Properties

Label 338.5.d.f.239.3
Level $338$
Weight $5$
Character 338.239
Analytic conductor $34.939$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [338,5,Mod(99,338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(338, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 5, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("338.99"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 338.d (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-16,0,0,-18] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(34.9390475223\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 494x^{6} + 90747x^{4} - 7343258x^{2} + 221087161 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 13^{2} \)
Twist minimal: no (minimal twist has level 26)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 239.3
Root \(12.0941 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 338.239
Dual form 338.5.d.f.99.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.00000 + 2.00000i) q^{2} +9.49600 q^{3} -8.00000i q^{4} +(-19.2341 + 19.2341i) q^{5} +(-18.9920 + 18.9920i) q^{6} +(-13.9718 - 13.9718i) q^{7} +(16.0000 + 16.0000i) q^{8} +9.17400 q^{9} -76.9364i q^{10} +(23.2740 + 23.2740i) q^{11} -75.9680i q^{12} +55.8871 q^{14} +(-182.647 + 182.647i) q^{15} -64.0000 q^{16} -214.962i q^{17} +(-18.3480 + 18.3480i) q^{18} +(-298.476 + 298.476i) q^{19} +(153.873 + 153.873i) q^{20} +(-132.676 - 132.676i) q^{21} -93.0960 q^{22} -962.105i q^{23} +(151.936 + 151.936i) q^{24} -114.902i q^{25} -682.060 q^{27} +(-111.774 + 111.774i) q^{28} +1544.79 q^{29} -730.588i q^{30} +(750.040 - 750.040i) q^{31} +(128.000 - 128.000i) q^{32} +(221.010 + 221.010i) q^{33} +(429.924 + 429.924i) q^{34} +537.469 q^{35} -73.3920i q^{36} +(-498.332 - 498.332i) q^{37} -1193.90i q^{38} -615.491 q^{40} +(401.607 - 401.607i) q^{41} +530.704 q^{42} -163.685i q^{43} +(186.192 - 186.192i) q^{44} +(-176.454 + 176.454i) q^{45} +(1924.21 + 1924.21i) q^{46} +(-1733.01 - 1733.01i) q^{47} -607.744 q^{48} -2010.58i q^{49} +(229.804 + 229.804i) q^{50} -2041.28i q^{51} -4534.85 q^{53} +(1364.12 - 1364.12i) q^{54} -895.309 q^{55} -447.097i q^{56} +(-2834.33 + 2834.33i) q^{57} +(-3089.57 + 3089.57i) q^{58} +(-551.077 - 551.077i) q^{59} +(1461.18 + 1461.18i) q^{60} +3948.46 q^{61} +3000.16i q^{62} +(-128.177 - 128.177i) q^{63} +512.000i q^{64} -884.039 q^{66} +(4874.72 - 4874.72i) q^{67} -1719.70 q^{68} -9136.15i q^{69} +(-1074.94 + 1074.94i) q^{70} +(-3902.47 + 3902.47i) q^{71} +(146.784 + 146.784i) q^{72} +(-2496.58 - 2496.58i) q^{73} +1993.33 q^{74} -1091.11i q^{75} +(2387.81 + 2387.81i) q^{76} -650.358i q^{77} +6710.05 q^{79} +(1230.98 - 1230.98i) q^{80} -7219.93 q^{81} +1606.43i q^{82} +(1361.30 - 1361.30i) q^{83} +(-1061.41 + 1061.41i) q^{84} +(4134.61 + 4134.61i) q^{85} +(327.370 + 327.370i) q^{86} +14669.3 q^{87} +744.768i q^{88} +(-4416.84 - 4416.84i) q^{89} -705.815i q^{90} -7696.84 q^{92} +(7122.38 - 7122.38i) q^{93} +6932.03 q^{94} -11481.8i q^{95} +(1215.49 - 1215.49i) q^{96} +(3419.23 - 3419.23i) q^{97} +(4021.16 + 4021.16i) q^{98} +(213.516 + 213.516i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 16 q^{2} - 18 q^{5} + 10 q^{7} + 128 q^{8} + 396 q^{9} - 378 q^{11} - 40 q^{14} + 600 q^{15} - 512 q^{16} - 792 q^{18} - 1190 q^{19} + 144 q^{20} - 678 q^{21} + 1512 q^{22} - 1404 q^{27} + 80 q^{28}+ \cdots - 55296 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/338\mathbb{Z}\right)^\times\).

\(n\) \(171\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 + 2.00000i −0.500000 + 0.500000i
\(3\) 9.49600 1.05511 0.527556 0.849521i \(-0.323109\pi\)
0.527556 + 0.849521i \(0.323109\pi\)
\(4\) 8.00000i 0.500000i
\(5\) −19.2341 + 19.2341i −0.769364 + 0.769364i −0.977995 0.208630i \(-0.933099\pi\)
0.208630 + 0.977995i \(0.433099\pi\)
\(6\) −18.9920 + 18.9920i −0.527556 + 0.527556i
\(7\) −13.9718 13.9718i −0.285138 0.285138i 0.550016 0.835154i \(-0.314622\pi\)
−0.835154 + 0.550016i \(0.814622\pi\)
\(8\) 16.0000 + 16.0000i 0.250000 + 0.250000i
\(9\) 9.17400 0.113259
\(10\) 76.9364i 0.769364i
\(11\) 23.2740 + 23.2740i 0.192347 + 0.192347i 0.796709 0.604362i \(-0.206572\pi\)
−0.604362 + 0.796709i \(0.706572\pi\)
\(12\) 75.9680i 0.527556i
\(13\) 0 0
\(14\) 55.8871 0.285138
\(15\) −182.647 + 182.647i −0.811765 + 0.811765i
\(16\) −64.0000 −0.250000
\(17\) 214.962i 0.743814i −0.928270 0.371907i \(-0.878704\pi\)
0.928270 0.371907i \(-0.121296\pi\)
\(18\) −18.3480 + 18.3480i −0.0566296 + 0.0566296i
\(19\) −298.476 + 298.476i −0.826803 + 0.826803i −0.987073 0.160270i \(-0.948763\pi\)
0.160270 + 0.987073i \(0.448763\pi\)
\(20\) 153.873 + 153.873i 0.384682 + 0.384682i
\(21\) −132.676 132.676i −0.300853 0.300853i
\(22\) −93.0960 −0.192347
\(23\) 962.105i 1.81872i −0.416005 0.909362i \(-0.636570\pi\)
0.416005 0.909362i \(-0.363430\pi\)
\(24\) 151.936 + 151.936i 0.263778 + 0.263778i
\(25\) 114.902i 0.183843i
\(26\) 0 0
\(27\) −682.060 −0.935610
\(28\) −111.774 + 111.774i −0.142569 + 0.142569i
\(29\) 1544.79 1.83684 0.918422 0.395601i \(-0.129464\pi\)
0.918422 + 0.395601i \(0.129464\pi\)
\(30\) 730.588i 0.811765i
\(31\) 750.040 750.040i 0.780479 0.780479i −0.199432 0.979912i \(-0.563910\pi\)
0.979912 + 0.199432i \(0.0639099\pi\)
\(32\) 128.000 128.000i 0.125000 0.125000i
\(33\) 221.010 + 221.010i 0.202947 + 0.202947i
\(34\) 429.924 + 429.924i 0.371907 + 0.371907i
\(35\) 537.469 0.438750
\(36\) 73.3920i 0.0566296i
\(37\) −498.332 498.332i −0.364012 0.364012i 0.501276 0.865288i \(-0.332864\pi\)
−0.865288 + 0.501276i \(0.832864\pi\)
\(38\) 1193.90i 0.826803i
\(39\) 0 0
\(40\) −615.491 −0.384682
\(41\) 401.607 401.607i 0.238910 0.238910i −0.577489 0.816398i \(-0.695967\pi\)
0.816398 + 0.577489i \(0.195967\pi\)
\(42\) 530.704 0.300853
\(43\) 163.685i 0.0885264i −0.999020 0.0442632i \(-0.985906\pi\)
0.999020 0.0442632i \(-0.0140940\pi\)
\(44\) 186.192 186.192i 0.0961735 0.0961735i
\(45\) −176.454 + 176.454i −0.0871376 + 0.0871376i
\(46\) 1924.21 + 1924.21i 0.909362 + 0.909362i
\(47\) −1733.01 1733.01i −0.784521 0.784521i 0.196069 0.980590i \(-0.437182\pi\)
−0.980590 + 0.196069i \(0.937182\pi\)
\(48\) −607.744 −0.263778
\(49\) 2010.58i 0.837392i
\(50\) 229.804 + 229.804i 0.0919214 + 0.0919214i
\(51\) 2041.28i 0.784806i
\(52\) 0 0
\(53\) −4534.85 −1.61440 −0.807200 0.590278i \(-0.799018\pi\)
−0.807200 + 0.590278i \(0.799018\pi\)
\(54\) 1364.12 1364.12i 0.467805 0.467805i
\(55\) −895.309 −0.295970
\(56\) 447.097i 0.142569i
\(57\) −2834.33 + 2834.33i −0.872369 + 0.872369i
\(58\) −3089.57 + 3089.57i −0.918422 + 0.918422i
\(59\) −551.077 551.077i −0.158310 0.158310i 0.623507 0.781817i \(-0.285707\pi\)
−0.781817 + 0.623507i \(0.785707\pi\)
\(60\) 1461.18 + 1461.18i 0.405882 + 0.405882i
\(61\) 3948.46 1.06113 0.530564 0.847645i \(-0.321980\pi\)
0.530564 + 0.847645i \(0.321980\pi\)
\(62\) 3000.16i 0.780479i
\(63\) −128.177 128.177i −0.0322946 0.0322946i
\(64\) 512.000i 0.125000i
\(65\) 0 0
\(66\) −884.039 −0.202947
\(67\) 4874.72 4874.72i 1.08592 1.08592i 0.0899815 0.995943i \(-0.471319\pi\)
0.995943 0.0899815i \(-0.0286808\pi\)
\(68\) −1719.70 −0.371907
\(69\) 9136.15i 1.91896i
\(70\) −1074.94 + 1074.94i −0.219375 + 0.219375i
\(71\) −3902.47 + 3902.47i −0.774145 + 0.774145i −0.978828 0.204683i \(-0.934384\pi\)
0.204683 + 0.978828i \(0.434384\pi\)
\(72\) 146.784 + 146.784i 0.0283148 + 0.0283148i
\(73\) −2496.58 2496.58i −0.468489 0.468489i 0.432936 0.901425i \(-0.357478\pi\)
−0.901425 + 0.432936i \(0.857478\pi\)
\(74\) 1993.33 0.364012
\(75\) 1091.11i 0.193975i
\(76\) 2387.81 + 2387.81i 0.413402 + 0.413402i
\(77\) 650.358i 0.109691i
\(78\) 0 0
\(79\) 6710.05 1.07516 0.537578 0.843214i \(-0.319339\pi\)
0.537578 + 0.843214i \(0.319339\pi\)
\(80\) 1230.98 1230.98i 0.192341 0.192341i
\(81\) −7219.93 −1.10043
\(82\) 1606.43i 0.238910i
\(83\) 1361.30 1361.30i 0.197605 0.197605i −0.601368 0.798972i \(-0.705377\pi\)
0.798972 + 0.601368i \(0.205377\pi\)
\(84\) −1061.41 + 1061.41i −0.150426 + 0.150426i
\(85\) 4134.61 + 4134.61i 0.572264 + 0.572264i
\(86\) 327.370 + 327.370i 0.0442632 + 0.0442632i
\(87\) 14669.3 1.93808
\(88\) 744.768i 0.0961735i
\(89\) −4416.84 4416.84i −0.557611 0.557611i 0.371016 0.928627i \(-0.379010\pi\)
−0.928627 + 0.371016i \(0.879010\pi\)
\(90\) 705.815i 0.0871376i
\(91\) 0 0
\(92\) −7696.84 −0.909362
\(93\) 7122.38 7122.38i 0.823492 0.823492i
\(94\) 6932.03 0.784521
\(95\) 11481.8i 1.27223i
\(96\) 1215.49 1215.49i 0.131889 0.131889i
\(97\) 3419.23 3419.23i 0.363400 0.363400i −0.501663 0.865063i \(-0.667278\pi\)
0.865063 + 0.501663i \(0.167278\pi\)
\(98\) 4021.16 + 4021.16i 0.418696 + 0.418696i
\(99\) 213.516 + 213.516i 0.0217851 + 0.0217851i
\(100\) −919.214 −0.0919214
\(101\) 8429.89i 0.826379i −0.910645 0.413190i \(-0.864415\pi\)
0.910645 0.413190i \(-0.135585\pi\)
\(102\) 4082.56 + 4082.56i 0.392403 + 0.392403i
\(103\) 2398.45i 0.226076i 0.993591 + 0.113038i \(0.0360583\pi\)
−0.993591 + 0.113038i \(0.963942\pi\)
\(104\) 0 0
\(105\) 5103.81 0.462930
\(106\) 9069.70 9069.70i 0.807200 0.807200i
\(107\) 9412.21 0.822099 0.411049 0.911613i \(-0.365162\pi\)
0.411049 + 0.911613i \(0.365162\pi\)
\(108\) 5456.48i 0.467805i
\(109\) 14993.7 14993.7i 1.26199 1.26199i 0.311860 0.950128i \(-0.399048\pi\)
0.950128 0.311860i \(-0.100952\pi\)
\(110\) 1790.62 1790.62i 0.147985 0.147985i
\(111\) −4732.16 4732.16i −0.384073 0.384073i
\(112\) 894.194 + 894.194i 0.0712846 + 0.0712846i
\(113\) −17564.9 −1.37559 −0.687795 0.725905i \(-0.741421\pi\)
−0.687795 + 0.725905i \(0.741421\pi\)
\(114\) 11337.3i 0.872369i
\(115\) 18505.2 + 18505.2i 1.39926 + 1.39926i
\(116\) 12358.3i 0.918422i
\(117\) 0 0
\(118\) 2204.31 0.158310
\(119\) −3003.40 + 3003.40i −0.212090 + 0.212090i
\(120\) −5844.71 −0.405882
\(121\) 13557.6i 0.926005i
\(122\) −7896.92 + 7896.92i −0.530564 + 0.530564i
\(123\) 3813.66 3813.66i 0.252076 0.252076i
\(124\) −6000.32 6000.32i −0.390240 0.390240i
\(125\) −9811.28 9811.28i −0.627922 0.627922i
\(126\) 512.708 0.0322946
\(127\) 16236.5i 1.00667i 0.864092 + 0.503334i \(0.167893\pi\)
−0.864092 + 0.503334i \(0.832107\pi\)
\(128\) −1024.00 1024.00i −0.0625000 0.0625000i
\(129\) 1554.35i 0.0934051i
\(130\) 0 0
\(131\) 9149.90 0.533180 0.266590 0.963810i \(-0.414103\pi\)
0.266590 + 0.963810i \(0.414103\pi\)
\(132\) 1768.08 1768.08i 0.101474 0.101474i
\(133\) 8340.48 0.471506
\(134\) 19498.9i 1.08592i
\(135\) 13118.8 13118.8i 0.719825 0.719825i
\(136\) 3439.39 3439.39i 0.185953 0.185953i
\(137\) 8330.28 + 8330.28i 0.443832 + 0.443832i 0.893298 0.449466i \(-0.148386\pi\)
−0.449466 + 0.893298i \(0.648386\pi\)
\(138\) 18272.3 + 18272.3i 0.959478 + 0.959478i
\(139\) −2026.81 −0.104902 −0.0524509 0.998624i \(-0.516703\pi\)
−0.0524509 + 0.998624i \(0.516703\pi\)
\(140\) 4299.75i 0.219375i
\(141\) −16456.6 16456.6i −0.827757 0.827757i
\(142\) 15609.9i 0.774145i
\(143\) 0 0
\(144\) −587.136 −0.0283148
\(145\) −29712.6 + 29712.6i −1.41320 + 1.41320i
\(146\) 9986.30 0.468489
\(147\) 19092.5i 0.883542i
\(148\) −3986.66 + 3986.66i −0.182006 + 0.182006i
\(149\) −16993.1 + 16993.1i −0.765419 + 0.765419i −0.977296 0.211877i \(-0.932042\pi\)
0.211877 + 0.977296i \(0.432042\pi\)
\(150\) 2182.21 + 2182.21i 0.0969873 + 0.0969873i
\(151\) −1109.89 1109.89i −0.0486774 0.0486774i 0.682349 0.731026i \(-0.260958\pi\)
−0.731026 + 0.682349i \(0.760958\pi\)
\(152\) −9551.23 −0.413402
\(153\) 1972.06i 0.0842438i
\(154\) 1300.72 + 1300.72i 0.0548455 + 0.0548455i
\(155\) 28852.7i 1.20095i
\(156\) 0 0
\(157\) −17982.1 −0.729525 −0.364762 0.931101i \(-0.618850\pi\)
−0.364762 + 0.931101i \(0.618850\pi\)
\(158\) −13420.1 + 13420.1i −0.537578 + 0.537578i
\(159\) −43062.9 −1.70337
\(160\) 4923.93i 0.192341i
\(161\) −13442.3 + 13442.3i −0.518588 + 0.518588i
\(162\) 14439.9 14439.9i 0.550216 0.550216i
\(163\) −32929.1 32929.1i −1.23938 1.23938i −0.960254 0.279126i \(-0.909955\pi\)
−0.279126 0.960254i \(-0.590045\pi\)
\(164\) −3212.86 3212.86i −0.119455 0.119455i
\(165\) −8501.85 −0.312281
\(166\) 5445.20i 0.197605i
\(167\) −12360.2 12360.2i −0.443194 0.443194i 0.449890 0.893084i \(-0.351463\pi\)
−0.893084 + 0.449890i \(0.851463\pi\)
\(168\) 4245.63i 0.150426i
\(169\) 0 0
\(170\) −16538.4 −0.572264
\(171\) −2738.22 + 2738.22i −0.0936431 + 0.0936431i
\(172\) −1309.48 −0.0442632
\(173\) 32312.5i 1.07964i 0.841781 + 0.539820i \(0.181508\pi\)
−0.841781 + 0.539820i \(0.818492\pi\)
\(174\) −29338.6 + 29338.6i −0.969038 + 0.969038i
\(175\) −1605.38 + 1605.38i −0.0524206 + 0.0524206i
\(176\) −1489.54 1489.54i −0.0480868 0.0480868i
\(177\) −5233.02 5233.02i −0.167034 0.167034i
\(178\) 17667.4 0.557611
\(179\) 13337.3i 0.416258i 0.978101 + 0.208129i \(0.0667374\pi\)
−0.978101 + 0.208129i \(0.933263\pi\)
\(180\) 1411.63 + 1411.63i 0.0435688 + 0.0435688i
\(181\) 46226.0i 1.41101i 0.708706 + 0.705504i \(0.249279\pi\)
−0.708706 + 0.705504i \(0.750721\pi\)
\(182\) 0 0
\(183\) 37494.6 1.11961
\(184\) 15393.7 15393.7i 0.454681 0.454681i
\(185\) 19170.0 0.560116
\(186\) 28489.5i 0.823492i
\(187\) 5003.03 5003.03i 0.143070 0.143070i
\(188\) −13864.1 + 13864.1i −0.392260 + 0.392260i
\(189\) 9529.58 + 9529.58i 0.266778 + 0.266778i
\(190\) 22963.7 + 22963.7i 0.636113 + 0.636113i
\(191\) 11917.0 0.326664 0.163332 0.986571i \(-0.447776\pi\)
0.163332 + 0.986571i \(0.447776\pi\)
\(192\) 4861.95i 0.131889i
\(193\) −29776.3 29776.3i −0.799385 0.799385i 0.183614 0.982999i \(-0.441221\pi\)
−0.982999 + 0.183614i \(0.941221\pi\)
\(194\) 13676.9i 0.363400i
\(195\) 0 0
\(196\) −16084.6 −0.418696
\(197\) −39055.8 + 39055.8i −1.00636 + 1.00636i −0.00637973 + 0.999980i \(0.502031\pi\)
−0.999980 + 0.00637973i \(0.997969\pi\)
\(198\) −854.062 −0.0217851
\(199\) 67507.8i 1.70470i 0.522971 + 0.852350i \(0.324823\pi\)
−0.522971 + 0.852350i \(0.675177\pi\)
\(200\) 1838.43 1838.43i 0.0459607 0.0459607i
\(201\) 46290.3 46290.3i 1.14577 1.14577i
\(202\) 16859.8 + 16859.8i 0.413190 + 0.413190i
\(203\) −21583.4 21583.4i −0.523755 0.523755i
\(204\) −16330.2 −0.392403
\(205\) 15449.1i 0.367617i
\(206\) −4796.89 4796.89i −0.113038 0.113038i
\(207\) 8826.35i 0.205987i
\(208\) 0 0
\(209\) −13893.5 −0.318066
\(210\) −10207.6 + 10207.6i −0.231465 + 0.231465i
\(211\) −4367.34 −0.0980961 −0.0490481 0.998796i \(-0.515619\pi\)
−0.0490481 + 0.998796i \(0.515619\pi\)
\(212\) 36278.8i 0.807200i
\(213\) −37057.8 + 37057.8i −0.816809 + 0.816809i
\(214\) −18824.4 + 18824.4i −0.411049 + 0.411049i
\(215\) 3148.34 + 3148.34i 0.0681090 + 0.0681090i
\(216\) −10913.0 10913.0i −0.233902 0.233902i
\(217\) −20958.8 −0.445089
\(218\) 59974.7i 1.26199i
\(219\) −23707.5 23707.5i −0.494307 0.494307i
\(220\) 7162.47i 0.147985i
\(221\) 0 0
\(222\) 18928.7 0.384073
\(223\) −16161.8 + 16161.8i −0.324998 + 0.324998i −0.850681 0.525683i \(-0.823810\pi\)
0.525683 + 0.850681i \(0.323810\pi\)
\(224\) −3576.77 −0.0712846
\(225\) 1054.11i 0.0208219i
\(226\) 35129.8 35129.8i 0.687795 0.687795i
\(227\) 31231.7 31231.7i 0.606099 0.606099i −0.335825 0.941924i \(-0.609015\pi\)
0.941924 + 0.335825i \(0.109015\pi\)
\(228\) 22674.6 + 22674.6i 0.436185 + 0.436185i
\(229\) −10025.3 10025.3i −0.191172 0.191172i 0.605030 0.796202i \(-0.293161\pi\)
−0.796202 + 0.605030i \(0.793161\pi\)
\(230\) −74020.9 −1.39926
\(231\) 6175.80i 0.115736i
\(232\) 24716.6 + 24716.6i 0.459211 + 0.459211i
\(233\) 3033.83i 0.0558829i −0.999610 0.0279415i \(-0.991105\pi\)
0.999610 0.0279415i \(-0.00889520\pi\)
\(234\) 0 0
\(235\) 66665.7 1.20716
\(236\) −4408.61 + 4408.61i −0.0791549 + 0.0791549i
\(237\) 63718.6 1.13441
\(238\) 12013.6i 0.212090i
\(239\) −27446.8 + 27446.8i −0.480503 + 0.480503i −0.905292 0.424789i \(-0.860348\pi\)
0.424789 + 0.905292i \(0.360348\pi\)
\(240\) 11689.4 11689.4i 0.202941 0.202941i
\(241\) −40981.9 40981.9i −0.705600 0.705600i 0.260007 0.965607i \(-0.416275\pi\)
−0.965607 + 0.260007i \(0.916275\pi\)
\(242\) 27115.3 + 27115.3i 0.463003 + 0.463003i
\(243\) −13313.6 −0.225468
\(244\) 31587.7i 0.530564i
\(245\) 38671.7 + 38671.7i 0.644260 + 0.644260i
\(246\) 15254.6i 0.252076i
\(247\) 0 0
\(248\) 24001.3 0.390240
\(249\) 12926.9 12926.9i 0.208495 0.208495i
\(250\) 39245.1 0.627922
\(251\) 55670.2i 0.883639i −0.897104 0.441820i \(-0.854333\pi\)
0.897104 0.441820i \(-0.145667\pi\)
\(252\) −1025.42 + 1025.42i −0.0161473 + 0.0161473i
\(253\) 22392.0 22392.0i 0.349826 0.349826i
\(254\) −32473.1 32473.1i −0.503334 0.503334i
\(255\) 39262.2 + 39262.2i 0.603802 + 0.603802i
\(256\) 4096.00 0.0625000
\(257\) 19950.7i 0.302059i −0.988529 0.151030i \(-0.951741\pi\)
0.988529 0.151030i \(-0.0482589\pi\)
\(258\) 3108.71 + 3108.71i 0.0467026 + 0.0467026i
\(259\) 13925.2i 0.207588i
\(260\) 0 0
\(261\) 14171.9 0.208040
\(262\) −18299.8 + 18299.8i −0.266590 + 0.266590i
\(263\) −118460. −1.71261 −0.856305 0.516470i \(-0.827246\pi\)
−0.856305 + 0.516470i \(0.827246\pi\)
\(264\) 7072.31i 0.101474i
\(265\) 87223.8 87223.8i 1.24206 1.24206i
\(266\) −16681.0 + 16681.0i −0.235753 + 0.235753i
\(267\) −41942.3 41942.3i −0.588342 0.588342i
\(268\) −38997.7 38997.7i −0.542962 0.542962i
\(269\) −12860.0 −0.177720 −0.0888600 0.996044i \(-0.528322\pi\)
−0.0888600 + 0.996044i \(0.528322\pi\)
\(270\) 52475.2i 0.719825i
\(271\) 11279.4 + 11279.4i 0.153585 + 0.153585i 0.779717 0.626132i \(-0.215363\pi\)
−0.626132 + 0.779717i \(0.715363\pi\)
\(272\) 13757.6i 0.185953i
\(273\) 0 0
\(274\) −33321.1 −0.443832
\(275\) 2674.22 2674.22i 0.0353616 0.0353616i
\(276\) −73089.2 −0.959478
\(277\) 60933.3i 0.794136i 0.917789 + 0.397068i \(0.129972\pi\)
−0.917789 + 0.397068i \(0.870028\pi\)
\(278\) 4053.62 4053.62i 0.0524509 0.0524509i
\(279\) 6880.87 6880.87i 0.0883965 0.0883965i
\(280\) 8599.51 + 8599.51i 0.109688 + 0.109688i
\(281\) −30774.2 30774.2i −0.389739 0.389739i 0.484855 0.874594i \(-0.338872\pi\)
−0.874594 + 0.484855i \(0.838872\pi\)
\(282\) 65826.5 0.827757
\(283\) 110848.i 1.38407i −0.721866 0.692033i \(-0.756715\pi\)
0.721866 0.692033i \(-0.243285\pi\)
\(284\) 31219.7 + 31219.7i 0.387073 + 0.387073i
\(285\) 109032.i 1.34234i
\(286\) 0 0
\(287\) −11222.3 −0.136245
\(288\) 1174.27 1174.27i 0.0141574 0.0141574i
\(289\) 37312.3 0.446741
\(290\) 118850.i 1.41320i
\(291\) 32469.0 32469.0i 0.383428 0.383428i
\(292\) −19972.6 + 19972.6i −0.234244 + 0.234244i
\(293\) −23920.9 23920.9i −0.278639 0.278639i 0.553926 0.832566i \(-0.313129\pi\)
−0.832566 + 0.553926i \(0.813129\pi\)
\(294\) 38184.9 + 38184.9i 0.441771 + 0.441771i
\(295\) 21198.9 0.243596
\(296\) 15946.6i 0.182006i
\(297\) −15874.2 15874.2i −0.179962 0.179962i
\(298\) 67972.3i 0.765419i
\(299\) 0 0
\(300\) −8728.86 −0.0969873
\(301\) −2286.97 + 2286.97i −0.0252423 + 0.0252423i
\(302\) 4439.57 0.0486774
\(303\) 80050.3i 0.871922i
\(304\) 19102.5 19102.5i 0.206701 0.206701i
\(305\) −75945.1 + 75945.1i −0.816395 + 0.816395i
\(306\) 3944.13 + 3944.13i 0.0421219 + 0.0421219i
\(307\) 98055.5 + 98055.5i 1.04039 + 1.04039i 0.999149 + 0.0412382i \(0.0131302\pi\)
0.0412382 + 0.999149i \(0.486870\pi\)
\(308\) −5202.86 −0.0548455
\(309\) 22775.6i 0.238536i
\(310\) −57705.4 57705.4i −0.600473 0.600473i
\(311\) 68074.1i 0.703819i 0.936034 + 0.351910i \(0.114468\pi\)
−0.936034 + 0.351910i \(0.885532\pi\)
\(312\) 0 0
\(313\) −55684.0 −0.568383 −0.284192 0.958767i \(-0.591725\pi\)
−0.284192 + 0.958767i \(0.591725\pi\)
\(314\) 35964.1 35964.1i 0.364762 0.364762i
\(315\) 4930.74 0.0496926
\(316\) 53680.4i 0.537578i
\(317\) −23137.2 + 23137.2i −0.230246 + 0.230246i −0.812795 0.582549i \(-0.802055\pi\)
0.582549 + 0.812795i \(0.302055\pi\)
\(318\) 86125.8 86125.8i 0.851685 0.851685i
\(319\) 35953.3 + 35953.3i 0.353312 + 0.353312i
\(320\) −9847.86 9847.86i −0.0961705 0.0961705i
\(321\) 89378.4 0.867406
\(322\) 53769.3i 0.518588i
\(323\) 64161.0 + 64161.0i 0.614988 + 0.614988i
\(324\) 57759.5i 0.550216i
\(325\) 0 0
\(326\) 131716. 1.23938
\(327\) 142380. 142380.i 1.33154 1.33154i
\(328\) 12851.4 0.119455
\(329\) 48426.4i 0.447394i
\(330\) 17003.7 17003.7i 0.156141 0.156141i
\(331\) −54201.8 + 54201.8i −0.494718 + 0.494718i −0.909789 0.415071i \(-0.863757\pi\)
0.415071 + 0.909789i \(0.363757\pi\)
\(332\) −10890.4 10890.4i −0.0988024 0.0988024i
\(333\) −4571.70 4571.70i −0.0412277 0.0412277i
\(334\) 49441.0 0.443194
\(335\) 187522.i 1.67094i
\(336\) 8491.26 + 8491.26i 0.0752131 + 0.0752131i
\(337\) 15606.4i 0.137418i 0.997637 + 0.0687090i \(0.0218880\pi\)
−0.997637 + 0.0687090i \(0.978112\pi\)
\(338\) 0 0
\(339\) −166796. −1.45140
\(340\) 33076.8 33076.8i 0.286132 0.286132i
\(341\) 34912.9 0.300246
\(342\) 10952.9i 0.0936431i
\(343\) −61637.6 + 61637.6i −0.523911 + 0.523911i
\(344\) 2618.96 2618.96i 0.0221316 0.0221316i
\(345\) 175726. + 175726.i 1.47638 + 1.47638i
\(346\) −64625.0 64625.0i −0.539820 0.539820i
\(347\) 7141.58 0.0593110 0.0296555 0.999560i \(-0.490559\pi\)
0.0296555 + 0.999560i \(0.490559\pi\)
\(348\) 117354.i 0.969038i
\(349\) 127134. + 127134.i 1.04378 + 1.04378i 0.998997 + 0.0447840i \(0.0142599\pi\)
0.0447840 + 0.998997i \(0.485740\pi\)
\(350\) 6421.53i 0.0524206i
\(351\) 0 0
\(352\) 5958.14 0.0480868
\(353\) 148458. 148458.i 1.19139 1.19139i 0.214714 0.976677i \(-0.431118\pi\)
0.976677 0.214714i \(-0.0688819\pi\)
\(354\) 20932.1 0.167034
\(355\) 150121.i 1.19120i
\(356\) −35334.7 + 35334.7i −0.278806 + 0.278806i
\(357\) −28520.3 + 28520.3i −0.223778 + 0.223778i
\(358\) −26674.6 26674.6i −0.208129 0.208129i
\(359\) −111995. 111995.i −0.868976 0.868976i 0.123383 0.992359i \(-0.460626\pi\)
−0.992359 + 0.123383i \(0.960626\pi\)
\(360\) −5646.52 −0.0435688
\(361\) 47854.8i 0.367207i
\(362\) −92452.1 92452.1i −0.705504 0.705504i
\(363\) 128743.i 0.977038i
\(364\) 0 0
\(365\) 96038.8 0.720877
\(366\) −74989.2 + 74989.2i −0.559804 + 0.559804i
\(367\) 58977.6 0.437880 0.218940 0.975738i \(-0.429740\pi\)
0.218940 + 0.975738i \(0.429740\pi\)
\(368\) 61574.7i 0.454681i
\(369\) 3684.34 3684.34i 0.0270587 0.0270587i
\(370\) −38339.9 + 38339.9i −0.280058 + 0.280058i
\(371\) 63359.9 + 63359.9i 0.460327 + 0.460327i
\(372\) −56979.1 56979.1i −0.411746 0.411746i
\(373\) −55999.7 −0.402502 −0.201251 0.979540i \(-0.564501\pi\)
−0.201251 + 0.979540i \(0.564501\pi\)
\(374\) 20012.1i 0.143070i
\(375\) −93167.9 93167.9i −0.662528 0.662528i
\(376\) 55456.2i 0.392260i
\(377\) 0 0
\(378\) −38118.3 −0.266778
\(379\) −74798.6 + 74798.6i −0.520733 + 0.520733i −0.917793 0.397060i \(-0.870031\pi\)
0.397060 + 0.917793i \(0.370031\pi\)
\(380\) −91854.7 −0.636113
\(381\) 154182.i 1.06215i
\(382\) −23834.0 + 23834.0i −0.163332 + 0.163332i
\(383\) −139190. + 139190.i −0.948879 + 0.948879i −0.998755 0.0498768i \(-0.984117\pi\)
0.0498768 + 0.998755i \(0.484117\pi\)
\(384\) −9723.90 9723.90i −0.0659444 0.0659444i
\(385\) 12509.1 + 12509.1i 0.0843923 + 0.0843923i
\(386\) 119105. 0.799385
\(387\) 1501.65i 0.0100264i
\(388\) −27353.9 27353.9i −0.181700 0.181700i
\(389\) 178816.i 1.18170i −0.806780 0.590852i \(-0.798792\pi\)
0.806780 0.590852i \(-0.201208\pi\)
\(390\) 0 0
\(391\) −206816. −1.35279
\(392\) 32169.3 32169.3i 0.209348 0.209348i
\(393\) 86887.5 0.562564
\(394\) 156223.i 1.00636i
\(395\) −129062. + 129062.i −0.827186 + 0.827186i
\(396\) 1708.12 1708.12i 0.0108925 0.0108925i
\(397\) 179758. + 179758.i 1.14053 + 1.14053i 0.988353 + 0.152178i \(0.0486288\pi\)
0.152178 + 0.988353i \(0.451371\pi\)
\(398\) −135016. 135016.i −0.852350 0.852350i
\(399\) 79201.2 0.497492
\(400\) 7353.71i 0.0459607i
\(401\) 31188.8 + 31188.8i 0.193959 + 0.193959i 0.797404 0.603445i \(-0.206206\pi\)
−0.603445 + 0.797404i \(0.706206\pi\)
\(402\) 185161.i 1.14577i
\(403\) 0 0
\(404\) −67439.1 −0.413190
\(405\) 138869. 138869.i 0.846633 0.846633i
\(406\) 86333.6 0.523755
\(407\) 23196.4i 0.140033i
\(408\) 32660.5 32660.5i 0.196202 0.196202i
\(409\) 85034.0 85034.0i 0.508330 0.508330i −0.405684 0.914014i \(-0.632966\pi\)
0.914014 + 0.405684i \(0.132966\pi\)
\(410\) −30898.2 30898.2i −0.183808 0.183808i
\(411\) 79104.3 + 79104.3i 0.468292 + 0.468292i
\(412\) 19187.6 0.113038
\(413\) 15399.0i 0.0902804i
\(414\) 17652.7 + 17652.7i 0.102994 + 0.102994i
\(415\) 52366.8i 0.304060i
\(416\) 0 0
\(417\) −19246.6 −0.110683
\(418\) 27786.9 27786.9i 0.159033 0.159033i
\(419\) −161655. −0.920789 −0.460394 0.887714i \(-0.652292\pi\)
−0.460394 + 0.887714i \(0.652292\pi\)
\(420\) 40830.5i 0.231465i
\(421\) 80144.5 80144.5i 0.452178 0.452178i −0.443899 0.896077i \(-0.646405\pi\)
0.896077 + 0.443899i \(0.146405\pi\)
\(422\) 8734.68 8734.68i 0.0490481 0.0490481i
\(423\) −15898.6 15898.6i −0.0888543 0.0888543i
\(424\) −72557.6 72557.6i −0.403600 0.403600i
\(425\) −24699.5 −0.136745
\(426\) 148231.i 0.816809i
\(427\) −55167.0 55167.0i −0.302568 0.302568i
\(428\) 75297.7i 0.411049i
\(429\) 0 0
\(430\) −12593.4 −0.0681090
\(431\) −61470.4 + 61470.4i −0.330911 + 0.330911i −0.852932 0.522021i \(-0.825178\pi\)
0.522021 + 0.852932i \(0.325178\pi\)
\(432\) 43651.8 0.233902
\(433\) 215352.i 1.14861i −0.818641 0.574305i \(-0.805272\pi\)
0.818641 0.574305i \(-0.194728\pi\)
\(434\) 41917.6 41917.6i 0.222544 0.222544i
\(435\) −282151. + 282151.i −1.49109 + 1.49109i
\(436\) −119949. 119949.i −0.630994 0.630994i
\(437\) 287165. + 287165.i 1.50373 + 1.50373i
\(438\) 94829.9 0.494307
\(439\) 294420.i 1.52770i −0.645394 0.763850i \(-0.723307\pi\)
0.645394 0.763850i \(-0.276693\pi\)
\(440\) −14324.9 14324.9i −0.0739925 0.0739925i
\(441\) 18445.1i 0.0948424i
\(442\) 0 0
\(443\) −75284.4 −0.383617 −0.191808 0.981432i \(-0.561435\pi\)
−0.191808 + 0.981432i \(0.561435\pi\)
\(444\) −37857.3 + 37857.3i −0.192037 + 0.192037i
\(445\) 169908. 0.858012
\(446\) 64647.3i 0.324998i
\(447\) −161366. + 161366.i −0.807602 + 0.807602i
\(448\) 7153.55 7153.55i 0.0356423 0.0356423i
\(449\) −99431.0 99431.0i −0.493207 0.493207i 0.416108 0.909315i \(-0.363394\pi\)
−0.909315 + 0.416108i \(0.863394\pi\)
\(450\) 2108.22 + 2108.22i 0.0104110 + 0.0104110i
\(451\) 18694.0 0.0919071
\(452\) 140519.i 0.687795i
\(453\) −10539.5 10539.5i −0.0513600 0.0513600i
\(454\) 124927.i 0.606099i
\(455\) 0 0
\(456\) −90698.5 −0.436185
\(457\) −137724. + 137724.i −0.659441 + 0.659441i −0.955248 0.295807i \(-0.904411\pi\)
0.295807 + 0.955248i \(0.404411\pi\)
\(458\) 40101.0 0.191172
\(459\) 146617.i 0.695920i
\(460\) 148042. 148042.i 0.699631 0.699631i
\(461\) 231925. 231925.i 1.09130 1.09130i 0.0959131 0.995390i \(-0.469423\pi\)
0.995390 0.0959131i \(-0.0305771\pi\)
\(462\) 12351.6 + 12351.6i 0.0578681 + 0.0578681i
\(463\) 195600. + 195600.i 0.912447 + 0.912447i 0.996464 0.0840177i \(-0.0267752\pi\)
−0.0840177 + 0.996464i \(0.526775\pi\)
\(464\) −98866.3 −0.459211
\(465\) 273985.i 1.26713i
\(466\) 6067.66 + 6067.66i 0.0279415 + 0.0279415i
\(467\) 213346.i 0.978252i −0.872213 0.489126i \(-0.837316\pi\)
0.872213 0.489126i \(-0.162684\pi\)
\(468\) 0 0
\(469\) −136217. −0.619278
\(470\) −133331. + 133331.i −0.603582 + 0.603582i
\(471\) −170758. −0.769730
\(472\) 17634.5i 0.0791549i
\(473\) 3809.61 3809.61i 0.0170278 0.0170278i
\(474\) −127437. + 127437.i −0.567204 + 0.567204i
\(475\) 34295.4 + 34295.4i 0.152002 + 0.152002i
\(476\) 24027.2 + 24027.2i 0.106045 + 0.106045i
\(477\) −41602.7 −0.182846
\(478\) 109787.i 0.480503i
\(479\) 102057. + 102057.i 0.444805 + 0.444805i 0.893623 0.448818i \(-0.148155\pi\)
−0.448818 + 0.893623i \(0.648155\pi\)
\(480\) 46757.6i 0.202941i
\(481\) 0 0
\(482\) 163928. 0.705600
\(483\) −127648. + 127648.i −0.547168 + 0.547168i
\(484\) −108461. −0.463003
\(485\) 131532.i 0.559174i
\(486\) 26627.3 26627.3i 0.112734 0.112734i
\(487\) 57040.7 57040.7i 0.240507 0.240507i −0.576553 0.817060i \(-0.695603\pi\)
0.817060 + 0.576553i \(0.195603\pi\)
\(488\) 63175.4 + 63175.4i 0.265282 + 0.265282i
\(489\) −312695. 312695.i −1.30768 1.30768i
\(490\) −154687. −0.644260
\(491\) 326366.i 1.35376i −0.736093 0.676880i \(-0.763331\pi\)
0.736093 0.676880i \(-0.236669\pi\)
\(492\) −30509.3 30509.3i −0.126038 0.126038i
\(493\) 332071.i 1.36627i
\(494\) 0 0
\(495\) −8213.56 −0.0335213
\(496\) −48002.6 + 48002.6i −0.195120 + 0.195120i
\(497\) 109049. 0.441477
\(498\) 51707.6i 0.208495i
\(499\) 321163. 321163.i 1.28981 1.28981i 0.354902 0.934904i \(-0.384514\pi\)
0.934904 0.354902i \(-0.115486\pi\)
\(500\) −78490.3 + 78490.3i −0.313961 + 0.313961i
\(501\) −117373. 117373.i −0.467619 0.467619i
\(502\) 111340. + 111340.i 0.441820 + 0.441820i
\(503\) 77129.2 0.304848 0.152424 0.988315i \(-0.451292\pi\)
0.152424 + 0.988315i \(0.451292\pi\)
\(504\) 4101.67i 0.0161473i
\(505\) 162141. + 162141.i 0.635787 + 0.635787i
\(506\) 89568.1i 0.349826i
\(507\) 0 0
\(508\) 129892. 0.503334
\(509\) 258772. 258772.i 0.998807 0.998807i −0.00119244 0.999999i \(-0.500380\pi\)
0.999999 + 0.00119244i \(0.000379567\pi\)
\(510\) −157049. −0.603802
\(511\) 69763.2i 0.267168i
\(512\) −8192.00 + 8192.00i −0.0312500 + 0.0312500i
\(513\) 203578. 203578.i 0.773565 0.773565i
\(514\) 39901.4 + 39901.4i 0.151030 + 0.151030i
\(515\) −46131.9 46131.9i −0.173935 0.173935i
\(516\) −12434.8 −0.0467026
\(517\) 80668.0i 0.301801i
\(518\) −27850.4 27850.4i −0.103794 0.103794i
\(519\) 306840.i 1.13914i
\(520\) 0 0
\(521\) 384986. 1.41830 0.709152 0.705055i \(-0.249078\pi\)
0.709152 + 0.705055i \(0.249078\pi\)
\(522\) −28343.7 + 28343.7i −0.104020 + 0.104020i
\(523\) 101902. 0.372546 0.186273 0.982498i \(-0.440359\pi\)
0.186273 + 0.982498i \(0.440359\pi\)
\(524\) 73199.2i 0.266590i
\(525\) −15244.7 + 15244.7i −0.0553096 + 0.0553096i
\(526\) 236919. 236919.i 0.856305 0.856305i
\(527\) −161230. 161230.i −0.580531 0.580531i
\(528\) −14144.6 14144.6i −0.0507369 0.0507369i
\(529\) −645805. −2.30776
\(530\) 348895.i 1.24206i
\(531\) −5055.58 5055.58i −0.0179301 0.0179301i
\(532\) 66723.8i 0.235753i
\(533\) 0 0
\(534\) 167769. 0.588342
\(535\) −181035. + 181035.i −0.632494 + 0.632494i
\(536\) 155991. 0.542962
\(537\) 126651.i 0.439198i
\(538\) 25720.0 25720.0i 0.0888600 0.0888600i
\(539\) 46794.2 46794.2i 0.161070 0.161070i
\(540\) −104950. 104950.i −0.359912 0.359912i
\(541\) −52761.7 52761.7i −0.180270 0.180270i 0.611203 0.791474i \(-0.290686\pi\)
−0.791474 + 0.611203i \(0.790686\pi\)
\(542\) −45117.8 −0.153585
\(543\) 438962.i 1.48877i
\(544\) −27515.2 27515.2i −0.0929767 0.0929767i
\(545\) 576780.i 1.94186i
\(546\) 0 0
\(547\) 414681. 1.38592 0.692961 0.720975i \(-0.256306\pi\)
0.692961 + 0.720975i \(0.256306\pi\)
\(548\) 66642.2 66642.2i 0.221916 0.221916i
\(549\) 36223.2 0.120183
\(550\) 10696.9i 0.0353616i
\(551\) −461082. + 461082.i −1.51871 + 1.51871i
\(552\) 146178. 146178.i 0.479739 0.479739i
\(553\) −93751.3 93751.3i −0.306568 0.306568i
\(554\) −121867. 121867.i −0.397068 0.397068i
\(555\) 182038. 0.590984
\(556\) 16214.5i 0.0524509i
\(557\) −164211. 164211.i −0.529287 0.529287i 0.391073 0.920360i \(-0.372104\pi\)
−0.920360 + 0.391073i \(0.872104\pi\)
\(558\) 27523.5i 0.0883965i
\(559\) 0 0
\(560\) −34398.0 −0.109688
\(561\) 47508.7 47508.7i 0.150955 0.150955i
\(562\) 123097. 0.389739
\(563\) 479081.i 1.51144i 0.654893 + 0.755721i \(0.272714\pi\)
−0.654893 + 0.755721i \(0.727286\pi\)
\(564\) −131653. + 131653.i −0.413878 + 0.413878i
\(565\) 337845. 337845.i 1.05833 1.05833i
\(566\) 221697. + 221697.i 0.692033 + 0.692033i
\(567\) 100875. + 100875.i 0.313775 + 0.313775i
\(568\) −124879. −0.387073
\(569\) 131129.i 0.405019i 0.979280 + 0.202510i \(0.0649097\pi\)
−0.979280 + 0.202510i \(0.935090\pi\)
\(570\) 218063. + 218063.i 0.671170 + 0.671170i
\(571\) 131069.i 0.402003i −0.979591 0.201002i \(-0.935580\pi\)
0.979591 0.201002i \(-0.0644196\pi\)
\(572\) 0 0
\(573\) 113164. 0.344667
\(574\) 22444.6 22444.6i 0.0681223 0.0681223i
\(575\) −110548. −0.334359
\(576\) 4697.09i 0.0141574i
\(577\) 265150. 265150.i 0.796416 0.796416i −0.186112 0.982528i \(-0.559589\pi\)
0.982528 + 0.186112i \(0.0595888\pi\)
\(578\) −74624.5 + 74624.5i −0.223371 + 0.223371i
\(579\) −282756. 282756.i −0.843440 0.843440i
\(580\) 237701. + 237701.i 0.706601 + 0.706601i
\(581\) −38039.6 −0.112689
\(582\) 129876.i 0.383428i
\(583\) −105544. 105544.i −0.310525 0.310525i
\(584\) 79890.4i 0.234244i
\(585\) 0 0
\(586\) 95683.6 0.278639
\(587\) −396373. + 396373.i −1.15034 + 1.15034i −0.163860 + 0.986484i \(0.552394\pi\)
−0.986484 + 0.163860i \(0.947606\pi\)
\(588\) −152740. −0.441771
\(589\) 447738.i 1.29061i
\(590\) −42397.9 + 42397.9i −0.121798 + 0.121798i
\(591\) −370874. + 370874.i −1.06182 + 1.06182i
\(592\) 31893.3 + 31893.3i 0.0910030 + 0.0910030i
\(593\) −284953. 284953.i −0.810335 0.810335i 0.174349 0.984684i \(-0.444218\pi\)
−0.984684 + 0.174349i \(0.944218\pi\)
\(594\) 63497.0 0.179962
\(595\) 115536.i 0.326349i
\(596\) 135945. + 135945.i 0.382710 + 0.382710i
\(597\) 641054.i 1.79865i
\(598\) 0 0
\(599\) −311888. −0.869251 −0.434625 0.900611i \(-0.643119\pi\)
−0.434625 + 0.900611i \(0.643119\pi\)
\(600\) 17457.7 17457.7i 0.0484936 0.0484936i
\(601\) −348543. −0.964957 −0.482478 0.875908i \(-0.660263\pi\)
−0.482478 + 0.875908i \(0.660263\pi\)
\(602\) 9147.89i 0.0252423i
\(603\) 44720.7 44720.7i 0.122991 0.122991i
\(604\) −8879.14 + 8879.14i −0.0243387 + 0.0243387i
\(605\) 260769. + 260769.i 0.712435 + 0.712435i
\(606\) 160101. + 160101.i 0.435961 + 0.435961i
\(607\) 375731. 1.01976 0.509882 0.860244i \(-0.329689\pi\)
0.509882 + 0.860244i \(0.329689\pi\)
\(608\) 76409.8i 0.206701i
\(609\) −204956. 204956.i −0.552619 0.552619i
\(610\) 303780.i 0.816395i
\(611\) 0 0
\(612\) −15776.5 −0.0421219
\(613\) 281017. 281017.i 0.747845 0.747845i −0.226229 0.974074i \(-0.572640\pi\)
0.974074 + 0.226229i \(0.0726398\pi\)
\(614\) −392222. −1.04039
\(615\) 146705.i 0.387877i
\(616\) 10405.7 10405.7i 0.0274228 0.0274228i
\(617\) 387417. 387417.i 1.01767 1.01767i 0.0178316 0.999841i \(-0.494324\pi\)
0.999841 0.0178316i \(-0.00567629\pi\)
\(618\) −45551.3 45551.3i −0.119268 0.119268i
\(619\) 104044. + 104044.i 0.271540 + 0.271540i 0.829720 0.558180i \(-0.188500\pi\)
−0.558180 + 0.829720i \(0.688500\pi\)
\(620\) 230822. 0.600473
\(621\) 656213.i 1.70162i
\(622\) −136148. 136148.i −0.351910 0.351910i
\(623\) 123422.i 0.317993i
\(624\) 0 0
\(625\) 449236. 1.15004
\(626\) 111368. 111368.i 0.284192 0.284192i
\(627\) −131932. −0.335595
\(628\) 143856.i 0.364762i
\(629\) −107123. + 107123.i −0.270757 + 0.270757i
\(630\) −9861.49 + 9861.49i −0.0248463 + 0.0248463i
\(631\) −278260. 278260.i −0.698863 0.698863i 0.265302 0.964165i \(-0.414528\pi\)
−0.964165 + 0.265302i \(0.914528\pi\)
\(632\) 107361. + 107361.i 0.268789 + 0.268789i
\(633\) −41472.2 −0.103502
\(634\) 92548.8i 0.230246i
\(635\) −312295. 312295.i −0.774494 0.774494i
\(636\) 344503.i 0.851685i
\(637\) 0 0
\(638\) −143813. −0.353312
\(639\) −35801.2 + 35801.2i −0.0876791 + 0.0876791i
\(640\) 39391.5 0.0961705
\(641\) 97107.8i 0.236340i 0.992993 + 0.118170i \(0.0377028\pi\)
−0.992993 + 0.118170i \(0.962297\pi\)
\(642\) −178757. + 178757.i −0.433703 + 0.433703i
\(643\) −174688. + 174688.i −0.422513 + 0.422513i −0.886068 0.463555i \(-0.846574\pi\)
0.463555 + 0.886068i \(0.346574\pi\)
\(644\) 107539. + 107539.i 0.259294 + 0.259294i
\(645\) 29896.6 + 29896.6i 0.0718626 + 0.0718626i
\(646\) −256644. −0.614988
\(647\) 110830.i 0.264759i 0.991199 + 0.132379i \(0.0422617\pi\)
−0.991199 + 0.132379i \(0.957738\pi\)
\(648\) −115519. 115519.i −0.275108 0.275108i
\(649\) 25651.5i 0.0609009i
\(650\) 0 0
\(651\) −199025. −0.469618
\(652\) −263433. + 263433.i −0.619690 + 0.619690i
\(653\) −173437. −0.406739 −0.203370 0.979102i \(-0.565189\pi\)
−0.203370 + 0.979102i \(0.565189\pi\)
\(654\) 569520.i 1.33154i
\(655\) −175990. + 175990.i −0.410210 + 0.410210i
\(656\) −25702.8 + 25702.8i −0.0597274 + 0.0597274i
\(657\) −22903.6 22903.6i −0.0530607 0.0530607i
\(658\) −96852.7 96852.7i −0.223697 0.223697i
\(659\) 98603.7 0.227051 0.113525 0.993535i \(-0.463786\pi\)
0.113525 + 0.993535i \(0.463786\pi\)
\(660\) 68014.8i 0.156141i
\(661\) 556659. + 556659.i 1.27405 + 1.27405i 0.943944 + 0.330107i \(0.107085\pi\)
0.330107 + 0.943944i \(0.392915\pi\)
\(662\) 216807.i 0.494718i
\(663\) 0 0
\(664\) 43561.6 0.0988024
\(665\) −160422. + 160422.i −0.362760 + 0.362760i
\(666\) 18286.8 0.0412277
\(667\) 1.48625e6i 3.34071i
\(668\) −98882.0 + 98882.0i −0.221597 + 0.221597i
\(669\) −153473. + 153473.i −0.342909 + 0.342909i
\(670\) −375043. 375043.i −0.835472 0.835472i
\(671\) 91896.4 + 91896.4i 0.204105 + 0.204105i
\(672\) −33965.0 −0.0752131
\(673\) 491994.i 1.08625i −0.839652 0.543125i \(-0.817241\pi\)
0.839652 0.543125i \(-0.182759\pi\)
\(674\) −31212.9 31212.9i −0.0687090 0.0687090i
\(675\) 78369.9i 0.172005i
\(676\) 0 0
\(677\) −556471. −1.21413 −0.607065 0.794652i \(-0.707653\pi\)
−0.607065 + 0.794652i \(0.707653\pi\)
\(678\) 333593. 333593.i 0.725700 0.725700i
\(679\) −95545.5 −0.207239
\(680\) 132307.i 0.286132i
\(681\) 296576. 296576.i 0.639502 0.639502i
\(682\) −69825.7 + 69825.7i −0.150123 + 0.150123i
\(683\) −331221. 331221.i −0.710029 0.710029i 0.256512 0.966541i \(-0.417427\pi\)
−0.966541 + 0.256512i \(0.917427\pi\)
\(684\) 21905.7 + 21905.7i 0.0468216 + 0.0468216i
\(685\) −320451. −0.682937
\(686\) 246550.i 0.523911i
\(687\) −95199.9 95199.9i −0.201708 0.201708i
\(688\) 10475.9i 0.0221316i
\(689\) 0 0
\(690\) −702903. −1.47638
\(691\) −433883. + 433883.i −0.908691 + 0.908691i −0.996167 0.0874759i \(-0.972120\pi\)
0.0874759 + 0.996167i \(0.472120\pi\)
\(692\) 258500. 0.539820
\(693\) 5966.38i 0.0124235i
\(694\) −14283.2 + 14283.2i −0.0296555 + 0.0296555i
\(695\) 38983.8 38983.8i 0.0807077 0.0807077i
\(696\) 234709. + 234709.i 0.484519 + 0.484519i
\(697\) −86330.3 86330.3i −0.177704 0.177704i
\(698\) −508534. −1.04378
\(699\) 28809.2i 0.0589627i
\(700\) 12843.1 + 12843.1i 0.0262103 + 0.0262103i
\(701\) 445654.i 0.906905i −0.891280 0.453453i \(-0.850192\pi\)
0.891280 0.453453i \(-0.149808\pi\)
\(702\) 0 0
\(703\) 297480. 0.601933
\(704\) −11916.3 + 11916.3i −0.0240434 + 0.0240434i
\(705\) 633057. 1.27369
\(706\) 593832.i 1.19139i
\(707\) −117781. + 117781.i −0.235632 + 0.235632i
\(708\) −41864.2 + 41864.2i −0.0835172 + 0.0835172i
\(709\) 351952. + 351952.i 0.700150 + 0.700150i 0.964443 0.264293i \(-0.0851385\pi\)
−0.264293 + 0.964443i \(0.585138\pi\)
\(710\) 300242. + 300242.i 0.595600 + 0.595600i
\(711\) 61558.0 0.121771
\(712\) 141339.i 0.278806i
\(713\) −721618. 721618.i −1.41948 1.41948i
\(714\) 114081.i 0.223778i
\(715\) 0 0
\(716\) 106699. 0.208129
\(717\) −260635. + 260635.i −0.506984 + 0.506984i
\(718\) 447978. 0.868976
\(719\) 61435.6i 0.118840i −0.998233 0.0594200i \(-0.981075\pi\)
0.998233 0.0594200i \(-0.0189251\pi\)
\(720\) 11293.0 11293.0i 0.0217844 0.0217844i
\(721\) 33510.5 33510.5i 0.0644631 0.0644631i
\(722\) 95709.6 + 95709.6i 0.183603 + 0.183603i
\(723\) −389164. 389164.i −0.744486 0.744486i
\(724\) 369808. 0.705504
\(725\) 177499.i 0.337691i
\(726\) 257487. + 257487.i 0.488519 + 0.488519i
\(727\) 121549.i 0.229975i −0.993367 0.114988i \(-0.963317\pi\)
0.993367 0.114988i \(-0.0366828\pi\)
\(728\) 0 0
\(729\) 458388. 0.862538
\(730\) −192078. + 192078.i −0.360438 + 0.360438i
\(731\) −35186.1 −0.0658471
\(732\) 299957.i 0.559804i
\(733\) 450529. 450529.i 0.838522 0.838522i −0.150142 0.988664i \(-0.547973\pi\)
0.988664 + 0.150142i \(0.0479732\pi\)
\(734\) −117955. + 117955.i −0.218940 + 0.218940i
\(735\) 367226. + 367226.i 0.679766 + 0.679766i
\(736\) −123149. 123149.i −0.227341 0.227341i
\(737\) 226908. 0.417749
\(738\) 14737.4i 0.0270587i
\(739\) 478183. + 478183.i 0.875600 + 0.875600i 0.993076 0.117476i \(-0.0374803\pi\)
−0.117476 + 0.993076i \(0.537480\pi\)
\(740\) 153360.i 0.280058i
\(741\) 0 0
\(742\) −253440. −0.460327
\(743\) −47112.0 + 47112.0i −0.0853402 + 0.0853402i −0.748488 0.663148i \(-0.769220\pi\)
0.663148 + 0.748488i \(0.269220\pi\)
\(744\) 227916. 0.411746
\(745\) 653693.i 1.17777i
\(746\) 111999. 111999.i 0.201251 0.201251i
\(747\) 12488.6 12488.6i 0.0223806 0.0223806i
\(748\) −40024.2 40024.2i −0.0715352 0.0715352i
\(749\) −131505. 131505.i −0.234412 0.234412i
\(750\) 372672. 0.662528
\(751\) 856766.i 1.51909i −0.650457 0.759543i \(-0.725423\pi\)
0.650457 0.759543i \(-0.274577\pi\)
\(752\) 110912. + 110912.i 0.196130 + 0.196130i
\(753\) 528644.i 0.932338i
\(754\) 0 0
\(755\) 42695.6 0.0749012
\(756\) 76236.7 76236.7i 0.133389 0.133389i
\(757\) 970577. 1.69371 0.846853 0.531826i \(-0.178494\pi\)
0.846853 + 0.531826i \(0.178494\pi\)
\(758\) 299194.i 0.520733i
\(759\) 212635. 212635.i 0.369106 0.369106i
\(760\) 183709. 183709.i 0.318056 0.318056i
\(761\) 290858. + 290858.i 0.502241 + 0.502241i 0.912134 0.409893i \(-0.134434\pi\)
−0.409893 + 0.912134i \(0.634434\pi\)
\(762\) −308364. 308364.i −0.531073 0.531073i
\(763\) −418977. −0.719682
\(764\) 95336.2i 0.163332i
\(765\) 37930.9 + 37930.9i 0.0648142 + 0.0648142i
\(766\) 556760.i 0.948879i
\(767\) 0 0
\(768\) 38895.6 0.0659444
\(769\) 106901. 106901.i 0.180771 0.180771i −0.610921 0.791692i \(-0.709201\pi\)
0.791692 + 0.610921i \(0.209201\pi\)
\(770\) −50036.2 −0.0843923
\(771\) 189452.i 0.318706i
\(772\) −238210. + 238210.i −0.399692 + 0.399692i
\(773\) −189040. + 189040.i −0.316370 + 0.316370i −0.847371 0.531001i \(-0.821816\pi\)
0.531001 + 0.847371i \(0.321816\pi\)
\(774\) 3003.30 + 3003.30i 0.00501322 + 0.00501322i
\(775\) −86181.0 86181.0i −0.143485 0.143485i
\(776\) 109415. 0.181700
\(777\) 132233.i 0.219028i
\(778\) 357633. + 357633.i 0.590852 + 0.590852i
\(779\) 239740.i 0.395062i
\(780\) 0 0
\(781\) −181652. −0.297809
\(782\) 413632. 413632.i 0.676396 0.676396i
\(783\) −1.05364e6 −1.71857
\(784\) 128677.i 0.209348i
\(785\) 345869. 345869.i 0.561270 0.561270i
\(786\) −173775. + 173775.i −0.281282 + 0.281282i
\(787\) 324921. + 324921.i 0.524600 + 0.524600i 0.918957 0.394357i \(-0.129033\pi\)
−0.394357 + 0.918957i \(0.629033\pi\)
\(788\) 312446. + 312446.i 0.503180 + 0.503180i
\(789\) −1.12489e6 −1.80699
\(790\) 516247.i 0.827186i
\(791\) 245413. + 245413.i 0.392234 + 0.392234i
\(792\) 6832.50i 0.0108925i
\(793\) 0 0
\(794\) −719032. −1.14053
\(795\) 828277. 828277.i 1.31051 1.31051i
\(796\) 540063. 0.852350
\(797\) 254628.i 0.400857i −0.979708 0.200429i \(-0.935767\pi\)
0.979708 0.200429i \(-0.0642335\pi\)
\(798\) −158402. + 158402.i −0.248746 + 0.248746i
\(799\) −372531. + 372531.i −0.583537 + 0.583537i
\(800\) −14707.4 14707.4i −0.0229804 0.0229804i
\(801\) −40520.1 40520.1i −0.0631546 0.0631546i
\(802\) −124755. −0.193959
\(803\) 116211.i 0.180225i
\(804\) −370322. 370322.i −0.572886 0.572886i
\(805\) 517102.i 0.797966i
\(806\) 0 0
\(807\) −122119. −0.187514
\(808\) 134878. 134878.i 0.206595 0.206595i
\(809\) 149000. 0.227661 0.113830 0.993500i \(-0.463688\pi\)
0.113830 + 0.993500i \(0.463688\pi\)
\(810\) 555476.i 0.846633i
\(811\) 129192. 129192.i 0.196424 0.196424i −0.602041 0.798465i \(-0.705646\pi\)
0.798465 + 0.602041i \(0.205646\pi\)
\(812\) −172667. + 172667.i −0.261877 + 0.261877i
\(813\) 107110. + 107110.i 0.162049 + 0.162049i
\(814\) 46392.7 + 46392.7i 0.0700166 + 0.0700166i
\(815\) 1.26672e6 1.90707
\(816\) 130642.i 0.196202i
\(817\) 48856.1 + 48856.1i 0.0731939 + 0.0731939i
\(818\) 340136.i 0.508330i
\(819\) 0 0
\(820\) 123593. 0.183808
\(821\) 337584. 337584.i 0.500836 0.500836i −0.410862 0.911698i \(-0.634772\pi\)
0.911698 + 0.410862i \(0.134772\pi\)
\(822\) −316417. −0.468292
\(823\) 1.05893e6i 1.56339i −0.623660 0.781695i \(-0.714355\pi\)
0.623660 0.781695i \(-0.285645\pi\)
\(824\) −38375.1 + 38375.1i −0.0565191 + 0.0565191i
\(825\) 25394.4 25394.4i 0.0373104 0.0373104i
\(826\) −30798.1 30798.1i −0.0451402 0.0451402i
\(827\) 114562. + 114562.i 0.167506 + 0.167506i 0.785882 0.618376i \(-0.212209\pi\)
−0.618376 + 0.785882i \(0.712209\pi\)
\(828\) −70610.8 −0.102994
\(829\) 418099.i 0.608373i −0.952612 0.304187i \(-0.901615\pi\)
0.952612 0.304187i \(-0.0983846\pi\)
\(830\) −104734. 104734.i −0.152030 0.152030i
\(831\) 578622.i 0.837902i
\(832\) 0 0
\(833\) −432198. −0.622864
\(834\) 38493.1 38493.1i 0.0553415 0.0553415i
\(835\) 475477. 0.681956
\(836\) 111148.i 0.159033i
\(837\) −511572. + 511572.i −0.730224 + 0.730224i
\(838\) 323309. 323309.i 0.460394 0.460394i
\(839\) 92890.6 + 92890.6i 0.131962 + 0.131962i 0.770003 0.638041i \(-0.220255\pi\)
−0.638041 + 0.770003i \(0.720255\pi\)
\(840\) 81660.9 + 81660.9i 0.115733 + 0.115733i
\(841\) 1.67908e6 2.37400
\(842\) 320578.i 0.452178i
\(843\) −292232. 292232.i −0.411218 0.411218i
\(844\) 34938.7i 0.0490481i
\(845\) 0 0
\(846\) 63594.4 0.0888543
\(847\) −189424. + 189424.i −0.264040 + 0.264040i
\(848\) 290230. 0.403600
\(849\) 1.05262e6i 1.46034i
\(850\) 49399.1 49399.1i 0.0683724 0.0683724i
\(851\) −479448. + 479448.i −0.662037 + 0.662037i
\(852\) 296463. + 296463.i 0.408405 + 0.408405i
\(853\) −73320.6 73320.6i −0.100769 0.100769i 0.654925 0.755694i \(-0.272700\pi\)
−0.755694 + 0.654925i \(0.772700\pi\)
\(854\) 220668. 0.302568
\(855\) 105334.i 0.144091i
\(856\) 150595. + 150595.i 0.205525 + 0.205525i
\(857\) 973943.i 1.32609i 0.748581 + 0.663043i \(0.230735\pi\)
−0.748581 + 0.663043i \(0.769265\pi\)
\(858\) 0 0
\(859\) −220355. −0.298632 −0.149316 0.988790i \(-0.547707\pi\)
−0.149316 + 0.988790i \(0.547707\pi\)
\(860\) 25186.7 25186.7i 0.0340545 0.0340545i
\(861\) −106567. −0.143753
\(862\) 245881.i 0.330911i
\(863\) 224496. 224496.i 0.301430 0.301430i −0.540143 0.841573i \(-0.681630\pi\)
0.841573 + 0.540143i \(0.181630\pi\)
\(864\) −87303.6 + 87303.6i −0.116951 + 0.116951i
\(865\) −621502. 621502.i −0.830636 0.830636i
\(866\) 430703. + 430703.i 0.574305 + 0.574305i
\(867\) 354317. 0.471361
\(868\) 167670.i 0.222544i
\(869\) 156170. + 156170.i 0.206803 + 0.206803i
\(870\) 1.12860e6i 1.49109i
\(871\) 0 0
\(872\) 479798. 0.630994
\(873\) 31368.0 31368.0i 0.0411584 0.0411584i
\(874\) −1.14866e6 −1.50373
\(875\) 274162.i 0.358089i
\(876\) −189660. + 189660.i −0.247154 + 0.247154i
\(877\) −285275. + 285275.i −0.370906 + 0.370906i −0.867807 0.496901i \(-0.834471\pi\)
0.496901 + 0.867807i \(0.334471\pi\)
\(878\) 588840. + 588840.i 0.763850 + 0.763850i
\(879\) −227153. 227153.i −0.293995 0.293995i
\(880\) 57299.8 0.0739925
\(881\) 391811.i 0.504807i 0.967622 + 0.252403i \(0.0812210\pi\)
−0.967622 + 0.252403i \(0.918779\pi\)
\(882\) 36890.1 + 36890.1i 0.0474212 + 0.0474212i
\(883\) 579331.i 0.743029i −0.928427 0.371514i \(-0.878839\pi\)
0.928427 0.371514i \(-0.121161\pi\)
\(884\) 0 0
\(885\) 201305. 0.257021
\(886\) 150569. 150569.i 0.191808 0.191808i
\(887\) −1.29354e6 −1.64412 −0.822059 0.569402i \(-0.807175\pi\)
−0.822059 + 0.569402i \(0.807175\pi\)
\(888\) 151429.i 0.192037i
\(889\) 226853. 226853.i 0.287040 0.287040i
\(890\) −339816. + 339816.i −0.429006 + 0.429006i
\(891\) −168037. 168037.i −0.211665 0.211665i
\(892\) 129295. + 129295.i 0.162499 + 0.162499i
\(893\) 1.03452e6 1.29729
\(894\) 645465.i 0.807602i
\(895\) −256531. 256531.i −0.320254 0.320254i
\(896\) 28614.2i 0.0356423i
\(897\) 0 0
\(898\) 397724. 0.493207
\(899\) 1.15865e6 1.15865e6i 1.43362 1.43362i
\(900\) −8432.87 −0.0104110
\(901\) 974821.i 1.20081i
\(902\) −37388.0 + 37388.0i −0.0459535 + 0.0459535i
\(903\) −21717.1 + 21717.1i −0.0266334 + 0.0266334i
\(904\) −281039. 281039.i −0.343898 0.343898i
\(905\) −889117. 889117.i −1.08558 1.08558i
\(906\) 42158.2 0.0513600
\(907\) 1.33236e6i 1.61959i 0.586711 + 0.809797i \(0.300423\pi\)
−0.586711 + 0.809797i \(0.699577\pi\)
\(908\) −249853. 249853.i −0.303049 0.303049i
\(909\) 77335.9i 0.0935951i
\(910\) 0 0
\(911\) 224303. 0.270271 0.135135 0.990827i \(-0.456853\pi\)
0.135135 + 0.990827i \(0.456853\pi\)
\(912\) 181397. 181397.i 0.218092 0.218092i
\(913\) 63365.8 0.0760174
\(914\) 550894.i 0.659441i
\(915\) −721175. + 721175.i −0.861387 + 0.861387i
\(916\) −80202.1 + 80202.1i −0.0955861 + 0.0955861i
\(917\) −127840. 127840.i −0.152030 0.152030i
\(918\) −293234. 293234.i −0.347960 0.347960i
\(919\) −1.16194e6 −1.37579 −0.687896 0.725809i \(-0.741466\pi\)
−0.687896 + 0.725809i \(0.741466\pi\)
\(920\) 592168.i 0.699631i
\(921\) 931135. + 931135.i 1.09772 + 1.09772i
\(922\) 927699.i 1.09130i
\(923\) 0 0
\(924\) −49406.4 −0.0578681
\(925\) −57259.3 + 57259.3i −0.0669210 + 0.0669210i
\(926\) −782401. −0.912447
\(927\) 22003.3i 0.0256053i
\(928\) 197733. 197733.i 0.229606 0.229606i
\(929\) 687630. 687630.i 0.796752 0.796752i −0.185830 0.982582i \(-0.559497\pi\)
0.982582 + 0.185830i \(0.0594973\pi\)
\(930\) −547971. 547971.i −0.633565 0.633565i
\(931\) 600109. + 600109.i 0.692359 + 0.692359i
\(932\) −24270.6 −0.0279415
\(933\) 646431.i 0.742607i
\(934\) 426692. + 426692.i 0.489126 + 0.489126i
\(935\) 192458.i 0.220146i
\(936\) 0 0
\(937\) −237066. −0.270016 −0.135008 0.990845i \(-0.543106\pi\)
−0.135008 + 0.990845i \(0.543106\pi\)
\(938\) 272434. 272434.i 0.309639 0.309639i
\(939\) −528775. −0.599708
\(940\) 533325.i 0.603582i
\(941\) −488611. + 488611.i −0.551803 + 0.551803i −0.926961 0.375158i \(-0.877589\pi\)
0.375158 + 0.926961i \(0.377589\pi\)
\(942\) 341515. 341515.i 0.384865 0.384865i
\(943\) −386388. 386388.i −0.434511 0.434511i
\(944\) 35268.9 + 35268.9i 0.0395775 + 0.0395775i
\(945\) −366586. −0.410499
\(946\) 15238.4i 0.0170278i
\(947\) −1.12367e6 1.12367e6i −1.25297 1.25297i −0.954383 0.298584i \(-0.903486\pi\)
−0.298584 0.954383i \(-0.596514\pi\)
\(948\) 509749.i 0.567204i
\(949\) 0 0
\(950\) −137182. −0.152002
\(951\) −219711. + 219711.i −0.242935 + 0.242935i
\(952\) −96108.9 −0.106045
\(953\) 541880.i 0.596647i 0.954465 + 0.298323i \(0.0964274\pi\)
−0.954465 + 0.298323i \(0.903573\pi\)
\(954\) 83205.4 83205.4i 0.0914229 0.0914229i
\(955\) −229213. + 229213.i −0.251324 + 0.251324i
\(956\) 219575. + 219575.i 0.240252 + 0.240252i
\(957\) 341413. + 341413.i 0.372783 + 0.372783i
\(958\) −408226. −0.444805
\(959\) 232778.i 0.253107i
\(960\) −93515.3 93515.3i −0.101471 0.101471i
\(961\) 201600.i 0.218295i
\(962\) 0 0
\(963\) 86347.6 0.0931103
\(964\) −327856. + 327856.i −0.352800 + 0.352800i
\(965\) 1.14544e6 1.23004
\(966\) 510593.i 0.547168i
\(967\) 906789. 906789.i 0.969735 0.969735i −0.0298202 0.999555i \(-0.509493\pi\)
0.999555 + 0.0298202i \(0.00949348\pi\)
\(968\) 216922. 216922.i 0.231501 0.231501i
\(969\) 609273. + 609273.i 0.648880 + 0.648880i
\(970\) −263064. 263064.i −0.279587 0.279587i
\(971\) −113950. −0.120858 −0.0604291 0.998172i \(-0.519247\pi\)
−0.0604291 + 0.998172i \(0.519247\pi\)
\(972\) 106509.i 0.112734i
\(973\) 28318.1 + 28318.1i 0.0299115 + 0.0299115i
\(974\) 228163.i 0.240507i
\(975\) 0 0
\(976\) −252701. −0.265282
\(977\) 312440. 312440.i 0.327324 0.327324i −0.524244 0.851568i \(-0.675652\pi\)
0.851568 + 0.524244i \(0.175652\pi\)
\(978\) 1.25078e6 1.30768
\(979\) 205595.i 0.214510i
\(980\) 309374. 309374.i 0.322130 0.322130i
\(981\) 137552. 137552.i 0.142932 0.142932i
\(982\) 652732. + 652732.i 0.676880 + 0.676880i
\(983\) 810.786 + 810.786i 0.000839072 + 0.000839072i 0.707526 0.706687i \(-0.249811\pi\)
−0.706687 + 0.707526i \(0.749811\pi\)
\(984\) 122037. 0.126038
\(985\) 1.50241e6i 1.54851i
\(986\) 664141. + 664141.i 0.683135 + 0.683135i
\(987\) 459857.i 0.472050i
\(988\) 0 0
\(989\) −157482. −0.161005
\(990\) 16427.1 16427.1i 0.0167607 0.0167607i
\(991\) 274971. 0.279988 0.139994 0.990152i \(-0.455292\pi\)
0.139994 + 0.990152i \(0.455292\pi\)
\(992\) 192010.i 0.195120i
\(993\) −514700. + 514700.i −0.521982 + 0.521982i
\(994\) −218098. + 218098.i −0.220738 + 0.220738i
\(995\) −1.29845e6 1.29845e6i −1.31154 1.31154i
\(996\) −103415. 103415.i −0.104248 0.104248i
\(997\) −1.53846e6 −1.54773 −0.773864 0.633352i \(-0.781679\pi\)
−0.773864 + 0.633352i \(0.781679\pi\)
\(998\) 1.28465e6i 1.28981i
\(999\) 339892. + 339892.i 0.340573 + 0.340573i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.5.d.f.239.3 8
13.3 even 3 26.5.f.b.19.1 yes 8
13.5 odd 4 338.5.d.g.99.3 8
13.7 odd 12 26.5.f.b.11.1 8
13.8 odd 4 inner 338.5.d.f.99.3 8
13.12 even 2 338.5.d.g.239.3 8
39.20 even 12 234.5.bb.a.37.2 8
39.29 odd 6 234.5.bb.a.19.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.5.f.b.11.1 8 13.7 odd 12
26.5.f.b.19.1 yes 8 13.3 even 3
234.5.bb.a.19.2 8 39.29 odd 6
234.5.bb.a.37.2 8 39.20 even 12
338.5.d.f.99.3 8 13.8 odd 4 inner
338.5.d.f.239.3 8 1.1 even 1 trivial
338.5.d.g.99.3 8 13.5 odd 4
338.5.d.g.239.3 8 13.12 even 2