Properties

Label 26.5.d.b.21.1
Level $26$
Weight $5$
Character 26.21
Analytic conductor $2.688$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [26,5,Mod(5,26)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(26, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([3])) N = Newforms(chi, 5, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("26.5"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Level: \( N \) \(=\) \( 26 = 2 \cdot 13 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 26.d (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.68761904018\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 522x^{4} + 68121x^{2} + 54756 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 21.1
Root \(-16.5864i\) of defining polynomial
Character \(\chi\) \(=\) 26.21
Dual form 26.5.d.b.5.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.00000 + 2.00000i) q^{2} -16.5864 q^{3} +8.00000i q^{4} +(-13.5581 - 13.5581i) q^{5} +(-33.1728 - 33.1728i) q^{6} +(-40.1445 + 40.1445i) q^{7} +(-16.0000 + 16.0000i) q^{8} +194.108 q^{9} -54.2326i q^{10} +(-12.0598 + 12.0598i) q^{11} -132.691i q^{12} +(-73.6146 + 152.125i) q^{13} -160.578 q^{14} +(224.880 + 224.880i) q^{15} -64.0000 q^{16} -223.703i q^{17} +(388.216 + 388.216i) q^{18} +(-267.563 - 267.563i) q^{19} +(108.465 - 108.465i) q^{20} +(665.852 - 665.852i) q^{21} -48.2392 q^{22} +983.993i q^{23} +(265.382 - 265.382i) q^{24} -257.354i q^{25} +(-451.478 + 157.020i) q^{26} -1876.05 q^{27} +(-321.156 - 321.156i) q^{28} -560.708 q^{29} +899.522i q^{30} +(-139.400 - 139.400i) q^{31} +(-128.000 - 128.000i) q^{32} +(200.028 - 200.028i) q^{33} +(447.405 - 447.405i) q^{34} +1088.57 q^{35} +1552.86i q^{36} +(-700.116 + 700.116i) q^{37} -1070.25i q^{38} +(1221.00 - 2523.20i) q^{39} +433.860 q^{40} +(1872.79 + 1872.79i) q^{41} +2663.41 q^{42} +430.626i q^{43} +(-96.4783 - 96.4783i) q^{44} +(-2631.74 - 2631.74i) q^{45} +(-1967.99 + 1967.99i) q^{46} +(-59.3604 + 59.3604i) q^{47} +1061.53 q^{48} -822.164i q^{49} +(514.708 - 514.708i) q^{50} +3710.42i q^{51} +(-1217.00 - 588.917i) q^{52} +3773.97 q^{53} +(-3752.10 - 3752.10i) q^{54} +327.017 q^{55} -1284.62i q^{56} +(4437.90 + 4437.90i) q^{57} +(-1121.42 - 1121.42i) q^{58} +(924.257 - 924.257i) q^{59} +(-1799.04 + 1799.04i) q^{60} -3935.30 q^{61} -557.601i q^{62} +(-7792.37 + 7792.37i) q^{63} -512.000i q^{64} +(3060.60 - 1064.45i) q^{65} +800.113 q^{66} +(-2992.99 - 2992.99i) q^{67} +1789.62 q^{68} -16320.9i q^{69} +(2177.14 + 2177.14i) q^{70} +(-9.46035 - 9.46035i) q^{71} +(-3105.73 + 3105.73i) q^{72} +(-4922.36 + 4922.36i) q^{73} -2800.47 q^{74} +4268.57i q^{75} +(2140.51 - 2140.51i) q^{76} -968.269i q^{77} +(7488.39 - 2604.39i) q^{78} +1624.91 q^{79} +(867.721 + 867.721i) q^{80} +15394.2 q^{81} +7491.16i q^{82} +(-4406.88 - 4406.88i) q^{83} +(5326.82 + 5326.82i) q^{84} +(-3032.99 + 3032.99i) q^{85} +(-861.252 + 861.252i) q^{86} +9300.11 q^{87} -385.913i q^{88} +(-3715.92 + 3715.92i) q^{89} -10527.0i q^{90} +(-3151.74 - 9062.19i) q^{91} -7871.95 q^{92} +(2312.15 + 2312.15i) q^{93} -237.441 q^{94} +7255.32i q^{95} +(2123.06 + 2123.06i) q^{96} +(-4894.57 - 4894.57i) q^{97} +(1644.33 - 1644.33i) q^{98} +(-2340.90 + 2340.90i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 12 q^{2} - 30 q^{5} - 90 q^{7} - 96 q^{8} + 558 q^{9} - 66 q^{11} - 294 q^{13} - 360 q^{14} - 288 q^{15} - 384 q^{16} + 1116 q^{18} - 318 q^{19} + 240 q^{20} + 756 q^{21} - 264 q^{22} + 84 q^{26}+ \cdots - 61074 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/26\mathbb{Z}\right)^\times\).

\(n\) \(15\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 + 2.00000i 0.500000 + 0.500000i
\(3\) −16.5864 −1.84293 −0.921465 0.388460i \(-0.873007\pi\)
−0.921465 + 0.388460i \(0.873007\pi\)
\(4\) 8.00000i 0.500000i
\(5\) −13.5581 13.5581i −0.542326 0.542326i 0.381885 0.924210i \(-0.375275\pi\)
−0.924210 + 0.381885i \(0.875275\pi\)
\(6\) −33.1728 33.1728i −0.921465 0.921465i
\(7\) −40.1445 + 40.1445i −0.819276 + 0.819276i −0.986003 0.166727i \(-0.946680\pi\)
0.166727 + 0.986003i \(0.446680\pi\)
\(8\) −16.0000 + 16.0000i −0.250000 + 0.250000i
\(9\) 194.108 2.39639
\(10\) 54.2326i 0.542326i
\(11\) −12.0598 + 12.0598i −0.0996677 + 0.0996677i −0.755182 0.655515i \(-0.772452\pi\)
0.655515 + 0.755182i \(0.272452\pi\)
\(12\) 132.691i 0.921465i
\(13\) −73.6146 + 152.125i −0.435589 + 0.900145i
\(14\) −160.578 −0.819276
\(15\) 224.880 + 224.880i 0.999468 + 0.999468i
\(16\) −64.0000 −0.250000
\(17\) 223.703i 0.774058i −0.922068 0.387029i \(-0.873501\pi\)
0.922068 0.387029i \(-0.126499\pi\)
\(18\) 388.216 + 388.216i 1.19820 + 1.19820i
\(19\) −267.563 267.563i −0.741172 0.741172i 0.231631 0.972804i \(-0.425594\pi\)
−0.972804 + 0.231631i \(0.925594\pi\)
\(20\) 108.465 108.465i 0.271163 0.271163i
\(21\) 665.852 665.852i 1.50987 1.50987i
\(22\) −48.2392 −0.0996677
\(23\) 983.993i 1.86010i 0.367432 + 0.930050i \(0.380237\pi\)
−0.367432 + 0.930050i \(0.619763\pi\)
\(24\) 265.382 265.382i 0.460733 0.460733i
\(25\) 257.354i 0.411766i
\(26\) −451.478 + 157.020i −0.667867 + 0.232278i
\(27\) −1876.05 −2.57346
\(28\) −321.156 321.156i −0.409638 0.409638i
\(29\) −560.708 −0.666715 −0.333358 0.942800i \(-0.608182\pi\)
−0.333358 + 0.942800i \(0.608182\pi\)
\(30\) 899.522i 0.999468i
\(31\) −139.400 139.400i −0.145058 0.145058i 0.630849 0.775906i \(-0.282707\pi\)
−0.775906 + 0.630849i \(0.782707\pi\)
\(32\) −128.000 128.000i −0.125000 0.125000i
\(33\) 200.028 200.028i 0.183681 0.183681i
\(34\) 447.405 447.405i 0.387029 0.387029i
\(35\) 1088.57 0.888628
\(36\) 1552.86i 1.19820i
\(37\) −700.116 + 700.116i −0.511407 + 0.511407i −0.914957 0.403550i \(-0.867776\pi\)
0.403550 + 0.914957i \(0.367776\pi\)
\(38\) 1070.25i 0.741172i
\(39\) 1221.00 2523.20i 0.802761 1.65891i
\(40\) 433.860 0.271163
\(41\) 1872.79 + 1872.79i 1.11409 + 1.11409i 0.992591 + 0.121501i \(0.0387707\pi\)
0.121501 + 0.992591i \(0.461229\pi\)
\(42\) 2663.41 1.50987
\(43\) 430.626i 0.232897i 0.993197 + 0.116448i \(0.0371510\pi\)
−0.993197 + 0.116448i \(0.962849\pi\)
\(44\) −96.4783 96.4783i −0.0498339 0.0498339i
\(45\) −2631.74 2631.74i −1.29963 1.29963i
\(46\) −1967.99 + 1967.99i −0.930050 + 0.930050i
\(47\) −59.3604 + 59.3604i −0.0268721 + 0.0268721i −0.720415 0.693543i \(-0.756049\pi\)
0.693543 + 0.720415i \(0.256049\pi\)
\(48\) 1061.53 0.460733
\(49\) 822.164i 0.342426i
\(50\) 514.708 514.708i 0.205883 0.205883i
\(51\) 3710.42i 1.42653i
\(52\) −1217.00 588.917i −0.450073 0.217795i
\(53\) 3773.97 1.34353 0.671763 0.740766i \(-0.265537\pi\)
0.671763 + 0.740766i \(0.265537\pi\)
\(54\) −3752.10 3752.10i −1.28673 1.28673i
\(55\) 327.017 0.108105
\(56\) 1284.62i 0.409638i
\(57\) 4437.90 + 4437.90i 1.36593 + 1.36593i
\(58\) −1121.42 1121.42i −0.333358 0.333358i
\(59\) 924.257 924.257i 0.265515 0.265515i −0.561775 0.827290i \(-0.689881\pi\)
0.827290 + 0.561775i \(0.189881\pi\)
\(60\) −1799.04 + 1799.04i −0.499734 + 0.499734i
\(61\) −3935.30 −1.05759 −0.528796 0.848749i \(-0.677356\pi\)
−0.528796 + 0.848749i \(0.677356\pi\)
\(62\) 557.601i 0.145058i
\(63\) −7792.37 + 7792.37i −1.96331 + 1.96331i
\(64\) 512.000i 0.125000i
\(65\) 3060.60 1064.45i 0.724403 0.251941i
\(66\) 800.113 0.183681
\(67\) −2992.99 2992.99i −0.666738 0.666738i 0.290222 0.956959i \(-0.406271\pi\)
−0.956959 + 0.290222i \(0.906271\pi\)
\(68\) 1789.62 0.387029
\(69\) 16320.9i 3.42804i
\(70\) 2177.14 + 2177.14i 0.444314 + 0.444314i
\(71\) −9.46035 9.46035i −0.00187668 0.00187668i 0.706168 0.708044i \(-0.250422\pi\)
−0.708044 + 0.706168i \(0.750422\pi\)
\(72\) −3105.73 + 3105.73i −0.599099 + 0.599099i
\(73\) −4922.36 + 4922.36i −0.923693 + 0.923693i −0.997288 0.0735956i \(-0.976553\pi\)
0.0735956 + 0.997288i \(0.476553\pi\)
\(74\) −2800.47 −0.511407
\(75\) 4268.57i 0.758856i
\(76\) 2140.51 2140.51i 0.370586 0.370586i
\(77\) 968.269i 0.163311i
\(78\) 7488.39 2604.39i 1.23083 0.428072i
\(79\) 1624.91 0.260361 0.130180 0.991490i \(-0.458444\pi\)
0.130180 + 0.991490i \(0.458444\pi\)
\(80\) 867.721 + 867.721i 0.135581 + 0.135581i
\(81\) 15394.2 2.34631
\(82\) 7491.16i 1.11409i
\(83\) −4406.88 4406.88i −0.639698 0.639698i 0.310783 0.950481i \(-0.399409\pi\)
−0.950481 + 0.310783i \(0.899409\pi\)
\(84\) 5326.82 + 5326.82i 0.754934 + 0.754934i
\(85\) −3032.99 + 3032.99i −0.419791 + 0.419791i
\(86\) −861.252 + 861.252i −0.116448 + 0.116448i
\(87\) 9300.11 1.22871
\(88\) 385.913i 0.0498339i
\(89\) −3715.92 + 3715.92i −0.469122 + 0.469122i −0.901630 0.432508i \(-0.857629\pi\)
0.432508 + 0.901630i \(0.357629\pi\)
\(90\) 10527.0i 1.29963i
\(91\) −3151.74 9062.19i −0.380599 1.09434i
\(92\) −7871.95 −0.930050
\(93\) 2312.15 + 2312.15i 0.267331 + 0.267331i
\(94\) −237.441 −0.0268721
\(95\) 7255.32i 0.803913i
\(96\) 2123.06 + 2123.06i 0.230366 + 0.230366i
\(97\) −4894.57 4894.57i −0.520201 0.520201i 0.397431 0.917632i \(-0.369902\pi\)
−0.917632 + 0.397431i \(0.869902\pi\)
\(98\) 1644.33 1644.33i 0.171213 0.171213i
\(99\) −2340.90 + 2340.90i −0.238843 + 0.238843i
\(100\) 2058.83 0.205883
\(101\) 1445.28i 0.141681i 0.997488 + 0.0708403i \(0.0225681\pi\)
−0.997488 + 0.0708403i \(0.977432\pi\)
\(102\) −7420.83 + 7420.83i −0.713267 + 0.713267i
\(103\) 4448.97i 0.419358i −0.977770 0.209679i \(-0.932758\pi\)
0.977770 0.209679i \(-0.0672420\pi\)
\(104\) −1256.16 3611.83i −0.116139 0.333934i
\(105\) −18055.4 −1.63768
\(106\) 7547.93 + 7547.93i 0.671763 + 0.671763i
\(107\) 8104.41 0.707870 0.353935 0.935270i \(-0.384843\pi\)
0.353935 + 0.935270i \(0.384843\pi\)
\(108\) 15008.4i 1.28673i
\(109\) −2675.08 2675.08i −0.225156 0.225156i 0.585509 0.810666i \(-0.300895\pi\)
−0.810666 + 0.585509i \(0.800895\pi\)
\(110\) 654.033 + 654.033i 0.0540523 + 0.0540523i
\(111\) 11612.4 11612.4i 0.942488 0.942488i
\(112\) 2569.25 2569.25i 0.204819 0.204819i
\(113\) −3008.25 −0.235590 −0.117795 0.993038i \(-0.537583\pi\)
−0.117795 + 0.993038i \(0.537583\pi\)
\(114\) 17751.6i 1.36593i
\(115\) 13341.1 13341.1i 1.00878 1.00878i
\(116\) 4485.66i 0.333358i
\(117\) −14289.2 + 29528.6i −1.04384 + 2.15710i
\(118\) 3697.03 0.265515
\(119\) 8980.43 + 8980.43i 0.634167 + 0.634167i
\(120\) −7196.17 −0.499734
\(121\) 14350.1i 0.980133i
\(122\) −7870.60 7870.60i −0.528796 0.528796i
\(123\) −31062.8 31062.8i −2.05319 2.05319i
\(124\) 1115.20 1115.20i 0.0725288 0.0725288i
\(125\) −11963.1 + 11963.1i −0.765637 + 0.765637i
\(126\) −31169.5 −1.96331
\(127\) 3624.98i 0.224749i 0.993666 + 0.112374i \(0.0358456\pi\)
−0.993666 + 0.112374i \(0.964154\pi\)
\(128\) 1024.00 1024.00i 0.0625000 0.0625000i
\(129\) 7142.53i 0.429213i
\(130\) 8250.10 + 3992.31i 0.488172 + 0.236231i
\(131\) 4428.23 0.258040 0.129020 0.991642i \(-0.458817\pi\)
0.129020 + 0.991642i \(0.458817\pi\)
\(132\) 1600.23 + 1600.23i 0.0918404 + 0.0918404i
\(133\) 21482.4 1.21445
\(134\) 11971.9i 0.666738i
\(135\) 25435.8 + 25435.8i 1.39565 + 1.39565i
\(136\) 3579.24 + 3579.24i 0.193514 + 0.193514i
\(137\) 977.708 977.708i 0.0520916 0.0520916i −0.680581 0.732673i \(-0.738273\pi\)
0.732673 + 0.680581i \(0.238273\pi\)
\(138\) 32641.8 32641.8i 1.71402 1.71402i
\(139\) 36138.6 1.87043 0.935216 0.354079i \(-0.115206\pi\)
0.935216 + 0.354079i \(0.115206\pi\)
\(140\) 8708.56i 0.444314i
\(141\) 984.573 984.573i 0.0495233 0.0495233i
\(142\) 37.8414i 0.00187668i
\(143\) −946.814 2722.37i −0.0463012 0.133130i
\(144\) −12422.9 −0.599099
\(145\) 7602.15 + 7602.15i 0.361577 + 0.361577i
\(146\) −19689.4 −0.923693
\(147\) 13636.7i 0.631067i
\(148\) −5600.93 5600.93i −0.255704 0.255704i
\(149\) 12263.5 + 12263.5i 0.552383 + 0.552383i 0.927128 0.374745i \(-0.122270\pi\)
−0.374745 + 0.927128i \(0.622270\pi\)
\(150\) −8537.14 + 8537.14i −0.379428 + 0.379428i
\(151\) 15818.3 15818.3i 0.693756 0.693756i −0.269300 0.963056i \(-0.586792\pi\)
0.963056 + 0.269300i \(0.0867924\pi\)
\(152\) 8562.02 0.370586
\(153\) 43422.5i 1.85495i
\(154\) 1936.54 1936.54i 0.0816553 0.0816553i
\(155\) 3780.02i 0.157337i
\(156\) 20185.6 + 9768.00i 0.829453 + 0.401381i
\(157\) 17629.6 0.715225 0.357612 0.933870i \(-0.383591\pi\)
0.357612 + 0.933870i \(0.383591\pi\)
\(158\) 3249.82 + 3249.82i 0.130180 + 0.130180i
\(159\) −62596.4 −2.47603
\(160\) 3470.88i 0.135581i
\(161\) −39501.9 39501.9i −1.52394 1.52394i
\(162\) 30788.3 + 30788.3i 1.17316 + 1.17316i
\(163\) −34964.7 + 34964.7i −1.31600 + 1.31600i −0.399080 + 0.916916i \(0.630670\pi\)
−0.916916 + 0.399080i \(0.869330\pi\)
\(164\) −14982.3 + 14982.3i −0.557046 + 0.557046i
\(165\) −5424.02 −0.199229
\(166\) 17627.5i 0.639698i
\(167\) −3546.29 + 3546.29i −0.127157 + 0.127157i −0.767821 0.640664i \(-0.778659\pi\)
0.640664 + 0.767821i \(0.278659\pi\)
\(168\) 21307.3i 0.754934i
\(169\) −17722.8 22397.2i −0.620524 0.784188i
\(170\) −12132.0 −0.419791
\(171\) −51936.1 51936.1i −1.77614 1.77614i
\(172\) −3445.01 −0.116448
\(173\) 38615.8i 1.29025i 0.764078 + 0.645124i \(0.223194\pi\)
−0.764078 + 0.645124i \(0.776806\pi\)
\(174\) 18600.2 + 18600.2i 0.614355 + 0.614355i
\(175\) 10331.3 + 10331.3i 0.337350 + 0.337350i
\(176\) 771.827 771.827i 0.0249169 0.0249169i
\(177\) −15330.1 + 15330.1i −0.489326 + 0.489326i
\(178\) −14863.7 −0.469122
\(179\) 4373.46i 0.136496i −0.997668 0.0682479i \(-0.978259\pi\)
0.997668 0.0682479i \(-0.0217409\pi\)
\(180\) 21053.9 21053.9i 0.649813 0.649813i
\(181\) 25076.9i 0.765450i 0.923862 + 0.382725i \(0.125014\pi\)
−0.923862 + 0.382725i \(0.874986\pi\)
\(182\) 11820.9 24427.9i 0.356868 0.737467i
\(183\) 65272.4 1.94907
\(184\) −15743.9 15743.9i −0.465025 0.465025i
\(185\) 18984.5 0.554698
\(186\) 9248.58i 0.267331i
\(187\) 2697.81 + 2697.81i 0.0771485 + 0.0771485i
\(188\) −474.883 474.883i −0.0134360 0.0134360i
\(189\) 75313.2 75313.2i 2.10837 2.10837i
\(190\) −14510.6 + 14510.6i −0.401957 + 0.401957i
\(191\) 7846.01 0.215071 0.107536 0.994201i \(-0.465704\pi\)
0.107536 + 0.994201i \(0.465704\pi\)
\(192\) 8492.23i 0.230366i
\(193\) −26725.4 + 26725.4i −0.717481 + 0.717481i −0.968089 0.250608i \(-0.919370\pi\)
0.250608 + 0.968089i \(0.419370\pi\)
\(194\) 19578.3i 0.520201i
\(195\) −50764.3 + 17655.4i −1.33502 + 0.464309i
\(196\) 6577.32 0.171213
\(197\) −6777.04 6777.04i −0.174626 0.174626i 0.614383 0.789008i \(-0.289405\pi\)
−0.789008 + 0.614383i \(0.789405\pi\)
\(198\) −9363.61 −0.238843
\(199\) 61087.0i 1.54256i −0.636495 0.771281i \(-0.719616\pi\)
0.636495 0.771281i \(-0.280384\pi\)
\(200\) 4117.66 + 4117.66i 0.102942 + 0.102942i
\(201\) 49642.8 + 49642.8i 1.22875 + 1.22875i
\(202\) −2890.57 + 2890.57i −0.0708403 + 0.0708403i
\(203\) 22509.3 22509.3i 0.546224 0.546224i
\(204\) −29683.3 −0.713267
\(205\) 50783.1i 1.20840i
\(206\) 8897.95 8897.95i 0.209679 0.209679i
\(207\) 191001.i 4.45754i
\(208\) 4711.34 9735.97i 0.108897 0.225036i
\(209\) 6453.51 0.147742
\(210\) −36110.9 36110.9i −0.818840 0.818840i
\(211\) −76793.1 −1.72487 −0.862436 0.506165i \(-0.831063\pi\)
−0.862436 + 0.506165i \(0.831063\pi\)
\(212\) 30191.7i 0.671763i
\(213\) 156.913 + 156.913i 0.00345859 + 0.00345859i
\(214\) 16208.8 + 16208.8i 0.353935 + 0.353935i
\(215\) 5838.49 5838.49i 0.126306 0.126306i
\(216\) 30016.8 30016.8i 0.643365 0.643365i
\(217\) 11192.3 0.237684
\(218\) 10700.3i 0.225156i
\(219\) 81644.1 81644.1i 1.70230 1.70230i
\(220\) 2616.13i 0.0540523i
\(221\) 34030.7 + 16467.8i 0.696764 + 0.337171i
\(222\) 46449.6 0.942488
\(223\) 52857.4 + 52857.4i 1.06291 + 1.06291i 0.997884 + 0.0650260i \(0.0207130\pi\)
0.0650260 + 0.997884i \(0.479287\pi\)
\(224\) 10277.0 0.204819
\(225\) 49954.4i 0.986754i
\(226\) −6016.51 6016.51i −0.117795 0.117795i
\(227\) −32344.8 32344.8i −0.627700 0.627700i 0.319788 0.947489i \(-0.396388\pi\)
−0.947489 + 0.319788i \(0.896388\pi\)
\(228\) −35503.2 + 35503.2i −0.682965 + 0.682965i
\(229\) −49809.4 + 49809.4i −0.949818 + 0.949818i −0.998800 0.0489817i \(-0.984402\pi\)
0.0489817 + 0.998800i \(0.484402\pi\)
\(230\) 53364.5 1.00878
\(231\) 16060.1i 0.300970i
\(232\) 8971.32 8971.32i 0.166679 0.166679i
\(233\) 72869.4i 1.34225i −0.741345 0.671124i \(-0.765812\pi\)
0.741345 0.671124i \(-0.234188\pi\)
\(234\) −87635.6 + 30478.8i −1.60047 + 0.556630i
\(235\) 1609.63 0.0291468
\(236\) 7394.06 + 7394.06i 0.132757 + 0.132757i
\(237\) −26951.4 −0.479827
\(238\) 35921.7i 0.634167i
\(239\) −14223.7 14223.7i −0.249010 0.249010i 0.571554 0.820564i \(-0.306341\pi\)
−0.820564 + 0.571554i \(0.806341\pi\)
\(240\) −14392.3 14392.3i −0.249867 0.249867i
\(241\) −42338.8 + 42338.8i −0.728962 + 0.728962i −0.970413 0.241451i \(-0.922377\pi\)
0.241451 + 0.970413i \(0.422377\pi\)
\(242\) −28700.2 + 28700.2i −0.490066 + 0.490066i
\(243\) −103373. −1.75063
\(244\) 31482.4i 0.528796i
\(245\) −11147.0 + 11147.0i −0.185706 + 0.185706i
\(246\) 124251.i 2.05319i
\(247\) 60399.5 21006.4i 0.990009 0.344316i
\(248\) 4460.81 0.0725288
\(249\) 73094.1 + 73094.1i 1.17892 + 1.17892i
\(250\) −47852.3 −0.765637
\(251\) 114161.i 1.81206i 0.423216 + 0.906029i \(0.360901\pi\)
−0.423216 + 0.906029i \(0.639099\pi\)
\(252\) −62339.0 62339.0i −0.981654 0.981654i
\(253\) −11866.8 11866.8i −0.185392 0.185392i
\(254\) −7249.95 + 7249.95i −0.112374 + 0.112374i
\(255\) 50306.3 50306.3i 0.773646 0.773646i
\(256\) 4096.00 0.0625000
\(257\) 28776.5i 0.435685i −0.975984 0.217842i \(-0.930098\pi\)
0.975984 0.217842i \(-0.0699018\pi\)
\(258\) 14285.1 14285.1i 0.214606 0.214606i
\(259\) 56211.7i 0.837967i
\(260\) 8515.59 + 24484.8i 0.125970 + 0.362202i
\(261\) −108838. −1.59771
\(262\) 8856.46 + 8856.46i 0.129020 + 0.129020i
\(263\) −41981.1 −0.606936 −0.303468 0.952842i \(-0.598144\pi\)
−0.303468 + 0.952842i \(0.598144\pi\)
\(264\) 6400.91i 0.0918404i
\(265\) −51168.0 51168.0i −0.728629 0.728629i
\(266\) 42964.8 + 42964.8i 0.607224 + 0.607224i
\(267\) 61633.6 61633.6i 0.864560 0.864560i
\(268\) 23943.9 23943.9i 0.333369 0.333369i
\(269\) 87860.2 1.21419 0.607096 0.794628i \(-0.292334\pi\)
0.607096 + 0.794628i \(0.292334\pi\)
\(270\) 101743.i 1.39565i
\(271\) −59053.1 + 59053.1i −0.804088 + 0.804088i −0.983732 0.179643i \(-0.942506\pi\)
0.179643 + 0.983732i \(0.442506\pi\)
\(272\) 14317.0i 0.193514i
\(273\) 52276.0 + 150309.i 0.701419 + 2.01678i
\(274\) 3910.83 0.0520916
\(275\) 3103.63 + 3103.63i 0.0410398 + 0.0410398i
\(276\) 130567. 1.71402
\(277\) 59016.9i 0.769160i −0.923092 0.384580i \(-0.874346\pi\)
0.923092 0.384580i \(-0.125654\pi\)
\(278\) 72277.2 + 72277.2i 0.935216 + 0.935216i
\(279\) −27058.7 27058.7i −0.347615 0.347615i
\(280\) −17417.1 + 17417.1i −0.222157 + 0.222157i
\(281\) 73210.7 73210.7i 0.927175 0.927175i −0.0703472 0.997523i \(-0.522411\pi\)
0.997523 + 0.0703472i \(0.0224107\pi\)
\(282\) 3938.29 0.0495233
\(283\) 40778.4i 0.509164i 0.967051 + 0.254582i \(0.0819379\pi\)
−0.967051 + 0.254582i \(0.918062\pi\)
\(284\) 75.6828 75.6828i 0.000938340 0.000938340i
\(285\) 120339.i 1.48156i
\(286\) 3551.11 7338.36i 0.0434142 0.0897154i
\(287\) −150364. −1.82550
\(288\) −24845.8 24845.8i −0.299549 0.299549i
\(289\) 33478.1 0.400835
\(290\) 30408.6i 0.361577i
\(291\) 81183.2 + 81183.2i 0.958694 + 0.958694i
\(292\) −39378.9 39378.9i −0.461846 0.461846i
\(293\) 41000.3 41000.3i 0.477586 0.477586i −0.426773 0.904359i \(-0.640350\pi\)
0.904359 + 0.426773i \(0.140350\pi\)
\(294\) −27273.5 + 27273.5i −0.315534 + 0.315534i
\(295\) −25062.4 −0.287991
\(296\) 22403.7i 0.255704i
\(297\) 22624.8 22624.8i 0.256491 0.256491i
\(298\) 49053.9i 0.552383i
\(299\) −149690. 72436.3i −1.67436 0.810240i
\(300\) −34148.5 −0.379428
\(301\) −17287.3 17287.3i −0.190807 0.190807i
\(302\) 63273.3 0.693756
\(303\) 23972.0i 0.261107i
\(304\) 17124.0 + 17124.0i 0.185293 + 0.185293i
\(305\) 53355.4 + 53355.4i 0.573559 + 0.573559i
\(306\) 86844.9 86844.9i 0.927474 0.927474i
\(307\) 3442.87 3442.87i 0.0365295 0.0365295i −0.688606 0.725136i \(-0.741777\pi\)
0.725136 + 0.688606i \(0.241777\pi\)
\(308\) 7746.15 0.0816553
\(309\) 73792.4i 0.772849i
\(310\) −7560.03 + 7560.03i −0.0786684 + 0.0786684i
\(311\) 4606.97i 0.0476316i −0.999716 0.0238158i \(-0.992418\pi\)
0.999716 0.0238158i \(-0.00758151\pi\)
\(312\) 20835.1 + 59907.1i 0.214036 + 0.615417i
\(313\) 120038. 1.22527 0.612633 0.790368i \(-0.290111\pi\)
0.612633 + 0.790368i \(0.290111\pi\)
\(314\) 35259.1 + 35259.1i 0.357612 + 0.357612i
\(315\) 211300. 2.12950
\(316\) 12999.3i 0.130180i
\(317\) −87032.2 87032.2i −0.866087 0.866087i 0.125950 0.992037i \(-0.459802\pi\)
−0.992037 + 0.125950i \(0.959802\pi\)
\(318\) −125193. 125193.i −1.23801 1.23801i
\(319\) 6762.02 6762.02i 0.0664500 0.0664500i
\(320\) −6941.77 + 6941.77i −0.0677907 + 0.0677907i
\(321\) −134423. −1.30456
\(322\) 158008.i 1.52394i
\(323\) −59854.6 + 59854.6i −0.573710 + 0.573710i
\(324\) 123153.i 1.17316i
\(325\) 39149.8 + 18945.0i 0.370649 + 0.179361i
\(326\) −139859. −1.31600
\(327\) 44369.9 + 44369.9i 0.414947 + 0.414947i
\(328\) −59929.2 −0.557046
\(329\) 4765.99i 0.0440312i
\(330\) −10848.0 10848.0i −0.0996147 0.0996147i
\(331\) 61566.7 + 61566.7i 0.561940 + 0.561940i 0.929858 0.367918i \(-0.119929\pi\)
−0.367918 + 0.929858i \(0.619929\pi\)
\(332\) 35255.0 35255.0i 0.319849 0.319849i
\(333\) −135898. + 135898.i −1.22553 + 1.22553i
\(334\) −14185.1 −0.127157
\(335\) 81158.6i 0.723178i
\(336\) −42614.5 + 42614.5i −0.377467 + 0.377467i
\(337\) 8069.67i 0.0710552i −0.999369 0.0355276i \(-0.988689\pi\)
0.999369 0.0355276i \(-0.0113112\pi\)
\(338\) 9348.82 80239.9i 0.0818321 0.702356i
\(339\) 49896.0 0.434177
\(340\) −24263.9 24263.9i −0.209896 0.209896i
\(341\) 3362.28 0.0289151
\(342\) 207745.i 1.77614i
\(343\) −63381.6 63381.6i −0.538735 0.538735i
\(344\) −6890.02 6890.02i −0.0582242 0.0582242i
\(345\) −221281. + 221281.i −1.85911 + 1.85911i
\(346\) −77231.7 + 77231.7i −0.645124 + 0.645124i
\(347\) 156363. 1.29860 0.649300 0.760533i \(-0.275062\pi\)
0.649300 + 0.760533i \(0.275062\pi\)
\(348\) 74400.9i 0.614355i
\(349\) −141731. + 141731.i −1.16363 + 1.16363i −0.179951 + 0.983676i \(0.557594\pi\)
−0.983676 + 0.179951i \(0.942406\pi\)
\(350\) 41325.4i 0.337350i
\(351\) 138105. 285394.i 1.12097 2.31649i
\(352\) 3087.31 0.0249169
\(353\) −125248. 125248.i −1.00513 1.00513i −0.999987 0.00514429i \(-0.998363\pi\)
−0.00514429 0.999987i \(-0.501637\pi\)
\(354\) −61320.3 −0.489326
\(355\) 256.529i 0.00203554i
\(356\) −29727.3 29727.3i −0.234561 0.234561i
\(357\) −148953. 148953.i −1.16873 1.16873i
\(358\) 8746.93 8746.93i 0.0682479 0.0682479i
\(359\) −50595.2 + 50595.2i −0.392573 + 0.392573i −0.875604 0.483030i \(-0.839536\pi\)
0.483030 + 0.875604i \(0.339536\pi\)
\(360\) 84215.8 0.649813
\(361\) 12859.1i 0.0986722i
\(362\) −50153.8 + 50153.8i −0.382725 + 0.382725i
\(363\) 238017.i 1.80632i
\(364\) 72497.5 25214.0i 0.547168 0.190300i
\(365\) 133476. 1.00188
\(366\) 130545. + 130545.i 0.974535 + 0.974535i
\(367\) 137759. 1.02279 0.511395 0.859346i \(-0.329129\pi\)
0.511395 + 0.859346i \(0.329129\pi\)
\(368\) 62975.6i 0.465025i
\(369\) 363523. + 363523.i 2.66980 + 2.66980i
\(370\) 37969.1 + 37969.1i 0.277349 + 0.277349i
\(371\) −151504. + 151504.i −1.10072 + 1.10072i
\(372\) −18497.2 + 18497.2i −0.133666 + 0.133666i
\(373\) 122430. 0.879975 0.439988 0.898004i \(-0.354983\pi\)
0.439988 + 0.898004i \(0.354983\pi\)
\(374\) 10791.2i 0.0771485i
\(375\) 198424. 198424.i 1.41102 1.41102i
\(376\) 1899.53i 0.0134360i
\(377\) 41276.3 85297.4i 0.290414 0.600141i
\(378\) 301253. 2.10837
\(379\) −113156. 113156.i −0.787769 0.787769i 0.193359 0.981128i \(-0.438062\pi\)
−0.981128 + 0.193359i \(0.938062\pi\)
\(380\) −58042.5 −0.401957
\(381\) 60125.2i 0.414197i
\(382\) 15692.0 + 15692.0i 0.107536 + 0.107536i
\(383\) 68319.5 + 68319.5i 0.465744 + 0.465744i 0.900532 0.434789i \(-0.143177\pi\)
−0.434789 + 0.900532i \(0.643177\pi\)
\(384\) −16984.5 + 16984.5i −0.115183 + 0.115183i
\(385\) −13127.9 + 13127.9i −0.0885676 + 0.0885676i
\(386\) −106902. −0.717481
\(387\) 83588.0i 0.558113i
\(388\) 39156.5 39156.5i 0.260100 0.260100i
\(389\) 85946.1i 0.567972i 0.958828 + 0.283986i \(0.0916569\pi\)
−0.958828 + 0.283986i \(0.908343\pi\)
\(390\) −136839. 66217.9i −0.899667 0.435358i
\(391\) 220122. 1.43983
\(392\) 13154.6 + 13154.6i 0.0856065 + 0.0856065i
\(393\) −73448.3 −0.475551
\(394\) 27108.2i 0.174626i
\(395\) −22030.8 22030.8i −0.141200 0.141200i
\(396\) −18727.2 18727.2i −0.119422 0.119422i
\(397\) −49712.1 + 49712.1i −0.315414 + 0.315414i −0.847003 0.531589i \(-0.821595\pi\)
0.531589 + 0.847003i \(0.321595\pi\)
\(398\) 122174. 122174.i 0.771281 0.771281i
\(399\) −356315. −2.23815
\(400\) 16470.6i 0.102942i
\(401\) 55547.8 55547.8i 0.345445 0.345445i −0.512965 0.858410i \(-0.671453\pi\)
0.858410 + 0.512965i \(0.171453\pi\)
\(402\) 198571.i 1.22875i
\(403\) 31468.1 10944.3i 0.193758 0.0673873i
\(404\) −11562.3 −0.0708403
\(405\) −208716. 208716.i −1.27247 1.27247i
\(406\) 90037.3 0.546224
\(407\) 16886.5i 0.101942i
\(408\) −59366.7 59366.7i −0.356634 0.356634i
\(409\) 77395.2 + 77395.2i 0.462666 + 0.462666i 0.899528 0.436862i \(-0.143910\pi\)
−0.436862 + 0.899528i \(0.643910\pi\)
\(410\) 101566. 101566.i 0.604201 0.604201i
\(411\) −16216.6 + 16216.6i −0.0960013 + 0.0960013i
\(412\) 35591.8 0.209679
\(413\) 74207.7i 0.435060i
\(414\) −382002. + 382002.i −2.22877 + 2.22877i
\(415\) 119498.i 0.693849i
\(416\) 28894.6 10049.3i 0.166967 0.0580695i
\(417\) −599409. −3.44708
\(418\) 12907.0 + 12907.0i 0.0738709 + 0.0738709i
\(419\) 144154. 0.821106 0.410553 0.911837i \(-0.365336\pi\)
0.410553 + 0.911837i \(0.365336\pi\)
\(420\) 144443.i 0.818840i
\(421\) 190864. + 190864.i 1.07686 + 1.07686i 0.996789 + 0.0800732i \(0.0255154\pi\)
0.0800732 + 0.996789i \(0.474485\pi\)
\(422\) −153586. 153586.i −0.862436 0.862436i
\(423\) −11522.3 + 11522.3i −0.0643960 + 0.0643960i
\(424\) −60383.5 + 60383.5i −0.335882 + 0.335882i
\(425\) −57570.7 −0.318731
\(426\) 627.651i 0.00345859i
\(427\) 157981. 157981.i 0.866460 0.866460i
\(428\) 64835.2i 0.353935i
\(429\) 15704.2 + 45154.2i 0.0853300 + 0.245349i
\(430\) 23354.0 0.126306
\(431\) 27601.8 + 27601.8i 0.148587 + 0.148587i 0.777487 0.628899i \(-0.216494\pi\)
−0.628899 + 0.777487i \(0.716494\pi\)
\(432\) 120067. 0.643365
\(433\) 89204.9i 0.475787i −0.971291 0.237894i \(-0.923543\pi\)
0.971291 0.237894i \(-0.0764570\pi\)
\(434\) 22384.6 + 22384.6i 0.118842 + 0.118842i
\(435\) −126092. 126092.i −0.666361 0.666361i
\(436\) 21400.6 21400.6i 0.112578 0.112578i
\(437\) 263280. 263280.i 1.37865 1.37865i
\(438\) 326576. 1.70230
\(439\) 7453.00i 0.0386725i −0.999813 0.0193362i \(-0.993845\pi\)
0.999813 0.0193362i \(-0.00615530\pi\)
\(440\) −5232.27 + 5232.27i −0.0270262 + 0.0270262i
\(441\) 159589.i 0.820587i
\(442\) 35125.8 + 100997.i 0.179797 + 0.516968i
\(443\) −206983. −1.05470 −0.527349 0.849649i \(-0.676814\pi\)
−0.527349 + 0.849649i \(0.676814\pi\)
\(444\) 92899.2 + 92899.2i 0.471244 + 0.471244i
\(445\) 100762. 0.508834
\(446\) 211430.i 1.06291i
\(447\) −203406. 203406.i −1.01800 1.01800i
\(448\) 20554.0 + 20554.0i 0.102409 + 0.102409i
\(449\) 201683. 201683.i 1.00040 1.00040i 0.000405082 1.00000i \(-0.499871\pi\)
1.00000 0.000405082i \(-0.000128942\pi\)
\(450\) 99908.8 99908.8i 0.493377 0.493377i
\(451\) −45170.9 −0.222078
\(452\) 24066.0i 0.117795i
\(453\) −262369. + 262369.i −1.27854 + 1.27854i
\(454\) 129379.i 0.627700i
\(455\) −80134.6 + 165598.i −0.387077 + 0.799895i
\(456\) −142013. −0.682965
\(457\) −254320. 254320.i −1.21772 1.21772i −0.968428 0.249295i \(-0.919801\pi\)
−0.249295 0.968428i \(-0.580199\pi\)
\(458\) −199238. −0.949818
\(459\) 419678.i 1.99201i
\(460\) 106729. + 106729.i 0.504390 + 0.504390i
\(461\) −3957.17 3957.17i −0.0186201 0.0186201i 0.697735 0.716356i \(-0.254191\pi\)
−0.716356 + 0.697735i \(0.754191\pi\)
\(462\) −32120.2 + 32120.2i −0.150485 + 0.150485i
\(463\) −154055. + 154055.i −0.718642 + 0.718642i −0.968327 0.249685i \(-0.919673\pi\)
0.249685 + 0.968327i \(0.419673\pi\)
\(464\) 35885.3 0.166679
\(465\) 62696.8i 0.289961i
\(466\) 145739. 145739.i 0.671124 0.671124i
\(467\) 56541.9i 0.259261i −0.991562 0.129630i \(-0.958621\pi\)
0.991562 0.129630i \(-0.0413790\pi\)
\(468\) −236229. 114313.i −1.07855 0.521922i
\(469\) 240304. 1.09248
\(470\) 3219.26 + 3219.26i 0.0145734 + 0.0145734i
\(471\) −292411. −1.31811
\(472\) 29576.2i 0.132757i
\(473\) −5193.26 5193.26i −0.0232123 0.0232123i
\(474\) −53902.8 53902.8i −0.239913 0.239913i
\(475\) −68858.4 + 68858.4i −0.305190 + 0.305190i
\(476\) −71843.5 + 71843.5i −0.317083 + 0.317083i
\(477\) 732557. 3.21962
\(478\) 56894.9i 0.249010i
\(479\) −47534.5 + 47534.5i −0.207175 + 0.207175i −0.803066 0.595891i \(-0.796799\pi\)
0.595891 + 0.803066i \(0.296799\pi\)
\(480\) 57569.4i 0.249867i
\(481\) −54966.1 158044.i −0.237577 0.683104i
\(482\) −169355. −0.728962
\(483\) 655194. + 655194.i 2.80851 + 2.80851i
\(484\) −114801. −0.490066
\(485\) 132722.i 0.564236i
\(486\) −206746. 206746.i −0.875317 0.875317i
\(487\) −109924. 109924.i −0.463485 0.463485i 0.436311 0.899796i \(-0.356285\pi\)
−0.899796 + 0.436311i \(0.856285\pi\)
\(488\) 62964.8 62964.8i 0.264398 0.264398i
\(489\) 579938. 579938.i 2.42529 2.42529i
\(490\) −44588.1 −0.185706
\(491\) 425487.i 1.76491i 0.470396 + 0.882456i \(0.344111\pi\)
−0.470396 + 0.882456i \(0.655889\pi\)
\(492\) 248502. 248502.i 1.02660 1.02660i
\(493\) 125432.i 0.516076i
\(494\) 162812. + 78786.2i 0.667163 + 0.322847i
\(495\) 63476.5 0.259061
\(496\) 8921.62 + 8921.62i 0.0362644 + 0.0362644i
\(497\) 759.562 0.00307504
\(498\) 292377.i 1.17892i
\(499\) −136551. 136551.i −0.548397 0.548397i 0.377580 0.925977i \(-0.376756\pi\)
−0.925977 + 0.377580i \(0.876756\pi\)
\(500\) −95704.6 95704.6i −0.382818 0.382818i
\(501\) 58820.0 58820.0i 0.234342 0.234342i
\(502\) −228323. + 228323.i −0.906029 + 0.906029i
\(503\) −298633. −1.18033 −0.590164 0.807284i \(-0.700937\pi\)
−0.590164 + 0.807284i \(0.700937\pi\)
\(504\) 249356.i 0.981654i
\(505\) 19595.3 19595.3i 0.0768370 0.0768370i
\(506\) 47467.0i 0.185392i
\(507\) 293957. + 371488.i 1.14358 + 1.44520i
\(508\) −28999.8 −0.112374
\(509\) 242694. + 242694.i 0.936750 + 0.936750i 0.998115 0.0613650i \(-0.0195454\pi\)
−0.0613650 + 0.998115i \(0.519545\pi\)
\(510\) 201225. 0.773646
\(511\) 395211.i 1.51352i
\(512\) 8192.00 + 8192.00i 0.0312500 + 0.0312500i
\(513\) 501962. + 501962.i 1.90738 + 1.90738i
\(514\) 57553.1 57553.1i 0.217842 0.217842i
\(515\) −60319.8 + 60319.8i −0.227429 + 0.227429i
\(516\) 57140.2 0.214606
\(517\) 1431.75i 0.00535655i
\(518\) 112423. 112423.i 0.418983 0.418983i
\(519\) 640497.i 2.37784i
\(520\) −31938.5 + 66000.8i −0.118116 + 0.244086i
\(521\) −308799. −1.13763 −0.568815 0.822465i \(-0.692598\pi\)
−0.568815 + 0.822465i \(0.692598\pi\)
\(522\) −217676. 217676.i −0.798857 0.798857i
\(523\) −196111. −0.716966 −0.358483 0.933536i \(-0.616706\pi\)
−0.358483 + 0.933536i \(0.616706\pi\)
\(524\) 35425.8i 0.129020i
\(525\) −171360. 171360.i −0.621713 0.621713i
\(526\) −83962.3 83962.3i −0.303468 0.303468i
\(527\) −31184.2 + 31184.2i −0.112283 + 0.112283i
\(528\) −12801.8 + 12801.8i −0.0459202 + 0.0459202i
\(529\) −688402. −2.45998
\(530\) 204672.i 0.728629i
\(531\) 179406. 179406.i 0.636278 0.636278i
\(532\) 171859.i 0.607224i
\(533\) −422762. + 147033.i −1.48813 + 0.517558i
\(534\) 246535. 0.864560
\(535\) −109881. 109881.i −0.383896 0.383896i
\(536\) 95775.6 0.333369
\(537\) 72539.9i 0.251552i
\(538\) 175720. + 175720.i 0.607096 + 0.607096i
\(539\) 9915.13 + 9915.13i 0.0341288 + 0.0341288i
\(540\) −203486. + 203486.i −0.697826 + 0.697826i
\(541\) −47432.2 + 47432.2i −0.162061 + 0.162061i −0.783479 0.621418i \(-0.786557\pi\)
0.621418 + 0.783479i \(0.286557\pi\)
\(542\) −236212. −0.804088
\(543\) 415935.i 1.41067i
\(544\) −28633.9 + 28633.9i −0.0967572 + 0.0967572i
\(545\) 72538.2i 0.244216i
\(546\) −196066. + 405170.i −0.657683 + 1.35910i
\(547\) 478901. 1.60056 0.800278 0.599629i \(-0.204685\pi\)
0.800278 + 0.599629i \(0.204685\pi\)
\(548\) 7821.66 + 7821.66i 0.0260458 + 0.0260458i
\(549\) −763873. −2.53441
\(550\) 12414.5i 0.0410398i
\(551\) 150025. + 150025.i 0.494151 + 0.494151i
\(552\) 261134. + 261134.i 0.857009 + 0.857009i
\(553\) −65231.2 + 65231.2i −0.213307 + 0.213307i
\(554\) 118034. 118034.i 0.384580 0.384580i
\(555\) −314885. −1.02227
\(556\) 289109.i 0.935216i
\(557\) 303848. 303848.i 0.979369 0.979369i −0.0204227 0.999791i \(-0.506501\pi\)
0.999791 + 0.0204227i \(0.00650121\pi\)
\(558\) 108235.i 0.347615i
\(559\) −65508.8 31700.4i −0.209641 0.101447i
\(560\) −69668.5 −0.222157
\(561\) −44746.9 44746.9i −0.142179 0.142179i
\(562\) 292843. 0.927175
\(563\) 563388.i 1.77742i −0.458466 0.888712i \(-0.651601\pi\)
0.458466 0.888712i \(-0.348399\pi\)
\(564\) 7876.59 + 7876.59i 0.0247617 + 0.0247617i
\(565\) 40786.3 + 40786.3i 0.127767 + 0.127767i
\(566\) −81556.9 + 81556.9i −0.254582 + 0.254582i
\(567\) −617991. + 617991.i −1.92228 + 1.92228i
\(568\) 302.731 0.000938340
\(569\) 73625.6i 0.227407i −0.993515 0.113704i \(-0.963729\pi\)
0.993515 0.113704i \(-0.0362715\pi\)
\(570\) 240679. 240679.i 0.740778 0.740778i
\(571\) 551854.i 1.69259i 0.532715 + 0.846295i \(0.321172\pi\)
−0.532715 + 0.846295i \(0.678828\pi\)
\(572\) 21778.9 7574.51i 0.0665648 0.0231506i
\(573\) −130137. −0.396361
\(574\) −300729. 300729.i −0.912749 0.912749i
\(575\) 253234. 0.765926
\(576\) 99383.3i 0.299549i
\(577\) −171008. 171008.i −0.513647 0.513647i 0.401995 0.915642i \(-0.368317\pi\)
−0.915642 + 0.401995i \(0.868317\pi\)
\(578\) 66956.2 + 66956.2i 0.200417 + 0.200417i
\(579\) 443278. 443278.i 1.32227 1.32227i
\(580\) −60817.2 + 60817.2i −0.180788 + 0.180788i
\(581\) 353824. 1.04818
\(582\) 324733.i 0.958694i
\(583\) −45513.3 + 45513.3i −0.133906 + 0.133906i
\(584\) 157515.i 0.461846i
\(585\) 594087. 206618.i 1.73596 0.603749i
\(586\) 164001. 0.477586
\(587\) 184791. + 184791.i 0.536295 + 0.536295i 0.922439 0.386143i \(-0.126193\pi\)
−0.386143 + 0.922439i \(0.626193\pi\)
\(588\) −109094. −0.315534
\(589\) 74596.8i 0.215025i
\(590\) −50124.8 50124.8i −0.143995 0.143995i
\(591\) 112407. + 112407.i 0.321823 + 0.321823i
\(592\) 44807.4 44807.4i 0.127852 0.127852i
\(593\) 56990.3 56990.3i 0.162066 0.162066i −0.621415 0.783481i \(-0.713442\pi\)
0.783481 + 0.621415i \(0.213442\pi\)
\(594\) 90499.2 0.256491
\(595\) 243516.i 0.687850i
\(596\) −98107.7 + 98107.7i −0.276192 + 0.276192i
\(597\) 1.01321e6i 2.84284i
\(598\) −154507. 444252.i −0.432060 1.24230i
\(599\) 516301. 1.43896 0.719482 0.694511i \(-0.244379\pi\)
0.719482 + 0.694511i \(0.244379\pi\)
\(600\) −68297.1 68297.1i −0.189714 0.189714i
\(601\) −295648. −0.818513 −0.409256 0.912419i \(-0.634212\pi\)
−0.409256 + 0.912419i \(0.634212\pi\)
\(602\) 69149.1i 0.190807i
\(603\) −580962. 580962.i −1.59777 1.59777i
\(604\) 126547. + 126547.i 0.346878 + 0.346878i
\(605\) 194561. 194561.i 0.531551 0.531551i
\(606\) 47944.0 47944.0i 0.130554 0.130554i
\(607\) −246229. −0.668285 −0.334142 0.942523i \(-0.608447\pi\)
−0.334142 + 0.942523i \(0.608447\pi\)
\(608\) 68496.2i 0.185293i
\(609\) −373348. + 373348.i −1.00665 + 1.00665i
\(610\) 213421.i 0.573559i
\(611\) −4660.38 13400.0i −0.0124836 0.0358939i
\(612\) 347380. 0.927474
\(613\) −291289. 291289.i −0.775182 0.775182i 0.203825 0.979007i \(-0.434663\pi\)
−0.979007 + 0.203825i \(0.934663\pi\)
\(614\) 13771.5 0.0365295
\(615\) 842307.i 2.22700i
\(616\) 15492.3 + 15492.3i 0.0408277 + 0.0408277i
\(617\) 229446. + 229446.i 0.602712 + 0.602712i 0.941031 0.338320i \(-0.109858\pi\)
−0.338320 + 0.941031i \(0.609858\pi\)
\(618\) −147585. + 147585.i −0.386424 + 0.386424i
\(619\) −180833. + 180833.i −0.471951 + 0.471951i −0.902546 0.430594i \(-0.858304\pi\)
0.430594 + 0.902546i \(0.358304\pi\)
\(620\) −30240.1 −0.0786684
\(621\) 1.84602e6i 4.78689i
\(622\) 9213.94 9213.94i 0.0238158 0.0238158i
\(623\) 298348.i 0.768681i
\(624\) −78144.0 + 161485.i −0.200690 + 0.414726i
\(625\) 163548. 0.418683
\(626\) 240076. + 240076.i 0.612633 + 0.612633i
\(627\) −107040. −0.272278
\(628\) 141037.i 0.357612i
\(629\) 156618. + 156618.i 0.395859 + 0.395859i
\(630\) 422600. + 422600.i 1.06475 + 1.06475i
\(631\) 272824. 272824.i 0.685211 0.685211i −0.275958 0.961170i \(-0.588995\pi\)
0.961170 + 0.275958i \(0.0889952\pi\)
\(632\) −25998.6 + 25998.6i −0.0650901 + 0.0650901i
\(633\) 1.27372e6 3.17882
\(634\) 348129.i 0.866087i
\(635\) 49147.9 49147.9i 0.121887 0.121887i
\(636\) 500772.i 1.23801i
\(637\) 125071. + 60523.3i 0.308233 + 0.149157i
\(638\) 27048.1 0.0664500
\(639\) −1836.33 1836.33i −0.00449727 0.00449727i
\(640\) −27767.1 −0.0677907
\(641\) 165860.i 0.403670i 0.979420 + 0.201835i \(0.0646905\pi\)
−0.979420 + 0.201835i \(0.935310\pi\)
\(642\) −268845. 268845.i −0.652278 0.652278i
\(643\) 493796. + 493796.i 1.19433 + 1.19433i 0.975838 + 0.218494i \(0.0701145\pi\)
0.218494 + 0.975838i \(0.429886\pi\)
\(644\) 316016. 316016.i 0.761968 0.761968i
\(645\) −96839.4 + 96839.4i −0.232773 + 0.232773i
\(646\) −239418. −0.573710
\(647\) 435005.i 1.03917i 0.854420 + 0.519584i \(0.173913\pi\)
−0.854420 + 0.519584i \(0.826087\pi\)
\(648\) −246306. + 246306.i −0.586578 + 0.586578i
\(649\) 22292.7i 0.0529265i
\(650\) 40409.7 + 116190.i 0.0956442 + 0.275005i
\(651\) −185640. −0.438036
\(652\) −279718. 279718.i −0.657998 0.657998i
\(653\) 384248. 0.901125 0.450562 0.892745i \(-0.351224\pi\)
0.450562 + 0.892745i \(0.351224\pi\)
\(654\) 177480.i 0.414947i
\(655\) −60038.6 60038.6i −0.139942 0.139942i
\(656\) −119858. 119858.i −0.278523 0.278523i
\(657\) −955469. + 955469.i −2.21353 + 2.21353i
\(658\) 9531.97 9531.97i 0.0220156 0.0220156i
\(659\) −549266. −1.26477 −0.632385 0.774654i \(-0.717924\pi\)
−0.632385 + 0.774654i \(0.717924\pi\)
\(660\) 43392.2i 0.0996147i
\(661\) −492501. + 492501.i −1.12721 + 1.12721i −0.136580 + 0.990629i \(0.543611\pi\)
−0.990629 + 0.136580i \(0.956389\pi\)
\(662\) 246267.i 0.561940i
\(663\) −564446. 273141.i −1.28409 0.621384i
\(664\) 141020. 0.319849
\(665\) −291261. 291261.i −0.658627 0.658627i
\(666\) −543593. −1.22553
\(667\) 551733.i 1.24016i
\(668\) −28370.3 28370.3i −0.0635786 0.0635786i
\(669\) −876713. 876713.i −1.95887 1.95887i
\(670\) −162317. + 162317.i −0.361589 + 0.361589i
\(671\) 47458.9 47458.9i 0.105408 0.105408i
\(672\) −170458. −0.377467
\(673\) 606330.i 1.33869i 0.742953 + 0.669343i \(0.233424\pi\)
−0.742953 + 0.669343i \(0.766576\pi\)
\(674\) 16139.3 16139.3i 0.0355276 0.0355276i
\(675\) 482809.i 1.05966i
\(676\) 179177. 141782.i 0.392094 0.310262i
\(677\) −364281. −0.794802 −0.397401 0.917645i \(-0.630088\pi\)
−0.397401 + 0.917645i \(0.630088\pi\)
\(678\) 99792.1 + 99792.1i 0.217088 + 0.217088i
\(679\) 392980. 0.852376
\(680\) 97055.7i 0.209896i
\(681\) 536483. + 536483.i 1.15681 + 1.15681i
\(682\) 6724.55 + 6724.55i 0.0144576 + 0.0144576i
\(683\) 332608. 332608.i 0.713003 0.713003i −0.254160 0.967162i \(-0.581799\pi\)
0.967162 + 0.254160i \(0.0817989\pi\)
\(684\) 415489. 415489.i 0.888070 0.888070i
\(685\) −26511.8 −0.0565013
\(686\) 253526.i 0.538735i
\(687\) 826158. 826158.i 1.75045 1.75045i
\(688\) 27560.1i 0.0582242i
\(689\) −277819. + 574113.i −0.585226 + 1.20937i
\(690\) −885123. −1.85911
\(691\) 28649.1 + 28649.1i 0.0600006 + 0.0600006i 0.736470 0.676470i \(-0.236491\pi\)
−0.676470 + 0.736470i \(0.736491\pi\)
\(692\) −308927. −0.645124
\(693\) 187949.i 0.391357i
\(694\) 312726. + 312726.i 0.649300 + 0.649300i
\(695\) −489972. 489972.i −1.01438 1.01438i
\(696\) −148802. + 148802.i −0.307178 + 0.307178i
\(697\) 418948. 418948.i 0.862372 0.862372i
\(698\) −566923. −1.16363
\(699\) 1.20864e6i 2.47367i
\(700\) −82650.8 + 82650.8i −0.168675 + 0.168675i
\(701\) 164808.i 0.335383i −0.985840 0.167691i \(-0.946369\pi\)
0.985840 0.167691i \(-0.0536312\pi\)
\(702\) 846997. 294577.i 1.71873 0.597758i
\(703\) 374651. 0.758081
\(704\) 6174.61 + 6174.61i 0.0124585 + 0.0124585i
\(705\) −26698.0 −0.0537155
\(706\) 500994.i 1.00513i
\(707\) −58020.2 58020.2i −0.116075 0.116075i
\(708\) −122641. 122641.i −0.244663 0.244663i
\(709\) 157777. 157777.i 0.313870 0.313870i −0.532537 0.846407i \(-0.678761\pi\)
0.846407 + 0.532537i \(0.178761\pi\)
\(710\) −513.059 + 513.059i −0.00101777 + 0.00101777i
\(711\) 315408. 0.623927
\(712\) 118909.i 0.234561i
\(713\) 137169. 137169.i 0.269822 0.269822i
\(714\) 595812.i 1.16873i
\(715\) −24073.2 + 49747.3i −0.0470893 + 0.0973099i
\(716\) 34987.7 0.0682479
\(717\) 235920. + 235920.i 0.458909 + 0.458909i
\(718\) −202381. −0.392573
\(719\) 701282.i 1.35655i 0.734809 + 0.678274i \(0.237272\pi\)
−0.734809 + 0.678274i \(0.762728\pi\)
\(720\) 168432. + 168432.i 0.324906 + 0.324906i
\(721\) 178602. + 178602.i 0.343570 + 0.343570i
\(722\) −25718.1 + 25718.1i −0.0493361 + 0.0493361i
\(723\) 702248. 702248.i 1.34343 1.34343i
\(724\) −200615. −0.382725
\(725\) 144300.i 0.274531i
\(726\) 476033. 476033.i 0.903158 0.903158i
\(727\) 665420.i 1.25900i 0.776999 + 0.629502i \(0.216741\pi\)
−0.776999 + 0.629502i \(0.783259\pi\)
\(728\) 195423. + 94567.1i 0.368734 + 0.178434i
\(729\) 467659. 0.879983
\(730\) 266952. + 266952.i 0.500942 + 0.500942i
\(731\) 96332.2 0.180276
\(732\) 522179.i 0.974535i
\(733\) 322452. + 322452.i 0.600146 + 0.600146i 0.940351 0.340205i \(-0.110497\pi\)
−0.340205 + 0.940351i \(0.610497\pi\)
\(734\) 275517. + 275517.i 0.511395 + 0.511395i
\(735\) 184889. 184889.i 0.342244 0.342244i
\(736\) 125951. 125951.i 0.232513 0.232513i
\(737\) 72189.6 0.132904
\(738\) 1.45409e6i 2.66980i
\(739\) 50393.5 50393.5i 0.0922753 0.0922753i −0.659462 0.751738i \(-0.729216\pi\)
0.751738 + 0.659462i \(0.229216\pi\)
\(740\) 151876.i 0.277349i
\(741\) −1.00181e6 + 348420.i −1.82452 + 0.634550i
\(742\) −606016. −1.10072
\(743\) −585418. 585418.i −1.06045 1.06045i −0.998052 0.0623941i \(-0.980126\pi\)
−0.0623941 0.998052i \(-0.519874\pi\)
\(744\) −73988.7 −0.133666
\(745\) 332540.i 0.599143i
\(746\) 244860. + 244860.i 0.439988 + 0.439988i
\(747\) −855410. 855410.i −1.53297 1.53297i
\(748\) −21582.5 + 21582.5i −0.0385743 + 0.0385743i
\(749\) −325347. + 325347.i −0.579941 + 0.579941i
\(750\) 793696. 1.41102
\(751\) 854251.i 1.51463i −0.653051 0.757314i \(-0.726511\pi\)
0.653051 0.757314i \(-0.273489\pi\)
\(752\) 3799.06 3799.06i 0.00671801 0.00671801i
\(753\) 1.89353e6i 3.33950i
\(754\) 253147. 88042.3i 0.445278 0.154863i
\(755\) −428934. −0.752483
\(756\) 602505. + 602505.i 1.05419 + 1.05419i
\(757\) −1110.21 −0.00193737 −0.000968684 1.00000i \(-0.500308\pi\)
−0.000968684 1.00000i \(0.500308\pi\)
\(758\) 452624.i 0.787769i
\(759\) 196827. + 196827.i 0.341665 + 0.341665i
\(760\) −116085. 116085.i −0.200978 0.200978i
\(761\) −676371. + 676371.i −1.16793 + 1.16793i −0.185232 + 0.982695i \(0.559304\pi\)
−0.982695 + 0.185232i \(0.940696\pi\)
\(762\) 120250. 120250.i 0.207098 0.207098i
\(763\) 214780. 0.368930
\(764\) 62768.1i 0.107536i
\(765\) −588728. + 588728.i −1.00599 + 1.00599i
\(766\) 273278.i 0.465744i
\(767\) 72563.4 + 208641.i 0.123347 + 0.354657i
\(768\) −67937.8 −0.115183
\(769\) 255979. + 255979.i 0.432864 + 0.432864i 0.889602 0.456737i \(-0.150982\pi\)
−0.456737 + 0.889602i \(0.650982\pi\)
\(770\) −52511.7 −0.0885676
\(771\) 477298.i 0.802937i
\(772\) −213804. 213804.i −0.358740 0.358740i
\(773\) −674317. 674317.i −1.12851 1.12851i −0.990420 0.138090i \(-0.955904\pi\)
−0.138090 0.990420i \(-0.544096\pi\)
\(774\) −167176. + 167176.i −0.279056 + 0.279056i
\(775\) −35875.2 + 35875.2i −0.0597298 + 0.0597298i
\(776\) 156626. 0.260100
\(777\) 932348.i 1.54432i
\(778\) −171892. + 171892.i −0.283986 + 0.283986i
\(779\) 1.00218e6i 1.65147i
\(780\) −141243. 406115.i −0.232155 0.667512i
\(781\) 228.180 0.000374089
\(782\) 440244. + 440244.i 0.719913 + 0.719913i
\(783\) 1.05192e6 1.71576
\(784\) 52618.5i 0.0856065i
\(785\) −239024. 239024.i −0.387885 0.387885i
\(786\) −146897. 146897.i −0.237775 0.237775i
\(787\) 90287.8 90287.8i 0.145774 0.145774i −0.630453 0.776227i \(-0.717131\pi\)
0.776227 + 0.630453i \(0.217131\pi\)
\(788\) 54216.3 54216.3i 0.0873128 0.0873128i
\(789\) 696315. 1.11854
\(790\) 88123.0i 0.141200i
\(791\) 120765. 120765.i 0.193014 0.193014i
\(792\) 74908.9i 0.119422i
\(793\) 289696. 598656.i 0.460676 0.951987i
\(794\) −198848. −0.315414
\(795\) 848691. + 848691.i 1.34281 + 1.34281i
\(796\) 488696. 0.771281
\(797\) 54653.7i 0.0860406i −0.999074 0.0430203i \(-0.986302\pi\)
0.999074 0.0430203i \(-0.0136980\pi\)
\(798\) −712630. 712630.i −1.11907 1.11907i
\(799\) 13279.1 + 13279.1i 0.0208005 + 0.0208005i
\(800\) −32941.3 + 32941.3i −0.0514708 + 0.0514708i
\(801\) −721289. + 721289.i −1.12420 + 1.12420i
\(802\) 222191. 0.345445
\(803\) 118725.i 0.184125i
\(804\) −397142. + 397142.i −0.614376 + 0.614376i
\(805\) 1.07115e6i 1.65294i
\(806\) 84824.8 + 41047.6i 0.130573 + 0.0631855i
\(807\) −1.45728e6 −2.23767
\(808\) −23124.5 23124.5i −0.0354201 0.0354201i
\(809\) −596802. −0.911870 −0.455935 0.890013i \(-0.650695\pi\)
−0.455935 + 0.890013i \(0.650695\pi\)
\(810\) 834864.i 1.27247i
\(811\) 198281. + 198281.i 0.301466 + 0.301466i 0.841587 0.540121i \(-0.181622\pi\)
−0.540121 + 0.841587i \(0.681622\pi\)
\(812\) 180075. + 180075.i 0.273112 + 0.273112i
\(813\) 979476. 979476.i 1.48188 1.48188i
\(814\) 33773.0 33773.0i 0.0509708 0.0509708i
\(815\) 948112. 1.42740
\(816\) 237467.i 0.356634i
\(817\) 115220. 115220.i 0.172617 0.172617i
\(818\) 309581.i 0.462666i
\(819\) −611779. 1.75904e6i −0.912067 2.62246i
\(820\) 406264. 0.604201
\(821\) 170383. + 170383.i 0.252779 + 0.252779i 0.822109 0.569330i \(-0.192797\pi\)
−0.569330 + 0.822109i \(0.692797\pi\)
\(822\) −64866.5 −0.0960013
\(823\) 494592.i 0.730209i 0.930967 + 0.365105i \(0.118967\pi\)
−0.930967 + 0.365105i \(0.881033\pi\)
\(824\) 71183.6 + 71183.6i 0.104840 + 0.104840i
\(825\) −51478.0 51478.0i −0.0756335 0.0756335i
\(826\) −148415. + 148415.i −0.217530 + 0.217530i
\(827\) −290301. + 290301.i −0.424461 + 0.424461i −0.886737 0.462275i \(-0.847033\pi\)
0.462275 + 0.886737i \(0.347033\pi\)
\(828\) −1.52801e6 −2.22877
\(829\) 731661.i 1.06464i −0.846545 0.532318i \(-0.821321\pi\)
0.846545 0.532318i \(-0.178679\pi\)
\(830\) −238996. + 238996.i −0.346924 + 0.346924i
\(831\) 978876.i 1.41751i
\(832\) 77887.8 + 37690.7i 0.112518 + 0.0544487i
\(833\) −183920. −0.265057
\(834\) −1.19882e6 1.19882e6i −1.72354 1.72354i
\(835\) 96162.1 0.137921
\(836\) 51628.1i 0.0738709i
\(837\) 261522. + 261522.i 0.373300 + 0.373300i
\(838\) 288308. + 288308.i 0.410553 + 0.410553i
\(839\) −580044. + 580044.i −0.824019 + 0.824019i −0.986682 0.162663i \(-0.947992\pi\)
0.162663 + 0.986682i \(0.447992\pi\)
\(840\) 288887. 288887.i 0.409420 0.409420i
\(841\) −392888. −0.555491
\(842\) 763456.i 1.07686i
\(843\) −1.21430e6 + 1.21430e6i −1.70872 + 1.70872i
\(844\) 614345.i 0.862436i
\(845\) −63376.3 + 543952.i −0.0887592 + 0.761811i
\(846\) −46089.3 −0.0643960
\(847\) −576079. 576079.i −0.802999 0.802999i
\(848\) −241534. −0.335882
\(849\) 676367.i 0.938354i
\(850\) −115141. 115141.i −0.159365 0.159365i
\(851\) −688910. 688910.i −0.951269 0.951269i
\(852\) −1255.30 + 1255.30i −0.00172930 + 0.00172930i
\(853\) −278531. + 278531.i −0.382803 + 0.382803i −0.872111 0.489308i \(-0.837249\pi\)
0.489308 + 0.872111i \(0.337249\pi\)
\(854\) 631923. 0.866460
\(855\) 1.40831e6i 1.92649i
\(856\) −129670. + 129670.i −0.176968 + 0.176968i
\(857\) 866031.i 1.17916i −0.807711 0.589579i \(-0.799294\pi\)
0.807711 0.589579i \(-0.200706\pi\)
\(858\) −58900.0 + 121717.i −0.0800094 + 0.165339i
\(859\) 422018. 0.571932 0.285966 0.958240i \(-0.407686\pi\)
0.285966 + 0.958240i \(0.407686\pi\)
\(860\) 46707.9 + 46707.9i 0.0631529 + 0.0631529i
\(861\) 2.49400e6 3.36427
\(862\) 110407.i 0.148587i
\(863\) 996621. + 996621.i 1.33816 + 1.33816i 0.897841 + 0.440320i \(0.145135\pi\)
0.440320 + 0.897841i \(0.354865\pi\)
\(864\) 240135. + 240135.i 0.321682 + 0.321682i
\(865\) 523559. 523559.i 0.699734 0.699734i
\(866\) 178410. 178410.i 0.237894 0.237894i
\(867\) −555281. −0.738711
\(868\) 89538.5i 0.118842i
\(869\) −19596.1 + 19596.1i −0.0259495 + 0.0259495i
\(870\) 504369.i 0.666361i
\(871\) 675634. 234979.i 0.890585 0.309737i
\(872\) 85602.6 0.112578
\(873\) −950075. 950075.i −1.24661 1.24661i
\(874\) 1.05312e6 1.37865
\(875\) 960504.i 1.25454i
\(876\) 653153. + 653153.i 0.851151 + 0.851151i
\(877\) 913030. + 913030.i 1.18710 + 1.18710i 0.977867 + 0.209229i \(0.0670955\pi\)
0.209229 + 0.977867i \(0.432904\pi\)
\(878\) 14906.0 14906.0i 0.0193362 0.0193362i
\(879\) −680046. + 680046.i −0.880158 + 0.880158i
\(880\) −20929.1 −0.0270262
\(881\) 1.11724e6i 1.43945i −0.694260 0.719724i \(-0.744268\pi\)
0.694260 0.719724i \(-0.255732\pi\)
\(882\) 319177. 319177.i 0.410294 0.410294i
\(883\) 839397.i 1.07658i 0.842760 + 0.538289i \(0.180929\pi\)
−0.842760 + 0.538289i \(0.819071\pi\)
\(884\) −131742. + 272245.i −0.168586 + 0.348382i
\(885\) 415695. 0.530747
\(886\) −413966. 413966.i −0.527349 0.527349i
\(887\) 163002. 0.207179 0.103590 0.994620i \(-0.466967\pi\)
0.103590 + 0.994620i \(0.466967\pi\)
\(888\) 371597.i 0.471244i
\(889\) −145523. 145523.i −0.184131 0.184131i
\(890\) 201524. + 201524.i 0.254417 + 0.254417i
\(891\) −185650. + 185650.i −0.233852 + 0.233852i
\(892\) −422859. + 422859.i −0.531455 + 0.531455i
\(893\) 31765.3 0.0398336
\(894\) 813626.i 1.01800i
\(895\) −59296.0 + 59296.0i −0.0740252 + 0.0740252i
\(896\) 82216.0i 0.102409i
\(897\) 2.48281e6 + 1.20146e6i 3.08573 + 1.49322i
\(898\) 806731. 1.00040
\(899\) 78162.8 + 78162.8i 0.0967121 + 0.0967121i
\(900\) 399635. 0.493377
\(901\) 844246.i 1.03997i
\(902\) −90341.8 90341.8i −0.111039 0.111039i
\(903\) 286733. + 286733.i 0.351644 + 0.351644i
\(904\) 48132.1 48132.1i 0.0588976 0.0588976i
\(905\) 339996. 339996.i 0.415123 0.415123i
\(906\) −1.04948e6 −1.27854
\(907\) 637788.i 0.775285i −0.921810 0.387643i \(-0.873289\pi\)
0.921810 0.387643i \(-0.126711\pi\)
\(908\) 258758. 258758.i 0.313850 0.313850i
\(909\) 280541.i 0.339522i
\(910\) −491466. + 170927.i −0.593486 + 0.206409i
\(911\) 1.34739e6 1.62352 0.811759 0.583993i \(-0.198510\pi\)
0.811759 + 0.583993i \(0.198510\pi\)
\(912\) −284026. 284026.i −0.341482 0.341482i
\(913\) 106292. 0.127514
\(914\) 1.01728e6i 1.21772i
\(915\) −884972. 884972.i −1.05703 1.05703i
\(916\) −398475. 398475.i −0.474909 0.474909i
\(917\) −177769. + 177769.i −0.211406 + 0.211406i
\(918\) −839355. + 839355.i −0.996003 + 0.996003i
\(919\) −548840. −0.649853 −0.324926 0.945739i \(-0.605340\pi\)
−0.324926 + 0.945739i \(0.605340\pi\)
\(920\) 426916.i 0.504390i
\(921\) −57104.7 + 57104.7i −0.0673214 + 0.0673214i
\(922\) 15828.7i 0.0186201i
\(923\) 2135.57 742.731i 0.00250675 0.000871823i
\(924\) −128481. −0.150485
\(925\) 180178. + 180178.i 0.210580 + 0.210580i
\(926\) −616219. −0.718642
\(927\) 863581.i 1.00495i
\(928\) 71770.6 + 71770.6i 0.0833394 + 0.0833394i
\(929\) 879177. + 879177.i 1.01870 + 1.01870i 0.999822 + 0.0188751i \(0.00600848\pi\)
0.0188751 + 0.999822i \(0.493992\pi\)
\(930\) 125394. 125394.i 0.144980 0.144980i
\(931\) −219981. + 219981.i −0.253796 + 0.253796i
\(932\) 582955. 0.671124
\(933\) 76413.0i 0.0877817i
\(934\) 113084. 113084.i 0.129630 0.129630i
\(935\) 73154.5i 0.0836793i
\(936\) −243831. 701084.i −0.278315 0.800237i
\(937\) −406144. −0.462595 −0.231298 0.972883i \(-0.574297\pi\)
−0.231298 + 0.972883i \(0.574297\pi\)
\(938\) 480608. + 480608.i 0.546242 + 0.546242i
\(939\) −1.99100e6 −2.25808
\(940\) 12877.1i 0.0145734i
\(941\) −903964. 903964.i −1.02087 1.02087i −0.999777 0.0210962i \(-0.993284\pi\)
−0.0210962 0.999777i \(-0.506716\pi\)
\(942\) −584822. 584822.i −0.659055 0.659055i
\(943\) −1.84281e6 + 1.84281e6i −2.07232 + 2.07232i
\(944\) −59152.5 + 59152.5i −0.0663787 + 0.0663787i
\(945\) −2.04221e6 −2.28685
\(946\) 20773.0i 0.0232123i
\(947\) −105869. + 105869.i −0.118050 + 0.118050i −0.763664 0.645614i \(-0.776602\pi\)
0.645614 + 0.763664i \(0.276602\pi\)
\(948\) 215611.i 0.239913i
\(949\) −386454. 1.11117e6i −0.429107 1.23381i
\(950\) −275434. −0.305190
\(951\) 1.44355e6 + 1.44355e6i 1.59614 + 1.59614i
\(952\) −287374. −0.317083
\(953\) 857742.i 0.944432i 0.881483 + 0.472216i \(0.156546\pi\)
−0.881483 + 0.472216i \(0.843454\pi\)
\(954\) 1.46511e6 + 1.46511e6i 1.60981 + 1.60981i
\(955\) −106377. 106377.i −0.116639 0.116639i
\(956\) 113790. 113790.i 0.124505 0.124505i
\(957\) −112157. + 112157.i −0.122463 + 0.122463i
\(958\) −190138. −0.207175
\(959\) 78499.2i 0.0853548i
\(960\) 115139. 115139.i 0.124934 0.124934i
\(961\) 884656.i 0.957917i
\(962\) 206155. 426020.i 0.222764 0.460341i
\(963\) 1.57313e6 1.69634
\(964\) −338711. 338711.i −0.364481 0.364481i
\(965\) 724695. 0.778216
\(966\) 2.62078e6i 2.80851i
\(967\) −620036. 620036.i −0.663077 0.663077i 0.293027 0.956104i \(-0.405337\pi\)
−0.956104 + 0.293027i \(0.905337\pi\)
\(968\) −229602. 229602.i −0.245033 0.245033i
\(969\) 992771. 992771.i 1.05731 1.05731i
\(970\) −265445. + 265445.i −0.282118 + 0.282118i
\(971\) 623835. 0.661654 0.330827 0.943691i \(-0.392672\pi\)
0.330827 + 0.943691i \(0.392672\pi\)
\(972\) 826985.i 0.875317i
\(973\) −1.45077e6 + 1.45077e6i −1.53240 + 1.53240i
\(974\) 439697.i 0.463485i
\(975\) −649354. 314229.i −0.683081 0.330550i
\(976\) 251859. 0.264398
\(977\) −214254. 214254.i −0.224461 0.224461i 0.585913 0.810374i \(-0.300736\pi\)
−0.810374 + 0.585913i \(0.800736\pi\)
\(978\) 2.31975e6 2.42529
\(979\) 89626.4i 0.0935127i
\(980\) −89176.1 89176.1i −0.0928531 0.0928531i
\(981\) −519254. 519254.i −0.539563 0.539563i
\(982\) −850973. + 850973.i −0.882456 + 0.882456i
\(983\) 1.30014e6 1.30014e6i 1.34550 1.34550i 0.455024 0.890479i \(-0.349631\pi\)
0.890479 0.455024i \(-0.150369\pi\)
\(984\) 994009. 1.02660
\(985\) 183768.i 0.189408i
\(986\) −250864. + 250864.i −0.258038 + 0.258038i
\(987\) 79050.5i 0.0811466i
\(988\) 168051. + 483196.i 0.172158 + 0.495005i
\(989\) −423733. −0.433211
\(990\) 126953. + 126953.i 0.129531 + 0.129531i
\(991\) −1.48766e6 −1.51481 −0.757403 0.652948i \(-0.773532\pi\)
−0.757403 + 0.652948i \(0.773532\pi\)
\(992\) 35686.5i 0.0362644i
\(993\) −1.02117e6 1.02117e6i −1.03562 1.03562i
\(994\) 1519.12 + 1519.12i 0.00153752 + 0.00153752i
\(995\) −828226. + 828226.i −0.836571 + 0.836571i
\(996\) −584753. + 584753.i −0.589459 + 0.589459i
\(997\) 1.29351e6 1.30130 0.650651 0.759377i \(-0.274496\pi\)
0.650651 + 0.759377i \(0.274496\pi\)
\(998\) 546205.i 0.548397i
\(999\) 1.31345e6 1.31345e6i 1.31609 1.31609i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 26.5.d.b.21.1 yes 6
3.2 odd 2 234.5.i.a.73.2 6
4.3 odd 2 208.5.t.a.177.3 6
13.5 odd 4 inner 26.5.d.b.5.1 6
13.8 odd 4 338.5.d.c.239.1 6
13.12 even 2 338.5.d.c.99.1 6
39.5 even 4 234.5.i.a.109.2 6
52.31 even 4 208.5.t.a.161.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.5.d.b.5.1 6 13.5 odd 4 inner
26.5.d.b.21.1 yes 6 1.1 even 1 trivial
208.5.t.a.161.3 6 52.31 even 4
208.5.t.a.177.3 6 4.3 odd 2
234.5.i.a.73.2 6 3.2 odd 2
234.5.i.a.109.2 6 39.5 even 4
338.5.d.c.99.1 6 13.12 even 2
338.5.d.c.239.1 6 13.8 odd 4