Properties

Label 338.5.d.c.239.1
Level $338$
Weight $5$
Character 338.239
Analytic conductor $34.939$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [338,5,Mod(99,338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(338, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 5, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("338.99"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 338.d (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-12,0,0,30] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(34.9390475223\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 522x^{4} + 68121x^{2} + 54756 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 26)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 239.1
Root \(16.5864i\) of defining polynomial
Character \(\chi\) \(=\) 338.239
Dual form 338.5.d.c.99.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.00000 + 2.00000i) q^{2} -16.5864 q^{3} -8.00000i q^{4} +(13.5581 - 13.5581i) q^{5} +(33.1728 - 33.1728i) q^{6} +(40.1445 + 40.1445i) q^{7} +(16.0000 + 16.0000i) q^{8} +194.108 q^{9} +54.2326i q^{10} +(12.0598 + 12.0598i) q^{11} +132.691i q^{12} -160.578 q^{14} +(-224.880 + 224.880i) q^{15} -64.0000 q^{16} +223.703i q^{17} +(-388.216 + 388.216i) q^{18} +(267.563 - 267.563i) q^{19} +(-108.465 - 108.465i) q^{20} +(-665.852 - 665.852i) q^{21} -48.2392 q^{22} -983.993i q^{23} +(-265.382 - 265.382i) q^{24} +257.354i q^{25} -1876.05 q^{27} +(321.156 - 321.156i) q^{28} -560.708 q^{29} -899.522i q^{30} +(139.400 - 139.400i) q^{31} +(128.000 - 128.000i) q^{32} +(-200.028 - 200.028i) q^{33} +(-447.405 - 447.405i) q^{34} +1088.57 q^{35} -1552.86i q^{36} +(700.116 + 700.116i) q^{37} +1070.25i q^{38} +433.860 q^{40} +(-1872.79 + 1872.79i) q^{41} +2663.41 q^{42} -430.626i q^{43} +(96.4783 - 96.4783i) q^{44} +(2631.74 - 2631.74i) q^{45} +(1967.99 + 1967.99i) q^{46} +(59.3604 + 59.3604i) q^{47} +1061.53 q^{48} +822.164i q^{49} +(-514.708 - 514.708i) q^{50} -3710.42i q^{51} +3773.97 q^{53} +(3752.10 - 3752.10i) q^{54} +327.017 q^{55} +1284.62i q^{56} +(-4437.90 + 4437.90i) q^{57} +(1121.42 - 1121.42i) q^{58} +(-924.257 - 924.257i) q^{59} +(1799.04 + 1799.04i) q^{60} -3935.30 q^{61} +557.601i q^{62} +(7792.37 + 7792.37i) q^{63} +512.000i q^{64} +800.113 q^{66} +(2992.99 - 2992.99i) q^{67} +1789.62 q^{68} +16320.9i q^{69} +(-2177.14 + 2177.14i) q^{70} +(9.46035 - 9.46035i) q^{71} +(3105.73 + 3105.73i) q^{72} +(4922.36 + 4922.36i) q^{73} -2800.47 q^{74} -4268.57i q^{75} +(-2140.51 - 2140.51i) q^{76} +968.269i q^{77} +1624.91 q^{79} +(-867.721 + 867.721i) q^{80} +15394.2 q^{81} -7491.16i q^{82} +(4406.88 - 4406.88i) q^{83} +(-5326.82 + 5326.82i) q^{84} +(3032.99 + 3032.99i) q^{85} +(861.252 + 861.252i) q^{86} +9300.11 q^{87} +385.913i q^{88} +(3715.92 + 3715.92i) q^{89} +10527.0i q^{90} -7871.95 q^{92} +(-2312.15 + 2312.15i) q^{93} -237.441 q^{94} -7255.32i q^{95} +(-2123.06 + 2123.06i) q^{96} +(4894.57 - 4894.57i) q^{97} +(-1644.33 - 1644.33i) q^{98} +(2340.90 + 2340.90i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 12 q^{2} + 30 q^{5} + 90 q^{7} + 96 q^{8} + 558 q^{9} + 66 q^{11} - 360 q^{14} + 288 q^{15} - 384 q^{16} - 1116 q^{18} + 318 q^{19} - 240 q^{20} - 756 q^{21} - 264 q^{22} - 1404 q^{27} + 720 q^{28}+ \cdots + 61074 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/338\mathbb{Z}\right)^\times\).

\(n\) \(171\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 + 2.00000i −0.500000 + 0.500000i
\(3\) −16.5864 −1.84293 −0.921465 0.388460i \(-0.873007\pi\)
−0.921465 + 0.388460i \(0.873007\pi\)
\(4\) 8.00000i 0.500000i
\(5\) 13.5581 13.5581i 0.542326 0.542326i −0.381885 0.924210i \(-0.624725\pi\)
0.924210 + 0.381885i \(0.124725\pi\)
\(6\) 33.1728 33.1728i 0.921465 0.921465i
\(7\) 40.1445 + 40.1445i 0.819276 + 0.819276i 0.986003 0.166727i \(-0.0533199\pi\)
−0.166727 + 0.986003i \(0.553320\pi\)
\(8\) 16.0000 + 16.0000i 0.250000 + 0.250000i
\(9\) 194.108 2.39639
\(10\) 54.2326i 0.542326i
\(11\) 12.0598 + 12.0598i 0.0996677 + 0.0996677i 0.755182 0.655515i \(-0.227548\pi\)
−0.655515 + 0.755182i \(0.727548\pi\)
\(12\) 132.691i 0.921465i
\(13\) 0 0
\(14\) −160.578 −0.819276
\(15\) −224.880 + 224.880i −0.999468 + 0.999468i
\(16\) −64.0000 −0.250000
\(17\) 223.703i 0.774058i 0.922068 + 0.387029i \(0.126499\pi\)
−0.922068 + 0.387029i \(0.873501\pi\)
\(18\) −388.216 + 388.216i −1.19820 + 1.19820i
\(19\) 267.563 267.563i 0.741172 0.741172i −0.231631 0.972804i \(-0.574406\pi\)
0.972804 + 0.231631i \(0.0744064\pi\)
\(20\) −108.465 108.465i −0.271163 0.271163i
\(21\) −665.852 665.852i −1.50987 1.50987i
\(22\) −48.2392 −0.0996677
\(23\) 983.993i 1.86010i −0.367432 0.930050i \(-0.619763\pi\)
0.367432 0.930050i \(-0.380237\pi\)
\(24\) −265.382 265.382i −0.460733 0.460733i
\(25\) 257.354i 0.411766i
\(26\) 0 0
\(27\) −1876.05 −2.57346
\(28\) 321.156 321.156i 0.409638 0.409638i
\(29\) −560.708 −0.666715 −0.333358 0.942800i \(-0.608182\pi\)
−0.333358 + 0.942800i \(0.608182\pi\)
\(30\) 899.522i 0.999468i
\(31\) 139.400 139.400i 0.145058 0.145058i −0.630849 0.775906i \(-0.717293\pi\)
0.775906 + 0.630849i \(0.217293\pi\)
\(32\) 128.000 128.000i 0.125000 0.125000i
\(33\) −200.028 200.028i −0.183681 0.183681i
\(34\) −447.405 447.405i −0.387029 0.387029i
\(35\) 1088.57 0.888628
\(36\) 1552.86i 1.19820i
\(37\) 700.116 + 700.116i 0.511407 + 0.511407i 0.914957 0.403550i \(-0.132224\pi\)
−0.403550 + 0.914957i \(0.632224\pi\)
\(38\) 1070.25i 0.741172i
\(39\) 0 0
\(40\) 433.860 0.271163
\(41\) −1872.79 + 1872.79i −1.11409 + 1.11409i −0.121501 + 0.992591i \(0.538771\pi\)
−0.992591 + 0.121501i \(0.961229\pi\)
\(42\) 2663.41 1.50987
\(43\) 430.626i 0.232897i −0.993197 0.116448i \(-0.962849\pi\)
0.993197 0.116448i \(-0.0371510\pi\)
\(44\) 96.4783 96.4783i 0.0498339 0.0498339i
\(45\) 2631.74 2631.74i 1.29963 1.29963i
\(46\) 1967.99 + 1967.99i 0.930050 + 0.930050i
\(47\) 59.3604 + 59.3604i 0.0268721 + 0.0268721i 0.720415 0.693543i \(-0.243951\pi\)
−0.693543 + 0.720415i \(0.743951\pi\)
\(48\) 1061.53 0.460733
\(49\) 822.164i 0.342426i
\(50\) −514.708 514.708i −0.205883 0.205883i
\(51\) 3710.42i 1.42653i
\(52\) 0 0
\(53\) 3773.97 1.34353 0.671763 0.740766i \(-0.265537\pi\)
0.671763 + 0.740766i \(0.265537\pi\)
\(54\) 3752.10 3752.10i 1.28673 1.28673i
\(55\) 327.017 0.108105
\(56\) 1284.62i 0.409638i
\(57\) −4437.90 + 4437.90i −1.36593 + 1.36593i
\(58\) 1121.42 1121.42i 0.333358 0.333358i
\(59\) −924.257 924.257i −0.265515 0.265515i 0.561775 0.827290i \(-0.310119\pi\)
−0.827290 + 0.561775i \(0.810119\pi\)
\(60\) 1799.04 + 1799.04i 0.499734 + 0.499734i
\(61\) −3935.30 −1.05759 −0.528796 0.848749i \(-0.677356\pi\)
−0.528796 + 0.848749i \(0.677356\pi\)
\(62\) 557.601i 0.145058i
\(63\) 7792.37 + 7792.37i 1.96331 + 1.96331i
\(64\) 512.000i 0.125000i
\(65\) 0 0
\(66\) 800.113 0.183681
\(67\) 2992.99 2992.99i 0.666738 0.666738i −0.290222 0.956959i \(-0.593729\pi\)
0.956959 + 0.290222i \(0.0937290\pi\)
\(68\) 1789.62 0.387029
\(69\) 16320.9i 3.42804i
\(70\) −2177.14 + 2177.14i −0.444314 + 0.444314i
\(71\) 9.46035 9.46035i 0.00187668 0.00187668i −0.706168 0.708044i \(-0.749578\pi\)
0.708044 + 0.706168i \(0.249578\pi\)
\(72\) 3105.73 + 3105.73i 0.599099 + 0.599099i
\(73\) 4922.36 + 4922.36i 0.923693 + 0.923693i 0.997288 0.0735956i \(-0.0234474\pi\)
−0.0735956 + 0.997288i \(0.523447\pi\)
\(74\) −2800.47 −0.511407
\(75\) 4268.57i 0.758856i
\(76\) −2140.51 2140.51i −0.370586 0.370586i
\(77\) 968.269i 0.163311i
\(78\) 0 0
\(79\) 1624.91 0.260361 0.130180 0.991490i \(-0.458444\pi\)
0.130180 + 0.991490i \(0.458444\pi\)
\(80\) −867.721 + 867.721i −0.135581 + 0.135581i
\(81\) 15394.2 2.34631
\(82\) 7491.16i 1.11409i
\(83\) 4406.88 4406.88i 0.639698 0.639698i −0.310783 0.950481i \(-0.600591\pi\)
0.950481 + 0.310783i \(0.100591\pi\)
\(84\) −5326.82 + 5326.82i −0.754934 + 0.754934i
\(85\) 3032.99 + 3032.99i 0.419791 + 0.419791i
\(86\) 861.252 + 861.252i 0.116448 + 0.116448i
\(87\) 9300.11 1.22871
\(88\) 385.913i 0.0498339i
\(89\) 3715.92 + 3715.92i 0.469122 + 0.469122i 0.901630 0.432508i \(-0.142371\pi\)
−0.432508 + 0.901630i \(0.642371\pi\)
\(90\) 10527.0i 1.29963i
\(91\) 0 0
\(92\) −7871.95 −0.930050
\(93\) −2312.15 + 2312.15i −0.267331 + 0.267331i
\(94\) −237.441 −0.0268721
\(95\) 7255.32i 0.803913i
\(96\) −2123.06 + 2123.06i −0.230366 + 0.230366i
\(97\) 4894.57 4894.57i 0.520201 0.520201i −0.397431 0.917632i \(-0.630098\pi\)
0.917632 + 0.397431i \(0.130098\pi\)
\(98\) −1644.33 1644.33i −0.171213 0.171213i
\(99\) 2340.90 + 2340.90i 0.238843 + 0.238843i
\(100\) 2058.83 0.205883
\(101\) 1445.28i 0.141681i −0.997488 0.0708403i \(-0.977432\pi\)
0.997488 0.0708403i \(-0.0225681\pi\)
\(102\) 7420.83 + 7420.83i 0.713267 + 0.713267i
\(103\) 4448.97i 0.419358i 0.977770 + 0.209679i \(0.0672420\pi\)
−0.977770 + 0.209679i \(0.932758\pi\)
\(104\) 0 0
\(105\) −18055.4 −1.63768
\(106\) −7547.93 + 7547.93i −0.671763 + 0.671763i
\(107\) 8104.41 0.707870 0.353935 0.935270i \(-0.384843\pi\)
0.353935 + 0.935270i \(0.384843\pi\)
\(108\) 15008.4i 1.28673i
\(109\) 2675.08 2675.08i 0.225156 0.225156i −0.585509 0.810666i \(-0.699105\pi\)
0.810666 + 0.585509i \(0.199105\pi\)
\(110\) −654.033 + 654.033i −0.0540523 + 0.0540523i
\(111\) −11612.4 11612.4i −0.942488 0.942488i
\(112\) −2569.25 2569.25i −0.204819 0.204819i
\(113\) −3008.25 −0.235590 −0.117795 0.993038i \(-0.537583\pi\)
−0.117795 + 0.993038i \(0.537583\pi\)
\(114\) 17751.6i 1.36593i
\(115\) −13341.1 13341.1i −1.00878 1.00878i
\(116\) 4485.66i 0.333358i
\(117\) 0 0
\(118\) 3697.03 0.265515
\(119\) −8980.43 + 8980.43i −0.634167 + 0.634167i
\(120\) −7196.17 −0.499734
\(121\) 14350.1i 0.980133i
\(122\) 7870.60 7870.60i 0.528796 0.528796i
\(123\) 31062.8 31062.8i 2.05319 2.05319i
\(124\) −1115.20 1115.20i −0.0725288 0.0725288i
\(125\) 11963.1 + 11963.1i 0.765637 + 0.765637i
\(126\) −31169.5 −1.96331
\(127\) 3624.98i 0.224749i −0.993666 0.112374i \(-0.964154\pi\)
0.993666 0.112374i \(-0.0358456\pi\)
\(128\) −1024.00 1024.00i −0.0625000 0.0625000i
\(129\) 7142.53i 0.429213i
\(130\) 0 0
\(131\) 4428.23 0.258040 0.129020 0.991642i \(-0.458817\pi\)
0.129020 + 0.991642i \(0.458817\pi\)
\(132\) −1600.23 + 1600.23i −0.0918404 + 0.0918404i
\(133\) 21482.4 1.21445
\(134\) 11971.9i 0.666738i
\(135\) −25435.8 + 25435.8i −1.39565 + 1.39565i
\(136\) −3579.24 + 3579.24i −0.193514 + 0.193514i
\(137\) −977.708 977.708i −0.0520916 0.0520916i 0.680581 0.732673i \(-0.261727\pi\)
−0.732673 + 0.680581i \(0.761727\pi\)
\(138\) −32641.8 32641.8i −1.71402 1.71402i
\(139\) 36138.6 1.87043 0.935216 0.354079i \(-0.115206\pi\)
0.935216 + 0.354079i \(0.115206\pi\)
\(140\) 8708.56i 0.444314i
\(141\) −984.573 984.573i −0.0495233 0.0495233i
\(142\) 37.8414i 0.00187668i
\(143\) 0 0
\(144\) −12422.9 −0.599099
\(145\) −7602.15 + 7602.15i −0.361577 + 0.361577i
\(146\) −19689.4 −0.923693
\(147\) 13636.7i 0.631067i
\(148\) 5600.93 5600.93i 0.255704 0.255704i
\(149\) −12263.5 + 12263.5i −0.552383 + 0.552383i −0.927128 0.374745i \(-0.877730\pi\)
0.374745 + 0.927128i \(0.377730\pi\)
\(150\) 8537.14 + 8537.14i 0.379428 + 0.379428i
\(151\) −15818.3 15818.3i −0.693756 0.693756i 0.269300 0.963056i \(-0.413208\pi\)
−0.963056 + 0.269300i \(0.913208\pi\)
\(152\) 8562.02 0.370586
\(153\) 43422.5i 1.85495i
\(154\) −1936.54 1936.54i −0.0816553 0.0816553i
\(155\) 3780.02i 0.157337i
\(156\) 0 0
\(157\) 17629.6 0.715225 0.357612 0.933870i \(-0.383591\pi\)
0.357612 + 0.933870i \(0.383591\pi\)
\(158\) −3249.82 + 3249.82i −0.130180 + 0.130180i
\(159\) −62596.4 −2.47603
\(160\) 3470.88i 0.135581i
\(161\) 39501.9 39501.9i 1.52394 1.52394i
\(162\) −30788.3 + 30788.3i −1.17316 + 1.17316i
\(163\) 34964.7 + 34964.7i 1.31600 + 1.31600i 0.916916 + 0.399080i \(0.130670\pi\)
0.399080 + 0.916916i \(0.369330\pi\)
\(164\) 14982.3 + 14982.3i 0.557046 + 0.557046i
\(165\) −5424.02 −0.199229
\(166\) 17627.5i 0.639698i
\(167\) 3546.29 + 3546.29i 0.127157 + 0.127157i 0.767821 0.640664i \(-0.221341\pi\)
−0.640664 + 0.767821i \(0.721341\pi\)
\(168\) 21307.3i 0.754934i
\(169\) 0 0
\(170\) −12132.0 −0.419791
\(171\) 51936.1 51936.1i 1.77614 1.77614i
\(172\) −3445.01 −0.116448
\(173\) 38615.8i 1.29025i −0.764078 0.645124i \(-0.776806\pi\)
0.764078 0.645124i \(-0.223194\pi\)
\(174\) −18600.2 + 18600.2i −0.614355 + 0.614355i
\(175\) −10331.3 + 10331.3i −0.337350 + 0.337350i
\(176\) −771.827 771.827i −0.0249169 0.0249169i
\(177\) 15330.1 + 15330.1i 0.489326 + 0.489326i
\(178\) −14863.7 −0.469122
\(179\) 4373.46i 0.136496i 0.997668 + 0.0682479i \(0.0217409\pi\)
−0.997668 + 0.0682479i \(0.978259\pi\)
\(180\) −21053.9 21053.9i −0.649813 0.649813i
\(181\) 25076.9i 0.765450i −0.923862 0.382725i \(-0.874986\pi\)
0.923862 0.382725i \(-0.125014\pi\)
\(182\) 0 0
\(183\) 65272.4 1.94907
\(184\) 15743.9 15743.9i 0.465025 0.465025i
\(185\) 18984.5 0.554698
\(186\) 9248.58i 0.267331i
\(187\) −2697.81 + 2697.81i −0.0771485 + 0.0771485i
\(188\) 474.883 474.883i 0.0134360 0.0134360i
\(189\) −75313.2 75313.2i −2.10837 2.10837i
\(190\) 14510.6 + 14510.6i 0.401957 + 0.401957i
\(191\) 7846.01 0.215071 0.107536 0.994201i \(-0.465704\pi\)
0.107536 + 0.994201i \(0.465704\pi\)
\(192\) 8492.23i 0.230366i
\(193\) 26725.4 + 26725.4i 0.717481 + 0.717481i 0.968089 0.250608i \(-0.0806304\pi\)
−0.250608 + 0.968089i \(0.580630\pi\)
\(194\) 19578.3i 0.520201i
\(195\) 0 0
\(196\) 6577.32 0.171213
\(197\) 6777.04 6777.04i 0.174626 0.174626i −0.614383 0.789008i \(-0.710595\pi\)
0.789008 + 0.614383i \(0.210595\pi\)
\(198\) −9363.61 −0.238843
\(199\) 61087.0i 1.54256i 0.636495 + 0.771281i \(0.280384\pi\)
−0.636495 + 0.771281i \(0.719616\pi\)
\(200\) −4117.66 + 4117.66i −0.102942 + 0.102942i
\(201\) −49642.8 + 49642.8i −1.22875 + 1.22875i
\(202\) 2890.57 + 2890.57i 0.0708403 + 0.0708403i
\(203\) −22509.3 22509.3i −0.546224 0.546224i
\(204\) −29683.3 −0.713267
\(205\) 50783.1i 1.20840i
\(206\) −8897.95 8897.95i −0.209679 0.209679i
\(207\) 191001.i 4.45754i
\(208\) 0 0
\(209\) 6453.51 0.147742
\(210\) 36110.9 36110.9i 0.818840 0.818840i
\(211\) −76793.1 −1.72487 −0.862436 0.506165i \(-0.831063\pi\)
−0.862436 + 0.506165i \(0.831063\pi\)
\(212\) 30191.7i 0.671763i
\(213\) −156.913 + 156.913i −0.00345859 + 0.00345859i
\(214\) −16208.8 + 16208.8i −0.353935 + 0.353935i
\(215\) −5838.49 5838.49i −0.126306 0.126306i
\(216\) −30016.8 30016.8i −0.643365 0.643365i
\(217\) 11192.3 0.237684
\(218\) 10700.3i 0.225156i
\(219\) −81644.1 81644.1i −1.70230 1.70230i
\(220\) 2616.13i 0.0540523i
\(221\) 0 0
\(222\) 46449.6 0.942488
\(223\) −52857.4 + 52857.4i −1.06291 + 1.06291i −0.0650260 + 0.997884i \(0.520713\pi\)
−0.997884 + 0.0650260i \(0.979287\pi\)
\(224\) 10277.0 0.204819
\(225\) 49954.4i 0.986754i
\(226\) 6016.51 6016.51i 0.117795 0.117795i
\(227\) 32344.8 32344.8i 0.627700 0.627700i −0.319788 0.947489i \(-0.603612\pi\)
0.947489 + 0.319788i \(0.103612\pi\)
\(228\) 35503.2 + 35503.2i 0.682965 + 0.682965i
\(229\) 49809.4 + 49809.4i 0.949818 + 0.949818i 0.998800 0.0489817i \(-0.0155976\pi\)
−0.0489817 + 0.998800i \(0.515598\pi\)
\(230\) 53364.5 1.00878
\(231\) 16060.1i 0.300970i
\(232\) −8971.32 8971.32i −0.166679 0.166679i
\(233\) 72869.4i 1.34225i 0.741345 + 0.671124i \(0.234188\pi\)
−0.741345 + 0.671124i \(0.765812\pi\)
\(234\) 0 0
\(235\) 1609.63 0.0291468
\(236\) −7394.06 + 7394.06i −0.132757 + 0.132757i
\(237\) −26951.4 −0.479827
\(238\) 35921.7i 0.634167i
\(239\) 14223.7 14223.7i 0.249010 0.249010i −0.571554 0.820564i \(-0.693659\pi\)
0.820564 + 0.571554i \(0.193659\pi\)
\(240\) 14392.3 14392.3i 0.249867 0.249867i
\(241\) 42338.8 + 42338.8i 0.728962 + 0.728962i 0.970413 0.241451i \(-0.0776234\pi\)
−0.241451 + 0.970413i \(0.577623\pi\)
\(242\) 28700.2 + 28700.2i 0.490066 + 0.490066i
\(243\) −103373. −1.75063
\(244\) 31482.4i 0.528796i
\(245\) 11147.0 + 11147.0i 0.185706 + 0.185706i
\(246\) 124251.i 2.05319i
\(247\) 0 0
\(248\) 4460.81 0.0725288
\(249\) −73094.1 + 73094.1i −1.17892 + 1.17892i
\(250\) −47852.3 −0.765637
\(251\) 114161.i 1.81206i −0.423216 0.906029i \(-0.639099\pi\)
0.423216 0.906029i \(-0.360901\pi\)
\(252\) 62339.0 62339.0i 0.981654 0.981654i
\(253\) 11866.8 11866.8i 0.185392 0.185392i
\(254\) 7249.95 + 7249.95i 0.112374 + 0.112374i
\(255\) −50306.3 50306.3i −0.773646 0.773646i
\(256\) 4096.00 0.0625000
\(257\) 28776.5i 0.435685i 0.975984 + 0.217842i \(0.0699018\pi\)
−0.975984 + 0.217842i \(0.930098\pi\)
\(258\) −14285.1 14285.1i −0.214606 0.214606i
\(259\) 56211.7i 0.837967i
\(260\) 0 0
\(261\) −108838. −1.59771
\(262\) −8856.46 + 8856.46i −0.129020 + 0.129020i
\(263\) −41981.1 −0.606936 −0.303468 0.952842i \(-0.598144\pi\)
−0.303468 + 0.952842i \(0.598144\pi\)
\(264\) 6400.91i 0.0918404i
\(265\) 51168.0 51168.0i 0.728629 0.728629i
\(266\) −42964.8 + 42964.8i −0.607224 + 0.607224i
\(267\) −61633.6 61633.6i −0.864560 0.864560i
\(268\) −23943.9 23943.9i −0.333369 0.333369i
\(269\) 87860.2 1.21419 0.607096 0.794628i \(-0.292334\pi\)
0.607096 + 0.794628i \(0.292334\pi\)
\(270\) 101743.i 1.39565i
\(271\) 59053.1 + 59053.1i 0.804088 + 0.804088i 0.983732 0.179643i \(-0.0574944\pi\)
−0.179643 + 0.983732i \(0.557494\pi\)
\(272\) 14317.0i 0.193514i
\(273\) 0 0
\(274\) 3910.83 0.0520916
\(275\) −3103.63 + 3103.63i −0.0410398 + 0.0410398i
\(276\) 130567. 1.71402
\(277\) 59016.9i 0.769160i 0.923092 + 0.384580i \(0.125654\pi\)
−0.923092 + 0.384580i \(0.874346\pi\)
\(278\) −72277.2 + 72277.2i −0.935216 + 0.935216i
\(279\) 27058.7 27058.7i 0.347615 0.347615i
\(280\) 17417.1 + 17417.1i 0.222157 + 0.222157i
\(281\) −73210.7 73210.7i −0.927175 0.927175i 0.0703472 0.997523i \(-0.477589\pi\)
−0.997523 + 0.0703472i \(0.977589\pi\)
\(282\) 3938.29 0.0495233
\(283\) 40778.4i 0.509164i −0.967051 0.254582i \(-0.918062\pi\)
0.967051 0.254582i \(-0.0819379\pi\)
\(284\) −75.6828 75.6828i −0.000938340 0.000938340i
\(285\) 120339.i 1.48156i
\(286\) 0 0
\(287\) −150364. −1.82550
\(288\) 24845.8 24845.8i 0.299549 0.299549i
\(289\) 33478.1 0.400835
\(290\) 30408.6i 0.361577i
\(291\) −81183.2 + 81183.2i −0.958694 + 0.958694i
\(292\) 39378.9 39378.9i 0.461846 0.461846i
\(293\) −41000.3 41000.3i −0.477586 0.477586i 0.426773 0.904359i \(-0.359650\pi\)
−0.904359 + 0.426773i \(0.859650\pi\)
\(294\) 27273.5 + 27273.5i 0.315534 + 0.315534i
\(295\) −25062.4 −0.287991
\(296\) 22403.7i 0.255704i
\(297\) −22624.8 22624.8i −0.256491 0.256491i
\(298\) 49053.9i 0.552383i
\(299\) 0 0
\(300\) −34148.5 −0.379428
\(301\) 17287.3 17287.3i 0.190807 0.190807i
\(302\) 63273.3 0.693756
\(303\) 23972.0i 0.261107i
\(304\) −17124.0 + 17124.0i −0.185293 + 0.185293i
\(305\) −53355.4 + 53355.4i −0.573559 + 0.573559i
\(306\) −86844.9 86844.9i −0.927474 0.927474i
\(307\) −3442.87 3442.87i −0.0365295 0.0365295i 0.688606 0.725136i \(-0.258223\pi\)
−0.725136 + 0.688606i \(0.758223\pi\)
\(308\) 7746.15 0.0816553
\(309\) 73792.4i 0.772849i
\(310\) 7560.03 + 7560.03i 0.0786684 + 0.0786684i
\(311\) 4606.97i 0.0476316i 0.999716 + 0.0238158i \(0.00758151\pi\)
−0.999716 + 0.0238158i \(0.992418\pi\)
\(312\) 0 0
\(313\) 120038. 1.22527 0.612633 0.790368i \(-0.290111\pi\)
0.612633 + 0.790368i \(0.290111\pi\)
\(314\) −35259.1 + 35259.1i −0.357612 + 0.357612i
\(315\) 211300. 2.12950
\(316\) 12999.3i 0.130180i
\(317\) 87032.2 87032.2i 0.866087 0.866087i −0.125950 0.992037i \(-0.540198\pi\)
0.992037 + 0.125950i \(0.0401979\pi\)
\(318\) 125193. 125193.i 1.23801 1.23801i
\(319\) −6762.02 6762.02i −0.0664500 0.0664500i
\(320\) 6941.77 + 6941.77i 0.0677907 + 0.0677907i
\(321\) −134423. −1.30456
\(322\) 158008.i 1.52394i
\(323\) 59854.6 + 59854.6i 0.573710 + 0.573710i
\(324\) 123153.i 1.17316i
\(325\) 0 0
\(326\) −139859. −1.31600
\(327\) −44369.9 + 44369.9i −0.414947 + 0.414947i
\(328\) −59929.2 −0.557046
\(329\) 4765.99i 0.0440312i
\(330\) 10848.0 10848.0i 0.0996147 0.0996147i
\(331\) −61566.7 + 61566.7i −0.561940 + 0.561940i −0.929858 0.367918i \(-0.880071\pi\)
0.367918 + 0.929858i \(0.380071\pi\)
\(332\) −35255.0 35255.0i −0.319849 0.319849i
\(333\) 135898. + 135898.i 1.22553 + 1.22553i
\(334\) −14185.1 −0.127157
\(335\) 81158.6i 0.723178i
\(336\) 42614.5 + 42614.5i 0.377467 + 0.377467i
\(337\) 8069.67i 0.0710552i 0.999369 + 0.0355276i \(0.0113112\pi\)
−0.999369 + 0.0355276i \(0.988689\pi\)
\(338\) 0 0
\(339\) 49896.0 0.434177
\(340\) 24263.9 24263.9i 0.209896 0.209896i
\(341\) 3362.28 0.0289151
\(342\) 207745.i 1.77614i
\(343\) 63381.6 63381.6i 0.538735 0.538735i
\(344\) 6890.02 6890.02i 0.0582242 0.0582242i
\(345\) 221281. + 221281.i 1.85911 + 1.85911i
\(346\) 77231.7 + 77231.7i 0.645124 + 0.645124i
\(347\) 156363. 1.29860 0.649300 0.760533i \(-0.275062\pi\)
0.649300 + 0.760533i \(0.275062\pi\)
\(348\) 74400.9i 0.614355i
\(349\) 141731. + 141731.i 1.16363 + 1.16363i 0.983676 + 0.179951i \(0.0575938\pi\)
0.179951 + 0.983676i \(0.442406\pi\)
\(350\) 41325.4i 0.337350i
\(351\) 0 0
\(352\) 3087.31 0.0249169
\(353\) 125248. 125248.i 1.00513 1.00513i 0.00514429 0.999987i \(-0.498363\pi\)
0.999987 0.00514429i \(-0.00163748\pi\)
\(354\) −61320.3 −0.489326
\(355\) 256.529i 0.00203554i
\(356\) 29727.3 29727.3i 0.234561 0.234561i
\(357\) 148953. 148953.i 1.16873 1.16873i
\(358\) −8746.93 8746.93i −0.0682479 0.0682479i
\(359\) 50595.2 + 50595.2i 0.392573 + 0.392573i 0.875604 0.483030i \(-0.160464\pi\)
−0.483030 + 0.875604i \(0.660464\pi\)
\(360\) 84215.8 0.649813
\(361\) 12859.1i 0.0986722i
\(362\) 50153.8 + 50153.8i 0.382725 + 0.382725i
\(363\) 238017.i 1.80632i
\(364\) 0 0
\(365\) 133476. 1.00188
\(366\) −130545. + 130545.i −0.974535 + 0.974535i
\(367\) 137759. 1.02279 0.511395 0.859346i \(-0.329129\pi\)
0.511395 + 0.859346i \(0.329129\pi\)
\(368\) 62975.6i 0.465025i
\(369\) −363523. + 363523.i −2.66980 + 2.66980i
\(370\) −37969.1 + 37969.1i −0.277349 + 0.277349i
\(371\) 151504. + 151504.i 1.10072 + 1.10072i
\(372\) 18497.2 + 18497.2i 0.133666 + 0.133666i
\(373\) 122430. 0.879975 0.439988 0.898004i \(-0.354983\pi\)
0.439988 + 0.898004i \(0.354983\pi\)
\(374\) 10791.2i 0.0771485i
\(375\) −198424. 198424.i −1.41102 1.41102i
\(376\) 1899.53i 0.0134360i
\(377\) 0 0
\(378\) 301253. 2.10837
\(379\) 113156. 113156.i 0.787769 0.787769i −0.193359 0.981128i \(-0.561938\pi\)
0.981128 + 0.193359i \(0.0619381\pi\)
\(380\) −58042.5 −0.401957
\(381\) 60125.2i 0.414197i
\(382\) −15692.0 + 15692.0i −0.107536 + 0.107536i
\(383\) −68319.5 + 68319.5i −0.465744 + 0.465744i −0.900532 0.434789i \(-0.856823\pi\)
0.434789 + 0.900532i \(0.356823\pi\)
\(384\) 16984.5 + 16984.5i 0.115183 + 0.115183i
\(385\) 13127.9 + 13127.9i 0.0885676 + 0.0885676i
\(386\) −106902. −0.717481
\(387\) 83588.0i 0.558113i
\(388\) −39156.5 39156.5i −0.260100 0.260100i
\(389\) 85946.1i 0.567972i −0.958828 0.283986i \(-0.908343\pi\)
0.958828 0.283986i \(-0.0916569\pi\)
\(390\) 0 0
\(391\) 220122. 1.43983
\(392\) −13154.6 + 13154.6i −0.0856065 + 0.0856065i
\(393\) −73448.3 −0.475551
\(394\) 27108.2i 0.174626i
\(395\) 22030.8 22030.8i 0.141200 0.141200i
\(396\) 18727.2 18727.2i 0.119422 0.119422i
\(397\) 49712.1 + 49712.1i 0.315414 + 0.315414i 0.847003 0.531589i \(-0.178405\pi\)
−0.531589 + 0.847003i \(0.678405\pi\)
\(398\) −122174. 122174.i −0.771281 0.771281i
\(399\) −356315. −2.23815
\(400\) 16470.6i 0.102942i
\(401\) −55547.8 55547.8i −0.345445 0.345445i 0.512965 0.858410i \(-0.328547\pi\)
−0.858410 + 0.512965i \(0.828547\pi\)
\(402\) 198571.i 1.22875i
\(403\) 0 0
\(404\) −11562.3 −0.0708403
\(405\) 208716. 208716.i 1.27247 1.27247i
\(406\) 90037.3 0.546224
\(407\) 16886.5i 0.101942i
\(408\) 59366.7 59366.7i 0.356634 0.356634i
\(409\) −77395.2 + 77395.2i −0.462666 + 0.462666i −0.899528 0.436862i \(-0.856090\pi\)
0.436862 + 0.899528i \(0.356090\pi\)
\(410\) −101566. 101566.i −0.604201 0.604201i
\(411\) 16216.6 + 16216.6i 0.0960013 + 0.0960013i
\(412\) 35591.8 0.209679
\(413\) 74207.7i 0.435060i
\(414\) 382002. + 382002.i 2.22877 + 2.22877i
\(415\) 119498.i 0.693849i
\(416\) 0 0
\(417\) −599409. −3.44708
\(418\) −12907.0 + 12907.0i −0.0738709 + 0.0738709i
\(419\) 144154. 0.821106 0.410553 0.911837i \(-0.365336\pi\)
0.410553 + 0.911837i \(0.365336\pi\)
\(420\) 144443.i 0.818840i
\(421\) −190864. + 190864.i −1.07686 + 1.07686i −0.0800732 + 0.996789i \(0.525515\pi\)
−0.996789 + 0.0800732i \(0.974485\pi\)
\(422\) 153586. 153586.i 0.862436 0.862436i
\(423\) 11522.3 + 11522.3i 0.0643960 + 0.0643960i
\(424\) 60383.5 + 60383.5i 0.335882 + 0.335882i
\(425\) −57570.7 −0.318731
\(426\) 627.651i 0.00345859i
\(427\) −157981. 157981.i −0.866460 0.866460i
\(428\) 64835.2i 0.353935i
\(429\) 0 0
\(430\) 23354.0 0.126306
\(431\) −27601.8 + 27601.8i −0.148587 + 0.148587i −0.777487 0.628899i \(-0.783506\pi\)
0.628899 + 0.777487i \(0.283506\pi\)
\(432\) 120067. 0.643365
\(433\) 89204.9i 0.475787i 0.971291 + 0.237894i \(0.0764570\pi\)
−0.971291 + 0.237894i \(0.923543\pi\)
\(434\) −22384.6 + 22384.6i −0.118842 + 0.118842i
\(435\) 126092. 126092.i 0.666361 0.666361i
\(436\) −21400.6 21400.6i −0.112578 0.112578i
\(437\) −263280. 263280.i −1.37865 1.37865i
\(438\) 326576. 1.70230
\(439\) 7453.00i 0.0386725i 0.999813 + 0.0193362i \(0.00615530\pi\)
−0.999813 + 0.0193362i \(0.993845\pi\)
\(440\) 5232.27 + 5232.27i 0.0270262 + 0.0270262i
\(441\) 159589.i 0.820587i
\(442\) 0 0
\(443\) −206983. −1.05470 −0.527349 0.849649i \(-0.676814\pi\)
−0.527349 + 0.849649i \(0.676814\pi\)
\(444\) −92899.2 + 92899.2i −0.471244 + 0.471244i
\(445\) 100762. 0.508834
\(446\) 211430.i 1.06291i
\(447\) 203406. 203406.i 1.01800 1.01800i
\(448\) −20554.0 + 20554.0i −0.102409 + 0.102409i
\(449\) −201683. 201683.i −1.00040 1.00040i −1.00000 0.000405082i \(-0.999871\pi\)
−0.000405082 1.00000i \(-0.500129\pi\)
\(450\) −99908.8 99908.8i −0.493377 0.493377i
\(451\) −45170.9 −0.222078
\(452\) 24066.0i 0.117795i
\(453\) 262369. + 262369.i 1.27854 + 1.27854i
\(454\) 129379.i 0.627700i
\(455\) 0 0
\(456\) −142013. −0.682965
\(457\) 254320. 254320.i 1.21772 1.21772i 0.249295 0.968428i \(-0.419801\pi\)
0.968428 0.249295i \(-0.0801987\pi\)
\(458\) −199238. −0.949818
\(459\) 419678.i 1.99201i
\(460\) −106729. + 106729.i −0.504390 + 0.504390i
\(461\) 3957.17 3957.17i 0.0186201 0.0186201i −0.697735 0.716356i \(-0.745809\pi\)
0.716356 + 0.697735i \(0.245809\pi\)
\(462\) 32120.2 + 32120.2i 0.150485 + 0.150485i
\(463\) 154055. + 154055.i 0.718642 + 0.718642i 0.968327 0.249685i \(-0.0803270\pi\)
−0.249685 + 0.968327i \(0.580327\pi\)
\(464\) 35885.3 0.166679
\(465\) 62696.8i 0.289961i
\(466\) −145739. 145739.i −0.671124 0.671124i
\(467\) 56541.9i 0.259261i 0.991562 + 0.129630i \(0.0413790\pi\)
−0.991562 + 0.129630i \(0.958621\pi\)
\(468\) 0 0
\(469\) 240304. 1.09248
\(470\) −3219.26 + 3219.26i −0.0145734 + 0.0145734i
\(471\) −292411. −1.31811
\(472\) 29576.2i 0.132757i
\(473\) 5193.26 5193.26i 0.0232123 0.0232123i
\(474\) 53902.8 53902.8i 0.239913 0.239913i
\(475\) 68858.4 + 68858.4i 0.305190 + 0.305190i
\(476\) 71843.5 + 71843.5i 0.317083 + 0.317083i
\(477\) 732557. 3.21962
\(478\) 56894.9i 0.249010i
\(479\) 47534.5 + 47534.5i 0.207175 + 0.207175i 0.803066 0.595891i \(-0.203201\pi\)
−0.595891 + 0.803066i \(0.703201\pi\)
\(480\) 57569.4i 0.249867i
\(481\) 0 0
\(482\) −169355. −0.728962
\(483\) −655194. + 655194.i −2.80851 + 2.80851i
\(484\) −114801. −0.490066
\(485\) 132722.i 0.564236i
\(486\) 206746. 206746.i 0.875317 0.875317i
\(487\) 109924. 109924.i 0.463485 0.463485i −0.436311 0.899796i \(-0.643715\pi\)
0.899796 + 0.436311i \(0.143715\pi\)
\(488\) −62964.8 62964.8i −0.264398 0.264398i
\(489\) −579938. 579938.i −2.42529 2.42529i
\(490\) −44588.1 −0.185706
\(491\) 425487.i 1.76491i −0.470396 0.882456i \(-0.655889\pi\)
0.470396 0.882456i \(-0.344111\pi\)
\(492\) −248502. 248502.i −1.02660 1.02660i
\(493\) 125432.i 0.516076i
\(494\) 0 0
\(495\) 63476.5 0.259061
\(496\) −8921.62 + 8921.62i −0.0362644 + 0.0362644i
\(497\) 759.562 0.00307504
\(498\) 292377.i 1.17892i
\(499\) 136551. 136551.i 0.548397 0.548397i −0.377580 0.925977i \(-0.623244\pi\)
0.925977 + 0.377580i \(0.123244\pi\)
\(500\) 95704.6 95704.6i 0.382818 0.382818i
\(501\) −58820.0 58820.0i −0.234342 0.234342i
\(502\) 228323. + 228323.i 0.906029 + 0.906029i
\(503\) −298633. −1.18033 −0.590164 0.807284i \(-0.700937\pi\)
−0.590164 + 0.807284i \(0.700937\pi\)
\(504\) 249356.i 0.981654i
\(505\) −19595.3 19595.3i −0.0768370 0.0768370i
\(506\) 47467.0i 0.185392i
\(507\) 0 0
\(508\) −28999.8 −0.112374
\(509\) −242694. + 242694.i −0.936750 + 0.936750i −0.998115 0.0613650i \(-0.980455\pi\)
0.0613650 + 0.998115i \(0.480455\pi\)
\(510\) 201225. 0.773646
\(511\) 395211.i 1.51352i
\(512\) −8192.00 + 8192.00i −0.0312500 + 0.0312500i
\(513\) −501962. + 501962.i −1.90738 + 1.90738i
\(514\) −57553.1 57553.1i −0.217842 0.217842i
\(515\) 60319.8 + 60319.8i 0.227429 + 0.227429i
\(516\) 57140.2 0.214606
\(517\) 1431.75i 0.00535655i
\(518\) −112423. 112423.i −0.418983 0.418983i
\(519\) 640497.i 2.37784i
\(520\) 0 0
\(521\) −308799. −1.13763 −0.568815 0.822465i \(-0.692598\pi\)
−0.568815 + 0.822465i \(0.692598\pi\)
\(522\) 217676. 217676.i 0.798857 0.798857i
\(523\) −196111. −0.716966 −0.358483 0.933536i \(-0.616706\pi\)
−0.358483 + 0.933536i \(0.616706\pi\)
\(524\) 35425.8i 0.129020i
\(525\) 171360. 171360.i 0.621713 0.621713i
\(526\) 83962.3 83962.3i 0.303468 0.303468i
\(527\) 31184.2 + 31184.2i 0.112283 + 0.112283i
\(528\) 12801.8 + 12801.8i 0.0459202 + 0.0459202i
\(529\) −688402. −2.45998
\(530\) 204672.i 0.728629i
\(531\) −179406. 179406.i −0.636278 0.636278i
\(532\) 171859.i 0.607224i
\(533\) 0 0
\(534\) 246535. 0.864560
\(535\) 109881. 109881.i 0.383896 0.383896i
\(536\) 95775.6 0.333369
\(537\) 72539.9i 0.251552i
\(538\) −175720. + 175720.i −0.607096 + 0.607096i
\(539\) −9915.13 + 9915.13i −0.0341288 + 0.0341288i
\(540\) 203486. + 203486.i 0.697826 + 0.697826i
\(541\) 47432.2 + 47432.2i 0.162061 + 0.162061i 0.783479 0.621418i \(-0.213443\pi\)
−0.621418 + 0.783479i \(0.713443\pi\)
\(542\) −236212. −0.804088
\(543\) 415935.i 1.41067i
\(544\) 28633.9 + 28633.9i 0.0967572 + 0.0967572i
\(545\) 72538.2i 0.244216i
\(546\) 0 0
\(547\) 478901. 1.60056 0.800278 0.599629i \(-0.204685\pi\)
0.800278 + 0.599629i \(0.204685\pi\)
\(548\) −7821.66 + 7821.66i −0.0260458 + 0.0260458i
\(549\) −763873. −2.53441
\(550\) 12414.5i 0.0410398i
\(551\) −150025. + 150025.i −0.494151 + 0.494151i
\(552\) −261134. + 261134.i −0.857009 + 0.857009i
\(553\) 65231.2 + 65231.2i 0.213307 + 0.213307i
\(554\) −118034. 118034.i −0.384580 0.384580i
\(555\) −314885. −1.02227
\(556\) 289109.i 0.935216i
\(557\) −303848. 303848.i −0.979369 0.979369i 0.0204227 0.999791i \(-0.493499\pi\)
−0.999791 + 0.0204227i \(0.993499\pi\)
\(558\) 108235.i 0.347615i
\(559\) 0 0
\(560\) −69668.5 −0.222157
\(561\) 44746.9 44746.9i 0.142179 0.142179i
\(562\) 292843. 0.927175
\(563\) 563388.i 1.77742i 0.458466 + 0.888712i \(0.348399\pi\)
−0.458466 + 0.888712i \(0.651601\pi\)
\(564\) −7876.59 + 7876.59i −0.0247617 + 0.0247617i
\(565\) −40786.3 + 40786.3i −0.127767 + 0.127767i
\(566\) 81556.9 + 81556.9i 0.254582 + 0.254582i
\(567\) 617991. + 617991.i 1.92228 + 1.92228i
\(568\) 302.731 0.000938340
\(569\) 73625.6i 0.227407i 0.993515 + 0.113704i \(0.0362715\pi\)
−0.993515 + 0.113704i \(0.963729\pi\)
\(570\) −240679. 240679.i −0.740778 0.740778i
\(571\) 551854.i 1.69259i −0.532715 0.846295i \(-0.678828\pi\)
0.532715 0.846295i \(-0.321172\pi\)
\(572\) 0 0
\(573\) −130137. −0.396361
\(574\) 300729. 300729.i 0.912749 0.912749i
\(575\) 253234. 0.765926
\(576\) 99383.3i 0.299549i
\(577\) 171008. 171008.i 0.513647 0.513647i −0.401995 0.915642i \(-0.631683\pi\)
0.915642 + 0.401995i \(0.131683\pi\)
\(578\) −66956.2 + 66956.2i −0.200417 + 0.200417i
\(579\) −443278. 443278.i −1.32227 1.32227i
\(580\) 60817.2 + 60817.2i 0.180788 + 0.180788i
\(581\) 353824. 1.04818
\(582\) 324733.i 0.958694i
\(583\) 45513.3 + 45513.3i 0.133906 + 0.133906i
\(584\) 157515.i 0.461846i
\(585\) 0 0
\(586\) 164001. 0.477586
\(587\) −184791. + 184791.i −0.536295 + 0.536295i −0.922439 0.386143i \(-0.873807\pi\)
0.386143 + 0.922439i \(0.373807\pi\)
\(588\) −109094. −0.315534
\(589\) 74596.8i 0.215025i
\(590\) 50124.8 50124.8i 0.143995 0.143995i
\(591\) −112407. + 112407.i −0.321823 + 0.321823i
\(592\) −44807.4 44807.4i −0.127852 0.127852i
\(593\) −56990.3 56990.3i −0.162066 0.162066i 0.621415 0.783481i \(-0.286558\pi\)
−0.783481 + 0.621415i \(0.786558\pi\)
\(594\) 90499.2 0.256491
\(595\) 243516.i 0.687850i
\(596\) 98107.7 + 98107.7i 0.276192 + 0.276192i
\(597\) 1.01321e6i 2.84284i
\(598\) 0 0
\(599\) 516301. 1.43896 0.719482 0.694511i \(-0.244379\pi\)
0.719482 + 0.694511i \(0.244379\pi\)
\(600\) 68297.1 68297.1i 0.189714 0.189714i
\(601\) −295648. −0.818513 −0.409256 0.912419i \(-0.634212\pi\)
−0.409256 + 0.912419i \(0.634212\pi\)
\(602\) 69149.1i 0.190807i
\(603\) 580962. 580962.i 1.59777 1.59777i
\(604\) −126547. + 126547.i −0.346878 + 0.346878i
\(605\) −194561. 194561.i −0.531551 0.531551i
\(606\) −47944.0 47944.0i −0.130554 0.130554i
\(607\) −246229. −0.668285 −0.334142 0.942523i \(-0.608447\pi\)
−0.334142 + 0.942523i \(0.608447\pi\)
\(608\) 68496.2i 0.185293i
\(609\) 373348. + 373348.i 1.00665 + 1.00665i
\(610\) 213421.i 0.573559i
\(611\) 0 0
\(612\) 347380. 0.927474
\(613\) 291289. 291289.i 0.775182 0.775182i −0.203825 0.979007i \(-0.565337\pi\)
0.979007 + 0.203825i \(0.0653374\pi\)
\(614\) 13771.5 0.0365295
\(615\) 842307.i 2.22700i
\(616\) −15492.3 + 15492.3i −0.0408277 + 0.0408277i
\(617\) −229446. + 229446.i −0.602712 + 0.602712i −0.941031 0.338320i \(-0.890142\pi\)
0.338320 + 0.941031i \(0.390142\pi\)
\(618\) 147585. + 147585.i 0.386424 + 0.386424i
\(619\) 180833. + 180833.i 0.471951 + 0.471951i 0.902546 0.430594i \(-0.141696\pi\)
−0.430594 + 0.902546i \(0.641696\pi\)
\(620\) −30240.1 −0.0786684
\(621\) 1.84602e6i 4.78689i
\(622\) −9213.94 9213.94i −0.0238158 0.0238158i
\(623\) 298348.i 0.768681i
\(624\) 0 0
\(625\) 163548. 0.418683
\(626\) −240076. + 240076.i −0.612633 + 0.612633i
\(627\) −107040. −0.272278
\(628\) 141037.i 0.357612i
\(629\) −156618. + 156618.i −0.395859 + 0.395859i
\(630\) −422600. + 422600.i −1.06475 + 1.06475i
\(631\) −272824. 272824.i −0.685211 0.685211i 0.275958 0.961170i \(-0.411005\pi\)
−0.961170 + 0.275958i \(0.911005\pi\)
\(632\) 25998.6 + 25998.6i 0.0650901 + 0.0650901i
\(633\) 1.27372e6 3.17882
\(634\) 348129.i 0.866087i
\(635\) −49147.9 49147.9i −0.121887 0.121887i
\(636\) 500772.i 1.23801i
\(637\) 0 0
\(638\) 27048.1 0.0664500
\(639\) 1836.33 1836.33i 0.00449727 0.00449727i
\(640\) −27767.1 −0.0677907
\(641\) 165860.i 0.403670i −0.979420 0.201835i \(-0.935310\pi\)
0.979420 0.201835i \(-0.0646905\pi\)
\(642\) 268845. 268845.i 0.652278 0.652278i
\(643\) −493796. + 493796.i −1.19433 + 1.19433i −0.218494 + 0.975838i \(0.570114\pi\)
−0.975838 + 0.218494i \(0.929886\pi\)
\(644\) −316016. 316016.i −0.761968 0.761968i
\(645\) 96839.4 + 96839.4i 0.232773 + 0.232773i
\(646\) −239418. −0.573710
\(647\) 435005.i 1.03917i −0.854420 0.519584i \(-0.826087\pi\)
0.854420 0.519584i \(-0.173913\pi\)
\(648\) 246306. + 246306.i 0.586578 + 0.586578i
\(649\) 22292.7i 0.0529265i
\(650\) 0 0
\(651\) −185640. −0.438036
\(652\) 279718. 279718.i 0.657998 0.657998i
\(653\) 384248. 0.901125 0.450562 0.892745i \(-0.351224\pi\)
0.450562 + 0.892745i \(0.351224\pi\)
\(654\) 177480.i 0.414947i
\(655\) 60038.6 60038.6i 0.139942 0.139942i
\(656\) 119858. 119858.i 0.278523 0.278523i
\(657\) 955469. + 955469.i 2.21353 + 2.21353i
\(658\) −9531.97 9531.97i −0.0220156 0.0220156i
\(659\) −549266. −1.26477 −0.632385 0.774654i \(-0.717924\pi\)
−0.632385 + 0.774654i \(0.717924\pi\)
\(660\) 43392.2i 0.0996147i
\(661\) 492501. + 492501.i 1.12721 + 1.12721i 0.990629 + 0.136580i \(0.0436112\pi\)
0.136580 + 0.990629i \(0.456389\pi\)
\(662\) 246267.i 0.561940i
\(663\) 0 0
\(664\) 141020. 0.319849
\(665\) 291261. 291261.i 0.658627 0.658627i
\(666\) −543593. −1.22553
\(667\) 551733.i 1.24016i
\(668\) 28370.3 28370.3i 0.0635786 0.0635786i
\(669\) 876713. 876713.i 1.95887 1.95887i
\(670\) 162317. + 162317.i 0.361589 + 0.361589i
\(671\) −47458.9 47458.9i −0.105408 0.105408i
\(672\) −170458. −0.377467
\(673\) 606330.i 1.33869i −0.742953 0.669343i \(-0.766576\pi\)
0.742953 0.669343i \(-0.233424\pi\)
\(674\) −16139.3 16139.3i −0.0355276 0.0355276i
\(675\) 482809.i 1.05966i
\(676\) 0 0
\(677\) −364281. −0.794802 −0.397401 0.917645i \(-0.630088\pi\)
−0.397401 + 0.917645i \(0.630088\pi\)
\(678\) −99792.1 + 99792.1i −0.217088 + 0.217088i
\(679\) 392980. 0.852376
\(680\) 97055.7i 0.209896i
\(681\) −536483. + 536483.i −1.15681 + 1.15681i
\(682\) −6724.55 + 6724.55i −0.0144576 + 0.0144576i
\(683\) −332608. 332608.i −0.713003 0.713003i 0.254160 0.967162i \(-0.418201\pi\)
−0.967162 + 0.254160i \(0.918201\pi\)
\(684\) −415489. 415489.i −0.888070 0.888070i
\(685\) −26511.8 −0.0565013
\(686\) 253526.i 0.538735i
\(687\) −826158. 826158.i −1.75045 1.75045i
\(688\) 27560.1i 0.0582242i
\(689\) 0 0
\(690\) −885123. −1.85911
\(691\) −28649.1 + 28649.1i −0.0600006 + 0.0600006i −0.736470 0.676470i \(-0.763509\pi\)
0.676470 + 0.736470i \(0.263509\pi\)
\(692\) −308927. −0.645124
\(693\) 187949.i 0.391357i
\(694\) −312726. + 312726.i −0.649300 + 0.649300i
\(695\) 489972. 489972.i 1.01438 1.01438i
\(696\) 148802. + 148802.i 0.307178 + 0.307178i
\(697\) −418948. 418948.i −0.862372 0.862372i
\(698\) −566923. −1.16363
\(699\) 1.20864e6i 2.47367i
\(700\) 82650.8 + 82650.8i 0.168675 + 0.168675i
\(701\) 164808.i 0.335383i 0.985840 + 0.167691i \(0.0536312\pi\)
−0.985840 + 0.167691i \(0.946369\pi\)
\(702\) 0 0
\(703\) 374651. 0.758081
\(704\) −6174.61 + 6174.61i −0.0124585 + 0.0124585i
\(705\) −26698.0 −0.0537155
\(706\) 500994.i 1.00513i
\(707\) 58020.2 58020.2i 0.116075 0.116075i
\(708\) 122641. 122641.i 0.244663 0.244663i
\(709\) −157777. 157777.i −0.313870 0.313870i 0.532537 0.846407i \(-0.321239\pi\)
−0.846407 + 0.532537i \(0.821239\pi\)
\(710\) 513.059 + 513.059i 0.00101777 + 0.00101777i
\(711\) 315408. 0.623927
\(712\) 118909.i 0.234561i
\(713\) −137169. 137169.i −0.269822 0.269822i
\(714\) 595812.i 1.16873i
\(715\) 0 0
\(716\) 34987.7 0.0682479
\(717\) −235920. + 235920.i −0.458909 + 0.458909i
\(718\) −202381. −0.392573
\(719\) 701282.i 1.35655i −0.734809 0.678274i \(-0.762728\pi\)
0.734809 0.678274i \(-0.237272\pi\)
\(720\) −168432. + 168432.i −0.324906 + 0.324906i
\(721\) −178602. + 178602.i −0.343570 + 0.343570i
\(722\) 25718.1 + 25718.1i 0.0493361 + 0.0493361i
\(723\) −702248. 702248.i −1.34343 1.34343i
\(724\) −200615. −0.382725
\(725\) 144300.i 0.274531i
\(726\) −476033. 476033.i −0.903158 0.903158i
\(727\) 665420.i 1.25900i −0.776999 0.629502i \(-0.783259\pi\)
0.776999 0.629502i \(-0.216741\pi\)
\(728\) 0 0
\(729\) 467659. 0.879983
\(730\) −266952. + 266952.i −0.500942 + 0.500942i
\(731\) 96332.2 0.180276
\(732\) 522179.i 0.974535i
\(733\) −322452. + 322452.i −0.600146 + 0.600146i −0.940351 0.340205i \(-0.889503\pi\)
0.340205 + 0.940351i \(0.389503\pi\)
\(734\) −275517. + 275517.i −0.511395 + 0.511395i
\(735\) −184889. 184889.i −0.342244 0.342244i
\(736\) −125951. 125951.i −0.232513 0.232513i
\(737\) 72189.6 0.132904
\(738\) 1.45409e6i 2.66980i
\(739\) −50393.5 50393.5i −0.0922753 0.0922753i 0.659462 0.751738i \(-0.270784\pi\)
−0.751738 + 0.659462i \(0.770784\pi\)
\(740\) 151876.i 0.277349i
\(741\) 0 0
\(742\) −606016. −1.10072
\(743\) 585418. 585418.i 1.06045 1.06045i 0.0623941 0.998052i \(-0.480126\pi\)
0.998052 0.0623941i \(-0.0198736\pi\)
\(744\) −73988.7 −0.133666
\(745\) 332540.i 0.599143i
\(746\) −244860. + 244860.i −0.439988 + 0.439988i
\(747\) 855410. 855410.i 1.53297 1.53297i
\(748\) 21582.5 + 21582.5i 0.0385743 + 0.0385743i
\(749\) 325347. + 325347.i 0.579941 + 0.579941i
\(750\) 793696. 1.41102
\(751\) 854251.i 1.51463i 0.653051 + 0.757314i \(0.273489\pi\)
−0.653051 + 0.757314i \(0.726511\pi\)
\(752\) −3799.06 3799.06i −0.00671801 0.00671801i
\(753\) 1.89353e6i 3.33950i
\(754\) 0 0
\(755\) −428934. −0.752483
\(756\) −602505. + 602505.i −1.05419 + 1.05419i
\(757\) −1110.21 −0.00193737 −0.000968684 1.00000i \(-0.500308\pi\)
−0.000968684 1.00000i \(0.500308\pi\)
\(758\) 452624.i 0.787769i
\(759\) −196827. + 196827.i −0.341665 + 0.341665i
\(760\) 116085. 116085.i 0.200978 0.200978i
\(761\) 676371. + 676371.i 1.16793 + 1.16793i 0.982695 + 0.185232i \(0.0593037\pi\)
0.185232 + 0.982695i \(0.440696\pi\)
\(762\) −120250. 120250.i −0.207098 0.207098i
\(763\) 214780. 0.368930
\(764\) 62768.1i 0.107536i
\(765\) 588728. + 588728.i 1.00599 + 1.00599i
\(766\) 273278.i 0.465744i
\(767\) 0 0
\(768\) −67937.8 −0.115183
\(769\) −255979. + 255979.i −0.432864 + 0.432864i −0.889602 0.456737i \(-0.849018\pi\)
0.456737 + 0.889602i \(0.349018\pi\)
\(770\) −52511.7 −0.0885676
\(771\) 477298.i 0.802937i
\(772\) 213804. 213804.i 0.358740 0.358740i
\(773\) 674317. 674317.i 1.12851 1.12851i 0.138090 0.990420i \(-0.455904\pi\)
0.990420 0.138090i \(-0.0440962\pi\)
\(774\) 167176. + 167176.i 0.279056 + 0.279056i
\(775\) 35875.2 + 35875.2i 0.0597298 + 0.0597298i
\(776\) 156626. 0.260100
\(777\) 932348.i 1.54432i
\(778\) 171892. + 171892.i 0.283986 + 0.283986i
\(779\) 1.00218e6i 1.65147i
\(780\) 0 0
\(781\) 228.180 0.000374089
\(782\) −440244. + 440244.i −0.719913 + 0.719913i
\(783\) 1.05192e6 1.71576
\(784\) 52618.5i 0.0856065i
\(785\) 239024. 239024.i 0.387885 0.387885i
\(786\) 146897. 146897.i 0.237775 0.237775i
\(787\) −90287.8 90287.8i −0.145774 0.145774i 0.630453 0.776227i \(-0.282869\pi\)
−0.776227 + 0.630453i \(0.782869\pi\)
\(788\) −54216.3 54216.3i −0.0873128 0.0873128i
\(789\) 696315. 1.11854
\(790\) 88123.0i 0.141200i
\(791\) −120765. 120765.i −0.193014 0.193014i
\(792\) 74908.9i 0.119422i
\(793\) 0 0
\(794\) −198848. −0.315414
\(795\) −848691. + 848691.i −1.34281 + 1.34281i
\(796\) 488696. 0.771281
\(797\) 54653.7i 0.0860406i 0.999074 + 0.0430203i \(0.0136980\pi\)
−0.999074 + 0.0430203i \(0.986302\pi\)
\(798\) 712630. 712630.i 1.11907 1.11907i
\(799\) −13279.1 + 13279.1i −0.0208005 + 0.0208005i
\(800\) 32941.3 + 32941.3i 0.0514708 + 0.0514708i
\(801\) 721289. + 721289.i 1.12420 + 1.12420i
\(802\) 222191. 0.345445
\(803\) 118725.i 0.184125i
\(804\) 397142. + 397142.i 0.614376 + 0.614376i
\(805\) 1.07115e6i 1.65294i
\(806\) 0 0
\(807\) −1.45728e6 −2.23767
\(808\) 23124.5 23124.5i 0.0354201 0.0354201i
\(809\) −596802. −0.911870 −0.455935 0.890013i \(-0.650695\pi\)
−0.455935 + 0.890013i \(0.650695\pi\)
\(810\) 834864.i 1.27247i
\(811\) −198281. + 198281.i −0.301466 + 0.301466i −0.841587 0.540121i \(-0.818378\pi\)
0.540121 + 0.841587i \(0.318378\pi\)
\(812\) −180075. + 180075.i −0.273112 + 0.273112i
\(813\) −979476. 979476.i −1.48188 1.48188i
\(814\) −33773.0 33773.0i −0.0509708 0.0509708i
\(815\) 948112. 1.42740
\(816\) 237467.i 0.356634i
\(817\) −115220. 115220.i −0.172617 0.172617i
\(818\) 309581.i 0.462666i
\(819\) 0 0
\(820\) 406264. 0.604201
\(821\) −170383. + 170383.i −0.252779 + 0.252779i −0.822109 0.569330i \(-0.807203\pi\)
0.569330 + 0.822109i \(0.307203\pi\)
\(822\) −64866.5 −0.0960013
\(823\) 494592.i 0.730209i −0.930967 0.365105i \(-0.881033\pi\)
0.930967 0.365105i \(-0.118967\pi\)
\(824\) −71183.6 + 71183.6i −0.104840 + 0.104840i
\(825\) 51478.0 51478.0i 0.0756335 0.0756335i
\(826\) 148415. + 148415.i 0.217530 + 0.217530i
\(827\) 290301. + 290301.i 0.424461 + 0.424461i 0.886737 0.462275i \(-0.152967\pi\)
−0.462275 + 0.886737i \(0.652967\pi\)
\(828\) −1.52801e6 −2.22877
\(829\) 731661.i 1.06464i 0.846545 + 0.532318i \(0.178679\pi\)
−0.846545 + 0.532318i \(0.821321\pi\)
\(830\) 238996. + 238996.i 0.346924 + 0.346924i
\(831\) 978876.i 1.41751i
\(832\) 0 0
\(833\) −183920. −0.265057
\(834\) 1.19882e6 1.19882e6i 1.72354 1.72354i
\(835\) 96162.1 0.137921
\(836\) 51628.1i 0.0738709i
\(837\) −261522. + 261522.i −0.373300 + 0.373300i
\(838\) −288308. + 288308.i −0.410553 + 0.410553i
\(839\) 580044. + 580044.i 0.824019 + 0.824019i 0.986682 0.162663i \(-0.0520084\pi\)
−0.162663 + 0.986682i \(0.552008\pi\)
\(840\) −288887. 288887.i −0.409420 0.409420i
\(841\) −392888. −0.555491
\(842\) 763456.i 1.07686i
\(843\) 1.21430e6 + 1.21430e6i 1.70872 + 1.70872i
\(844\) 614345.i 0.862436i
\(845\) 0 0
\(846\) −46089.3 −0.0643960
\(847\) 576079. 576079.i 0.802999 0.802999i
\(848\) −241534. −0.335882
\(849\) 676367.i 0.938354i
\(850\) 115141. 115141.i 0.159365 0.159365i
\(851\) 688910. 688910.i 0.951269 0.951269i
\(852\) 1255.30 + 1255.30i 0.00172930 + 0.00172930i
\(853\) 278531. + 278531.i 0.382803 + 0.382803i 0.872111 0.489308i \(-0.162751\pi\)
−0.489308 + 0.872111i \(0.662751\pi\)
\(854\) 631923. 0.866460
\(855\) 1.40831e6i 1.92649i
\(856\) 129670. + 129670.i 0.176968 + 0.176968i
\(857\) 866031.i 1.17916i 0.807711 + 0.589579i \(0.200706\pi\)
−0.807711 + 0.589579i \(0.799294\pi\)
\(858\) 0 0
\(859\) 422018. 0.571932 0.285966 0.958240i \(-0.407686\pi\)
0.285966 + 0.958240i \(0.407686\pi\)
\(860\) −46707.9 + 46707.9i −0.0631529 + 0.0631529i
\(861\) 2.49400e6 3.36427
\(862\) 110407.i 0.148587i
\(863\) −996621. + 996621.i −1.33816 + 1.33816i −0.440320 + 0.897841i \(0.645135\pi\)
−0.897841 + 0.440320i \(0.854865\pi\)
\(864\) −240135. + 240135.i −0.321682 + 0.321682i
\(865\) −523559. 523559.i −0.699734 0.699734i
\(866\) −178410. 178410.i −0.237894 0.237894i
\(867\) −555281. −0.738711
\(868\) 89538.5i 0.118842i
\(869\) 19596.1 + 19596.1i 0.0259495 + 0.0259495i
\(870\) 504369.i 0.666361i
\(871\) 0 0
\(872\) 85602.6 0.112578
\(873\) 950075. 950075.i 1.24661 1.24661i
\(874\) 1.05312e6 1.37865
\(875\) 960504.i 1.25454i
\(876\) −653153. + 653153.i −0.851151 + 0.851151i
\(877\) −913030. + 913030.i −1.18710 + 1.18710i −0.209229 + 0.977867i \(0.567096\pi\)
−0.977867 + 0.209229i \(0.932904\pi\)
\(878\) −14906.0 14906.0i −0.0193362 0.0193362i
\(879\) 680046. + 680046.i 0.880158 + 0.880158i
\(880\) −20929.1 −0.0270262
\(881\) 1.11724e6i 1.43945i 0.694260 + 0.719724i \(0.255732\pi\)
−0.694260 + 0.719724i \(0.744268\pi\)
\(882\) −319177. 319177.i −0.410294 0.410294i
\(883\) 839397.i 1.07658i −0.842760 0.538289i \(-0.819071\pi\)
0.842760 0.538289i \(-0.180929\pi\)
\(884\) 0 0
\(885\) 415695. 0.530747
\(886\) 413966. 413966.i 0.527349 0.527349i
\(887\) 163002. 0.207179 0.103590 0.994620i \(-0.466967\pi\)
0.103590 + 0.994620i \(0.466967\pi\)
\(888\) 371597.i 0.471244i
\(889\) 145523. 145523.i 0.184131 0.184131i
\(890\) −201524. + 201524.i −0.254417 + 0.254417i
\(891\) 185650. + 185650.i 0.233852 + 0.233852i
\(892\) 422859. + 422859.i 0.531455 + 0.531455i
\(893\) 31765.3 0.0398336
\(894\) 813626.i 1.01800i
\(895\) 59296.0 + 59296.0i 0.0740252 + 0.0740252i
\(896\) 82216.0i 0.102409i
\(897\) 0 0
\(898\) 806731. 1.00040
\(899\) −78162.8 + 78162.8i −0.0967121 + 0.0967121i
\(900\) 399635. 0.493377
\(901\) 844246.i 1.03997i
\(902\) 90341.8 90341.8i 0.111039 0.111039i
\(903\) −286733. + 286733.i −0.351644 + 0.351644i
\(904\) −48132.1 48132.1i −0.0588976 0.0588976i
\(905\) −339996. 339996.i −0.415123 0.415123i
\(906\) −1.04948e6 −1.27854
\(907\) 637788.i 0.775285i 0.921810 + 0.387643i \(0.126711\pi\)
−0.921810 + 0.387643i \(0.873289\pi\)
\(908\) −258758. 258758.i −0.313850 0.313850i
\(909\) 280541.i 0.339522i
\(910\) 0 0
\(911\) 1.34739e6 1.62352 0.811759 0.583993i \(-0.198510\pi\)
0.811759 + 0.583993i \(0.198510\pi\)
\(912\) 284026. 284026.i 0.341482 0.341482i
\(913\) 106292. 0.127514
\(914\) 1.01728e6i 1.21772i
\(915\) 884972. 884972.i 1.05703 1.05703i
\(916\) 398475. 398475.i 0.474909 0.474909i
\(917\) 177769. + 177769.i 0.211406 + 0.211406i
\(918\) 839355. + 839355.i 0.996003 + 0.996003i
\(919\) −548840. −0.649853 −0.324926 0.945739i \(-0.605340\pi\)
−0.324926 + 0.945739i \(0.605340\pi\)
\(920\) 426916.i 0.504390i
\(921\) 57104.7 + 57104.7i 0.0673214 + 0.0673214i
\(922\) 15828.7i 0.0186201i
\(923\) 0 0
\(924\) −128481. −0.150485
\(925\) −180178. + 180178.i −0.210580 + 0.210580i
\(926\) −616219. −0.718642
\(927\) 863581.i 1.00495i
\(928\) −71770.6 + 71770.6i −0.0833394 + 0.0833394i
\(929\) −879177. + 879177.i −1.01870 + 1.01870i −0.0188751 + 0.999822i \(0.506008\pi\)
−0.999822 + 0.0188751i \(0.993992\pi\)
\(930\) −125394. 125394.i −0.144980 0.144980i
\(931\) 219981. + 219981.i 0.253796 + 0.253796i
\(932\) 582955. 0.671124
\(933\) 76413.0i 0.0877817i
\(934\) −113084. 113084.i −0.129630 0.129630i
\(935\) 73154.5i 0.0836793i
\(936\) 0 0
\(937\) −406144. −0.462595 −0.231298 0.972883i \(-0.574297\pi\)
−0.231298 + 0.972883i \(0.574297\pi\)
\(938\) −480608. + 480608.i −0.546242 + 0.546242i
\(939\) −1.99100e6 −2.25808
\(940\) 12877.1i 0.0145734i
\(941\) 903964. 903964.i 1.02087 1.02087i 0.0210962 0.999777i \(-0.493284\pi\)
0.999777 0.0210962i \(-0.00671562\pi\)
\(942\) 584822. 584822.i 0.659055 0.659055i
\(943\) 1.84281e6 + 1.84281e6i 2.07232 + 2.07232i
\(944\) 59152.5 + 59152.5i 0.0663787 + 0.0663787i
\(945\) −2.04221e6 −2.28685
\(946\) 20773.0i 0.0232123i
\(947\) 105869. + 105869.i 0.118050 + 0.118050i 0.763664 0.645614i \(-0.223398\pi\)
−0.645614 + 0.763664i \(0.723398\pi\)
\(948\) 215611.i 0.239913i
\(949\) 0 0
\(950\) −275434. −0.305190
\(951\) −1.44355e6 + 1.44355e6i −1.59614 + 1.59614i
\(952\) −287374. −0.317083
\(953\) 857742.i 0.944432i −0.881483 0.472216i \(-0.843454\pi\)
0.881483 0.472216i \(-0.156546\pi\)
\(954\) −1.46511e6 + 1.46511e6i −1.60981 + 1.60981i
\(955\) 106377. 106377.i 0.116639 0.116639i
\(956\) −113790. 113790.i −0.124505 0.124505i
\(957\) 112157. + 112157.i 0.122463 + 0.122463i
\(958\) −190138. −0.207175
\(959\) 78499.2i 0.0853548i
\(960\) −115139. 115139.i −0.124934 0.124934i
\(961\) 884656.i 0.957917i
\(962\) 0 0
\(963\) 1.57313e6 1.69634
\(964\) 338711. 338711.i 0.364481 0.364481i
\(965\) 724695. 0.778216
\(966\) 2.62078e6i 2.80851i
\(967\) 620036. 620036.i 0.663077 0.663077i −0.293027 0.956104i \(-0.594663\pi\)
0.956104 + 0.293027i \(0.0946625\pi\)
\(968\) 229602. 229602.i 0.245033 0.245033i
\(969\) −992771. 992771.i −1.05731 1.05731i
\(970\) 265445. + 265445.i 0.282118 + 0.282118i
\(971\) 623835. 0.661654 0.330827 0.943691i \(-0.392672\pi\)
0.330827 + 0.943691i \(0.392672\pi\)
\(972\) 826985.i 0.875317i
\(973\) 1.45077e6 + 1.45077e6i 1.53240 + 1.53240i
\(974\) 439697.i 0.463485i
\(975\) 0 0
\(976\) 251859. 0.264398
\(977\) 214254. 214254.i 0.224461 0.224461i −0.585913 0.810374i \(-0.699264\pi\)
0.810374 + 0.585913i \(0.199264\pi\)
\(978\) 2.31975e6 2.42529
\(979\) 89626.4i 0.0935127i
\(980\) 89176.1 89176.1i 0.0928531 0.0928531i
\(981\) 519254. 519254.i 0.539563 0.539563i
\(982\) 850973. + 850973.i 0.882456 + 0.882456i
\(983\) −1.30014e6 1.30014e6i −1.34550 1.34550i −0.890479 0.455024i \(-0.849631\pi\)
−0.455024 0.890479i \(-0.650369\pi\)
\(984\) 994009. 1.02660
\(985\) 183768.i 0.189408i
\(986\) 250864. + 250864.i 0.258038 + 0.258038i
\(987\) 79050.5i 0.0811466i
\(988\) 0 0
\(989\) −423733. −0.433211
\(990\) −126953. + 126953.i −0.129531 + 0.129531i
\(991\) −1.48766e6 −1.51481 −0.757403 0.652948i \(-0.773532\pi\)
−0.757403 + 0.652948i \(0.773532\pi\)
\(992\) 35686.5i 0.0362644i
\(993\) 1.02117e6 1.02117e6i 1.03562 1.03562i
\(994\) −1519.12 + 1519.12i −0.00153752 + 0.00153752i
\(995\) 828226. + 828226.i 0.836571 + 0.836571i
\(996\) 584753. + 584753.i 0.589459 + 0.589459i
\(997\) 1.29351e6 1.30130 0.650651 0.759377i \(-0.274496\pi\)
0.650651 + 0.759377i \(0.274496\pi\)
\(998\) 546205.i 0.548397i
\(999\) −1.31345e6 1.31345e6i −1.31609 1.31609i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.5.d.c.239.1 6
13.5 odd 4 26.5.d.b.21.1 yes 6
13.8 odd 4 inner 338.5.d.c.99.1 6
13.12 even 2 26.5.d.b.5.1 6
39.5 even 4 234.5.i.a.73.2 6
39.38 odd 2 234.5.i.a.109.2 6
52.31 even 4 208.5.t.a.177.3 6
52.51 odd 2 208.5.t.a.161.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.5.d.b.5.1 6 13.12 even 2
26.5.d.b.21.1 yes 6 13.5 odd 4
208.5.t.a.161.3 6 52.51 odd 2
208.5.t.a.177.3 6 52.31 even 4
234.5.i.a.73.2 6 39.5 even 4
234.5.i.a.109.2 6 39.38 odd 2
338.5.d.c.99.1 6 13.8 odd 4 inner
338.5.d.c.239.1 6 1.1 even 1 trivial