.7i −0.0468216 0.0468216i
\(685\) −320451. −0.682937
\(686\) 246550.i 0.523911i
\(687\) 95199.9 + 95199.9i 0.201708 + 0.201708i
\(688\) 10475.9i 0.0221316i
\(689\) 0 0
\(690\) −702903. −1.47638
\(691\) 433883. 433883.i 0.908691 0.908691i −0.0874759 0.996167i \(-0.527880\pi\)
0.996167 + 0.0874759i \(0.0278801\pi\)
\(692\) 258500. 0.539820
\(693\) 5966.38i 0.0124235i
\(694\) 14283.2 14283.2i 0.0296555 0.0296555i
\(695\) −38983.8 + 38983.8i −0.0807077 + 0.0807077i
\(696\) −234709. 234709.i −0.484519 0.484519i
\(697\) 86330.3 + 86330.3i 0.177704 + 0.177704i
\(698\) −508534. −1.04378
\(699\) 28809.2i 0.0589627i
\(700\) −12843.1 12843.1i −0.0262103 0.0262103i
\(701\) 445654.i 0.906905i −0.891280 0.453453i \(-0.850192\pi\)
0.891280 0.453453i \(-0.149808\pi\)
\(702\) 0 0
\(703\) 297480. 0.601933
\(704\) 11916.3 11916.3i 0.0240434 0.0240434i
\(705\) 633057. 1.27369
\(706\) 593832.i 1.19139i
\(707\) 117781. 117781.i 0.235632 0.235632i
\(708\) 41864.2 41864.2i 0.0835172 0.0835172i
\(709\) −351952. 351952.i −0.700150 0.700150i 0.264293 0.964443i \(-0.414862\pi\)
−0.964443 + 0.264293i \(0.914862\pi\)
\(710\) −300242. 300242.i −0.595600 0.595600i
\(711\) 61558.0 0.121771
\(712\) 141339.i 0.278806i
\(713\) 721618. + 721618.i 1.41948 + 1.41948i
\(714\) 114081.i 0.223778i
\(715\) 0 0
\(716\) 106699. 0.208129
\(717\) 260635. 260635.i 0.506984 0.506984i
\(718\) 447978. 0.868976
\(719\) 61435.6i 0.118840i −0.998233 0.0594200i \(-0.981075\pi\)
0.998233 0.0594200i \(-0.0189251\pi\)
\(720\) −11293.0 + 11293.0i −0.0217844 + 0.0217844i
\(721\) −33510.5 + 33510.5i −0.0644631 + 0.0644631i
\(722\) −95709.6 95709.6i −0.183603 0.183603i
\(723\) 389164. + 389164.i 0.744486 + 0.744486i
\(724\) 369808. 0.705504
\(725\) 177499.i 0.337691i
\(726\) −257487. 257487.i −0.488519 0.488519i
\(727\) 121549.i 0.229975i −0.993367 0.114988i \(-0.963317\pi\)
0.993367 0.114988i \(-0.0366828\pi\)
\(728\) 0 0
\(729\) 458388. 0.862538
\(730\) 192078. 192078.i 0.360438 0.360438i
\(731\) −35186.1 −0.0658471
\(732\) 299957.i 0.559804i
\(733\) −450529. + 450529.i −0.838522 + 0.838522i −0.988664 0.150142i \(-0.952027\pi\)
0.150142 + 0.988664i \(0.452027\pi\)
\(734\) 117955. 117955.i 0.218940 0.218940i
\(735\) −367226. 367226.i −0.679766 0.679766i
\(736\) 123149. + 123149.i 0.227341 + 0.227341i
\(737\) 226908. 0.417749
\(738\) 14737.4i 0.0270587i
\(739\) −478183. 478183.i −0.875600 0.875600i 0.117476 0.993076i \(-0.462520\pi\)
−0.993076 + 0.117476i \(0.962520\pi\)
\(740\) 153360.i 0.280058i
\(741\) 0 0
\(742\) −253440. −0.460327
\(743\) 47112.0 47112.0i 0.0853402 0.0853402i −0.663148 0.748488i \(-0.730780\pi\)
0.748488 + 0.663148i \(0.230780\pi\)
\(744\) 227916. 0.411746
\(745\) 653693.i 1.17777i
\(746\) −111999. + 111999.i −0.201251 + 0.201251i
\(747\) −12488.6 + 12488.6i −0.0223806 + 0.0223806i
\(748\) 40024.2 + 40024.2i 0.0715352 + 0.0715352i
\(749\) 131505. + 131505.i 0.234412 + 0.234412i
\(750\) 372672. 0.662528
\(751\) 856766.i 1.51909i −0.650457 0.759543i \(-0.725423\pi\)
0.650457 0.759543i \(-0.274577\pi\)
\(752\) −110912. 110912.i −0.196130 0.196130i
\(753\) 528644.i 0.932338i
\(754\) 0 0
\(755\) 42695.6 0.0749012
\(756\) −76236.7 + 76236.7i −0.133389 + 0.133389i
\(757\) 970577. 1.69371 0.846853 0.531826i \(-0.178494\pi\)
0.846853 + 0.531826i \(0.178494\pi\)
\(758\) 299194.i 0.520733i
\(759\) −212635. + 212635.i −0.369106 + 0.369106i
\(760\) −183709. + 183709.i −0.318056 + 0.318056i
\(761\) −290858. 290858.i −0.502241 0.502241i 0.409893 0.912134i \(-0.365566\pi\)
−0.912134 + 0.409893i \(0.865566\pi\)
\(762\) 308364. + 308364.i 0.531073 + 0.531073i
\(763\) −418977. −0.719682
\(764\) 95336.2i 0.163332i
\(765\) −37930.9 37930.9i −0.0648142 0.0648142i
\(766\) 556760.i 0.948879i
\(767\) 0 0
\(768\) 38895.6 0.0659444
\(769\) −106901. + 106901.i −0.180771 + 0.180771i −0.791692 0.610921i \(-0.790799\pi\)
0.610921 + 0.791692i \(0.290799\pi\)
\(770\) −50036.2 −0.0843923
\(771\) 189452.i 0.318706i
\(772\) 238210. 238210.i 0.399692 0.399692i
\(773\) 189040. 189040.i 0.316370 0.316370i −0.531001 0.847371i \(-0.678184\pi\)
0.847371 + 0.531001i \(0.178184\pi\)
\(774\) −3003.30 3003.30i −0.00501322 0.00501322i
\(775\) 86181.0 + 86181.0i 0.143485 + 0.143485i
\(776\) 109415. 0.181700
\(777\) 132233.i 0.219028i
\(778\) −357633. 357633.i −0.590852 0.590852i
\(779\) 239740.i 0.395062i
\(780\) 0 0
\(781\) −181652. −0.297809
\(782\) −413632. + 413632.i −0.676396 + 0.676396i
\(783\) −1.05364e6 −1.71857
\(784\) 128677.i 0.209348i
\(785\) −345869. + 345869.i −0.561270 + 0.561270i
\(786\) 173775. 173775.i 0.281282 0.281282i
\(787\) −324921. 324921.i −0.524600 0.524600i 0.394357 0.918957i \(-0.370967\pi\)
−0.918957 + 0.394357i \(0.870967\pi\)
\(788\) −312446. 312446.i −0.503180 0.503180i
\(789\) −1.12489e6 −1.80699
\(790\) 516247.i 0.827186i
\(791\) −245413. 245413.i −0.392234 0.392234i
\(792\) 6832.50i 0.0108925i
\(793\) 0 0
\(794\) −719032. −1.14053
\(795\) −828277. + 828277.i −1.31051 + 1.31051i
\(796\) 540063. 0.852350
\(797\) 254628.i 0.400857i −0.979708 0.200429i \(-0.935767\pi\)
0.979708 0.200429i \(-0.0642335\pi\)
\(798\) 158402. 158402.i 0.248746 0.248746i
\(799\) 372531. 372531.i 0.583537 0.583537i
\(800\) 14707.4 + 14707.4i 0.0229804 + 0.0229804i
\(801\) 40520.1 + 40520.1i 0.0631546 + 0.0631546i
\(802\) −124755. −0.193959
\(803\) 116211.i 0.180225i
\(804\) 370322. + 370322.i 0.572886 + 0.572886i
\(805\) 517102.i 0.797966i
\(806\) 0 0
\(807\) −122119. −0.187514
\(808\) −134878. + 134878.i −0.206595 + 0.206595i
\(809\) 149000. 0.227661 0.113830 0.993500i \(-0.463688\pi\)
0.113830 + 0.993500i \(0.463688\pi\)
\(810\) 555476.i 0.846633i
\(811\) −129192. + 129192.i −0.196424 + 0.196424i −0.798465 0.602041i \(-0.794354\pi\)
0.602041 + 0.798465i \(0.294354\pi\)
\(812\) 172667. 172667.i 0.261877 0.261877i
\(813\) −107110. 107110.i −0.162049 0.162049i
\(814\) −46392.7 46392.7i −0.0700166 0.0700166i
\(815\) 1.26672e6 1.90707
\(816\) 130642.i 0.196202i
\(817\) −48856.1 48856.1i −0.0731939 0.0731939i
\(818\) 340136.i 0.508330i
\(819\) 0 0
\(820\) 123593. 0.183808
\(821\) −337584. + 337584.i −0.500836 + 0.500836i −0.911698 0.410862i \(-0.865228\pi\)
0.410862 + 0.911698i \(0.365228\pi\)
\(822\) −316417. −0.468292
\(823\) 1.05893e6i 1.56339i −0.623660 0.781695i \(-0.714355\pi\)
0.623660 0.781695i \(-0.285645\pi\)
\(824\) 38375.1 38375.1i 0.0565191 0.0565191i
\(825\) −25394.4 + 25394.4i −0.0373104 + 0.0373104i
\(826\) 30798.1 + 30798.1i 0.0451402 + 0.0451402i
\(827\) −114562. 114562.i −0.167506 0.167506i 0.618376 0.785882i \(-0.287791\pi\)
−0.785882 + 0.618376i \(0.787791\pi\)
\(828\) −70610.8 −0.102994
\(829\) 418099.i 0.608373i −0.952612 0.304187i \(-0.901615\pi\)
0.952612 0.304187i \(-0.0983846\pi\)
\(830\) 104734. + 104734.i 0.152030 + 0.152030i
\(831\) 578622.i 0.837902i
\(832\) 0 0
\(833\) −432198. −0.622864
\(834\) −38493.1 + 38493.1i −0.0553415 + 0.0553415i
\(835\) 475477. 0.681956
\(836\) 111148.i 0.159033i
\(837\) 511572. 511572.i 0.730224 0.730224i
\(838\) −323309. + 323309.i −0.460394 + 0.460394i
\(839\) −92890.6 92890.6i −0.131962 0.131962i 0.638041 0.770003i \(-0.279745\pi\)
−0.770003 + 0.638041i \(0.779745\pi\)
\(840\) −81660.9 81660.9i −0.115733 0.115733i
\(841\) 1.67908e6 2.37400
\(842\) 320578.i 0.452178i
\(843\) 292232. + 292232.i 0.411218 + 0.411218i
\(844\) 34938.7i 0.0490481i
\(845\) 0 0
\(846\) 63594.4 0.0888543
\(847\) 189424. 189424.i 0.264040 0.264040i
\(848\) 290230. 0.403600
\(849\) 1.05262e6i 1.46034i
\(850\) −49399.1 + 49399.1i −0.0683724 + 0.0683724i
\(851\) 479448. 479448.i 0.662037 0.662037i
\(852\) −296463. 296463.i −0.408405 0.408405i
\(853\) 73320.6 + 73320.6i 0.100769 + 0.100769i 0.755694 0.654925i \(-0.227300\pi\)
−0.654925 + 0.755694i \(0.727300\pi\)
\(854\) 220668. 0.302568
\(855\) 105334.i 0.144091i
\(856\) −150595. 150595.i −0.205525 0.205525i
\(857\) 973943.i 1.32609i 0.748581 + 0.663043i \(0.230735\pi\)
−0.748581 + 0.663043i \(0.769265\pi\)
\(858\) 0 0
\(859\) −220355. −0.298632 −0.149316 0.988790i \(-0.547707\pi\)
−0.149316 + 0.988790i \(0.547707\pi\)
\(860\) −25186.7 + 25186.7i −0.0340545 + 0.0340545i
\(861\) −106567. −0.143753
\(862\) 245881.i 0.330911i
\(863\) −224496. + 224496.i −0.301430 + 0.301430i −0.841573 0.540143i \(-0.818370\pi\)
0.540143 + 0.841573i \(0.318370\pi\)
\(864\) 87303.6 87303.6i 0.116951 0.116951i
\(865\) 621502. + 621502.i 0.830636 + 0.830636i
\(866\) −430703. 430703.i −0.574305 0.574305i
\(867\) 354317. 0.471361
\(868\) 167670.i 0.222544i
\(869\) −156170. 156170.i −0.206803 0.206803i
\(870\) 1.12860e6i 1.49109i
\(871\) 0 0
\(872\) 479798. 0.630994
\(873\) −31368.0 + 31368.0i −0.0411584 + 0.0411584i
\(874\) −1.14866e6 −1.50373
\(875\) 274162.i 0.358089i
\(876\) 189660. 189660.i 0.247154 0.247154i
\(877\) 285275. 285275.i 0.370906 0.370906i −0.496901 0.867807i \(-0.665529\pi\)
0.867807 + 0.496901i \(0.165529\pi\)
\(878\) −588840. 588840.i −0.763850 0.763850i
\(879\) 227153. + 227153.i 0.293995 + 0.293995i
\(880\) 57299.8 0.0739925
\(881\) 391811.i 0.504807i 0.967622 + 0.252403i \(0.0812210\pi\)
−0.967622 + 0.252403i \(0.918779\pi\)
\(882\) −36890.1 36890.1i −0.0474212 0.0474212i
\(883\) 579331.i 0.743029i −0.928427 0.371514i \(-0.878839\pi\)
0.928427 0.371514i \(-0.121161\pi\)
\(884\) 0 0
\(885\) 201305. 0.257021
\(886\) −150569. + 150569.i −0.191808 + 0.191808i
\(887\) −1.29354e6 −1.64412 −0.822059 0.569402i \(-0.807175\pi\)
−0.822059 + 0.569402i \(0.807175\pi\)
\(888\) 151429.i 0.192037i
\(889\) −226853. + 226853.i −0.287040 + 0.287040i
\(890\) 339816. 339816.i 0.429006 0.429006i
\(891\) 168037. + 168037.i 0.211665 + 0.211665i
\(892\) −129295. 129295.i −0.162499 0.162499i
\(893\) 1.03452e6 1.29729
\(894\) 645465.i 0.807602i
\(895\) 256531. + 256531.i 0.320254 + 0.320254i
\(896\) 28614.2i 0.0356423i
\(897\) 0 0
\(898\) 397724. 0.493207
\(899\) −1.15865e6 + 1.15865e6i −1.43362 + 1.43362i
\(900\) −8432.87 −0.0104110
\(901\) 974821.i 1.20081i
\(902\) 37388.0 37388.0i 0.0459535 0.0459535i
\(903\) 21717.1 21717.1i 0.0266334 0.0266334i
\(904\) 281039. + 281039.i 0.343898 + 0.343898i
\(905\) 889117. + 889117.i 1.08558 + 1.08558i
\(906\) 42158.2 0.0513600
\(907\) 1.33236e6i 1.61959i 0.586711 + 0.809797i \(0.300423\pi\)
−0.586711 + 0.809797i \(0.699577\pi\)
\(908\) 249853. + 249853.i 0.303049 + 0.303049i
\(909\) 77335.9i 0.0935951i
\(910\) 0 0
\(911\) 224303. 0.270271 0.135135 0.990827i \(-0.456853\pi\)
0.135135 + 0.990827i \(0.456853\pi\)
\(912\) −181397. + 181397.i −0.218092 + 0.218092i
\(913\) 63365.8 0.0760174
\(914\) 550894.i 0.659441i
\(915\) 721175. 721175.i 0.861387 0.861387i
\(916\) 80202.1 80202.1i 0.0955861 0.0955861i
\(917\) 127840. + 127840.i 0.152030 + 0.152030i
\(918\) 293234. + 293234.i 0.347960 + 0.347960i
\(919\) −1.16194e6 −1.37579 −0.687896 0.725809i \(-0.741466\pi\)
−0.687896 + 0.725809i \(0.741466\pi\)
\(920\) 592168.i 0.699631i
\(921\) −931135. 931135.i −1.09772 1.09772i
\(922\) 927699.i 1.09130i
\(923\) 0 0
\(924\) −49406.4 −0.0578681
\(925\) 57259.3 57259.3i 0.0669210 0.0669210i
\(926\) −782401. −0.912447
\(927\) 22003.3i 0.0256053i
\(928\) −197733. + 197733.i −0.229606 + 0.229606i
\(929\) −687630. + 687630.i −0.796752 + 0.796752i −0.982582 0.185830i \(-0.940503\pi\)
0.185830 + 0.982582i \(0.440503\pi\)
\(930\) 547971. + 547971.i 0.633565 + 0.633565i
\(931\) −600109. 600109.i −0.692359 0.692359i
\(932\) −24270.6 −0.0279415
\(933\) 646431.i 0.742607i
\(934\) −426692. 426692.i −0.489126 0.489126i
\(935\) 192458.i 0.220146i
\(936\) 0 0
\(937\) −237066. −0.270016 −0.135008 0.990845i \(-0.543106\pi\)
−0.135008 + 0.990845i \(0.543106\pi\)
\(938\) −272434. + 272434.i −0.309639 + 0.309639i
\(939\) −528775. −0.599708
\(940\) 533325.i 0.603582i
\(941\) 488611. 488611.i 0.551803 0.551803i −0.375158 0.926961i \(-0.622411\pi\)
0.926961 + 0.375158i \(0.122411\pi\)
\(942\) −341515. + 341515.i −0.384865 + 0.384865i
\(943\) 386388. + 386388.i 0.434511 + 0.434511i
\(944\) −35268.9 35268.9i −0.0395775 0.0395775i
\(945\) −366586. −0.410499
\(946\) 15238.4i 0.0170278i
\(947\) 1.12367e6 + 1.12367e6i 1.25297 + 1.25297i 0.954383 + 0.298584i \(0.0965144\pi\)
0.298584 + 0.954383i \(0.403486\pi\)
\(948\) 509749.i 0.567204i
\(949\) 0 0
\(950\) −137182. −0.152002
\(951\) 219711. 219711.i 0.242935 0.242935i
\(952\) −96108.9 −0.106045
\(953\) 541880.i 0.596647i 0.954465 + 0.298323i \(0.0964274\pi\)
−0.954465 + 0.298323i \(0.903573\pi\)
\(954\) −83205.4 + 83205.4i −0.0914229 + 0.0914229i
\(955\) 229213. 229213.i 0.251324 0.251324i
\(956\) −219575. 219575.i −0.240252 0.240252i
\(957\) −341413. 341413.i −0.372783 0.372783i
\(958\) −408226. −0.444805
\(959\) 232778.i 0.253107i
\(960\) 93515.3 + 93515.3i 0.101471 + 0.101471i
\(961\) 201600.i 0.218295i
\(962\) 0 0
\(963\) 86347.6 0.0931103
\(964\) 327856. 327856.i 0.352800 0.352800i
\(965\) 1.14544e6 1.23004
\(966\) 510593.i 0.547168i
\(967\) −906789. + 906789.i −0.969735 + 0.969735i −0.999555 0.0298202i \(-0.990507\pi\)
0.0298202 + 0.999555i \(0.490507\pi\)
\(968\) −216922. + 216922.i −0.231501 + 0.231501i
\(969\) −609273. 609273.i −0.648880 0.648880i
\(970\) 263064. + 263064.i 0.279587 + 0.279587i
\(971\) −113950. −0.120858 −0.0604291 0.998172i \(-0.519247\pi\)
−0.0604291 + 0.998172i \(0.519247\pi\)
\(972\) 106509.i 0.112734i
\(973\) −28318.1 28318.1i −0.0299115 0.0299115i
\(974\) 228163.i 0.240507i
\(975\) 0 0
\(976\) −252701. −0.265282
\(977\) −312440. + 312440.i −0.327324 + 0.327324i −0.851568 0.524244i \(-0.824348\pi\)
0.524244 + 0.851568i \(0.324348\pi\)
\(978\) 1.25078e6 1.30768
\(979\) 205595.i 0.214510i
\(980\) −309374. + 309374.i −0.322130 + 0.322130i
\(981\) −137552. + 137552.i −0.142932 + 0.142932i
\(982\) −652732. 652732.i −0.676880 0.676880i
\(983\) −810.786 810.786i −0.000839072 0.000839072i 0.706687 0.707526i \(-0.250189\pi\)
−0.707526 + 0.706687i \(0.750189\pi\)
\(984\) 122037. 0.126038
\(985\) 1.50241e6i 1.54851i
\(986\) −664141. 664141.i −0.683135 0.683135i
\(987\) 459857.i 0.472050i
\(988\) 0 0
\(989\) −157482. −0.161005
\(990\) −16427.1 + 16427.1i −0.0167607 + 0.0167607i
\(991\) 274971. 0.279988 0.139994 0.990152i \(-0.455292\pi\)
0.139994 + 0.990152i \(0.455292\pi\)
\(992\) 192010.i 0.195120i
\(993\) 514700. 514700.i 0.521982 0.521982i
\(994\) 218098. 218098.i 0.220738 0.220738i
\(995\) 1.29845e6 + 1.29845e6i 1.31154 + 1.31154i
\(996\) 103415. + 103415.i 0.104248 + 0.104248i
\(997\) −1.53846e6 −1.54773 −0.773864 0.633352i \(-0.781679\pi\)
−0.773864 + 0.633352i \(0.781679\pi\)
\(998\) 1.28465e6i 1.28981i
\(999\) −339892. 339892.i −0.340573 0.340573i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.5.d.g.239.3 8
13.5 odd 4 338.5.d.f.99.3 8
13.6 odd 12 26.5.f.b.11.1 8
13.8 odd 4 inner 338.5.d.g.99.3 8
13.10 even 6 26.5.f.b.19.1 yes 8
13.12 even 2 338.5.d.f.239.3 8
39.23 odd 6 234.5.bb.a.19.2 8
39.32 even 12 234.5.bb.a.37.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.5.f.b.11.1 8 13.6 odd 12
26.5.f.b.19.1 yes 8 13.10 even 6
234.5.bb.a.19.2 8 39.23 odd 6
234.5.bb.a.37.2 8 39.32 even 12
338.5.d.f.99.3 8 13.5 odd 4
338.5.d.f.239.3 8 13.12 even 2
338.5.d.g.99.3 8 13.8 odd 4 inner
338.5.d.g.239.3 8 1.1 even 1 trivial