Properties

Label 336.8.a.t.1.2
Level $336$
Weight $8$
Character 336.1
Self dual yes
Analytic conductor $104.961$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [336,8,Mod(1,336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("336.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(336, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 336 = 2^{4} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 336.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,-81,0,414] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(104.961368563\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4400x - 26848 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{5}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 168)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-6.16367\) of defining polynomial
Character \(\chi\) \(=\) 336.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-27.0000 q^{3} +99.0180 q^{5} -343.000 q^{7} +729.000 q^{9} +3695.45 q^{11} +7236.44 q^{13} -2673.49 q^{15} +18523.3 q^{17} +9508.41 q^{19} +9261.00 q^{21} -70977.4 q^{23} -68320.4 q^{25} -19683.0 q^{27} +43155.0 q^{29} +15305.4 q^{31} -99777.3 q^{33} -33963.2 q^{35} +369151. q^{37} -195384. q^{39} -26475.6 q^{41} -275186. q^{43} +72184.1 q^{45} +114034. q^{47} +117649. q^{49} -500130. q^{51} -347795. q^{53} +365916. q^{55} -256727. q^{57} +238451. q^{59} +1.52156e6 q^{61} -250047. q^{63} +716537. q^{65} -688978. q^{67} +1.91639e6 q^{69} -4.42654e6 q^{71} -894592. q^{73} +1.84465e6 q^{75} -1.26754e6 q^{77} -2.74442e6 q^{79} +531441. q^{81} -5.51853e6 q^{83} +1.83414e6 q^{85} -1.16518e6 q^{87} +4.73609e6 q^{89} -2.48210e6 q^{91} -413245. q^{93} +941504. q^{95} +5.65023e6 q^{97} +2.69399e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 81 q^{3} + 414 q^{5} - 1029 q^{7} + 2187 q^{9} - 9552 q^{11} + 954 q^{13} - 11178 q^{15} - 30 q^{17} - 39588 q^{19} + 27783 q^{21} + 31164 q^{23} + 139581 q^{25} - 59049 q^{27} + 38898 q^{29} - 147888 q^{31}+ \cdots - 6963408 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −27.0000 −0.577350
\(4\) 0 0
\(5\) 99.0180 0.354257 0.177129 0.984188i \(-0.443319\pi\)
0.177129 + 0.984188i \(0.443319\pi\)
\(6\) 0 0
\(7\) −343.000 −0.377964
\(8\) 0 0
\(9\) 729.000 0.333333
\(10\) 0 0
\(11\) 3695.45 0.837131 0.418566 0.908187i \(-0.362533\pi\)
0.418566 + 0.908187i \(0.362533\pi\)
\(12\) 0 0
\(13\) 7236.44 0.913530 0.456765 0.889587i \(-0.349008\pi\)
0.456765 + 0.889587i \(0.349008\pi\)
\(14\) 0 0
\(15\) −2673.49 −0.204531
\(16\) 0 0
\(17\) 18523.3 0.914425 0.457212 0.889358i \(-0.348848\pi\)
0.457212 + 0.889358i \(0.348848\pi\)
\(18\) 0 0
\(19\) 9508.41 0.318032 0.159016 0.987276i \(-0.449168\pi\)
0.159016 + 0.987276i \(0.449168\pi\)
\(20\) 0 0
\(21\) 9261.00 0.218218
\(22\) 0 0
\(23\) −70977.4 −1.21639 −0.608195 0.793788i \(-0.708106\pi\)
−0.608195 + 0.793788i \(0.708106\pi\)
\(24\) 0 0
\(25\) −68320.4 −0.874502
\(26\) 0 0
\(27\) −19683.0 −0.192450
\(28\) 0 0
\(29\) 43155.0 0.328577 0.164289 0.986412i \(-0.447467\pi\)
0.164289 + 0.986412i \(0.447467\pi\)
\(30\) 0 0
\(31\) 15305.4 0.0922736 0.0461368 0.998935i \(-0.485309\pi\)
0.0461368 + 0.998935i \(0.485309\pi\)
\(32\) 0 0
\(33\) −99777.3 −0.483318
\(34\) 0 0
\(35\) −33963.2 −0.133897
\(36\) 0 0
\(37\) 369151. 1.19811 0.599057 0.800706i \(-0.295542\pi\)
0.599057 + 0.800706i \(0.295542\pi\)
\(38\) 0 0
\(39\) −195384. −0.527427
\(40\) 0 0
\(41\) −26475.6 −0.0599932 −0.0299966 0.999550i \(-0.509550\pi\)
−0.0299966 + 0.999550i \(0.509550\pi\)
\(42\) 0 0
\(43\) −275186. −0.527821 −0.263910 0.964547i \(-0.585012\pi\)
−0.263910 + 0.964547i \(0.585012\pi\)
\(44\) 0 0
\(45\) 72184.1 0.118086
\(46\) 0 0
\(47\) 114034. 0.160210 0.0801051 0.996786i \(-0.474474\pi\)
0.0801051 + 0.996786i \(0.474474\pi\)
\(48\) 0 0
\(49\) 117649. 0.142857
\(50\) 0 0
\(51\) −500130. −0.527943
\(52\) 0 0
\(53\) −347795. −0.320891 −0.160446 0.987045i \(-0.551293\pi\)
−0.160446 + 0.987045i \(0.551293\pi\)
\(54\) 0 0
\(55\) 365916. 0.296560
\(56\) 0 0
\(57\) −256727. −0.183616
\(58\) 0 0
\(59\) 238451. 0.151153 0.0755767 0.997140i \(-0.475920\pi\)
0.0755767 + 0.997140i \(0.475920\pi\)
\(60\) 0 0
\(61\) 1.52156e6 0.858289 0.429144 0.903236i \(-0.358815\pi\)
0.429144 + 0.903236i \(0.358815\pi\)
\(62\) 0 0
\(63\) −250047. −0.125988
\(64\) 0 0
\(65\) 716537. 0.323625
\(66\) 0 0
\(67\) −688978. −0.279862 −0.139931 0.990161i \(-0.544688\pi\)
−0.139931 + 0.990161i \(0.544688\pi\)
\(68\) 0 0
\(69\) 1.91639e6 0.702283
\(70\) 0 0
\(71\) −4.42654e6 −1.46778 −0.733889 0.679269i \(-0.762297\pi\)
−0.733889 + 0.679269i \(0.762297\pi\)
\(72\) 0 0
\(73\) −894592. −0.269150 −0.134575 0.990903i \(-0.542967\pi\)
−0.134575 + 0.990903i \(0.542967\pi\)
\(74\) 0 0
\(75\) 1.84465e6 0.504894
\(76\) 0 0
\(77\) −1.26754e6 −0.316406
\(78\) 0 0
\(79\) −2.74442e6 −0.626260 −0.313130 0.949710i \(-0.601378\pi\)
−0.313130 + 0.949710i \(0.601378\pi\)
\(80\) 0 0
\(81\) 531441. 0.111111
\(82\) 0 0
\(83\) −5.51853e6 −1.05938 −0.529688 0.848193i \(-0.677691\pi\)
−0.529688 + 0.848193i \(0.677691\pi\)
\(84\) 0 0
\(85\) 1.83414e6 0.323942
\(86\) 0 0
\(87\) −1.16518e6 −0.189704
\(88\) 0 0
\(89\) 4.73609e6 0.712122 0.356061 0.934463i \(-0.384119\pi\)
0.356061 + 0.934463i \(0.384119\pi\)
\(90\) 0 0
\(91\) −2.48210e6 −0.345282
\(92\) 0 0
\(93\) −413245. −0.0532742
\(94\) 0 0
\(95\) 941504. 0.112665
\(96\) 0 0
\(97\) 5.65023e6 0.628586 0.314293 0.949326i \(-0.398233\pi\)
0.314293 + 0.949326i \(0.398233\pi\)
\(98\) 0 0
\(99\) 2.69399e6 0.279044
\(100\) 0 0
\(101\) 1.13470e7 1.09587 0.547933 0.836522i \(-0.315415\pi\)
0.547933 + 0.836522i \(0.315415\pi\)
\(102\) 0 0
\(103\) 5.62575e6 0.507283 0.253642 0.967298i \(-0.418372\pi\)
0.253642 + 0.967298i \(0.418372\pi\)
\(104\) 0 0
\(105\) 917005. 0.0773053
\(106\) 0 0
\(107\) 4.43444e6 0.349941 0.174971 0.984574i \(-0.444017\pi\)
0.174971 + 0.984574i \(0.444017\pi\)
\(108\) 0 0
\(109\) 2.58869e7 1.91464 0.957319 0.289035i \(-0.0933343\pi\)
0.957319 + 0.289035i \(0.0933343\pi\)
\(110\) 0 0
\(111\) −9.96709e6 −0.691732
\(112\) 0 0
\(113\) 1.92136e7 1.25266 0.626332 0.779556i \(-0.284555\pi\)
0.626332 + 0.779556i \(0.284555\pi\)
\(114\) 0 0
\(115\) −7.02804e6 −0.430915
\(116\) 0 0
\(117\) 5.27536e6 0.304510
\(118\) 0 0
\(119\) −6.35350e6 −0.345620
\(120\) 0 0
\(121\) −5.83079e6 −0.299212
\(122\) 0 0
\(123\) 714841. 0.0346371
\(124\) 0 0
\(125\) −1.45007e7 −0.664056
\(126\) 0 0
\(127\) 4.22100e7 1.82853 0.914266 0.405114i \(-0.132768\pi\)
0.914266 + 0.405114i \(0.132768\pi\)
\(128\) 0 0
\(129\) 7.43002e6 0.304738
\(130\) 0 0
\(131\) 1.21641e7 0.472749 0.236374 0.971662i \(-0.424041\pi\)
0.236374 + 0.971662i \(0.424041\pi\)
\(132\) 0 0
\(133\) −3.26138e6 −0.120205
\(134\) 0 0
\(135\) −1.94897e6 −0.0681769
\(136\) 0 0
\(137\) 3.12537e7 1.03843 0.519217 0.854642i \(-0.326224\pi\)
0.519217 + 0.854642i \(0.326224\pi\)
\(138\) 0 0
\(139\) 3.56212e7 1.12501 0.562505 0.826794i \(-0.309838\pi\)
0.562505 + 0.826794i \(0.309838\pi\)
\(140\) 0 0
\(141\) −3.07891e6 −0.0924975
\(142\) 0 0
\(143\) 2.67419e7 0.764745
\(144\) 0 0
\(145\) 4.27312e6 0.116401
\(146\) 0 0
\(147\) −3.17652e6 −0.0824786
\(148\) 0 0
\(149\) 4.44845e7 1.10168 0.550842 0.834610i \(-0.314307\pi\)
0.550842 + 0.834610i \(0.314307\pi\)
\(150\) 0 0
\(151\) 1.58932e6 0.0375657 0.0187828 0.999824i \(-0.494021\pi\)
0.0187828 + 0.999824i \(0.494021\pi\)
\(152\) 0 0
\(153\) 1.35035e7 0.304808
\(154\) 0 0
\(155\) 1.51551e6 0.0326886
\(156\) 0 0
\(157\) −7.40717e7 −1.52758 −0.763790 0.645465i \(-0.776664\pi\)
−0.763790 + 0.645465i \(0.776664\pi\)
\(158\) 0 0
\(159\) 9.39047e6 0.185267
\(160\) 0 0
\(161\) 2.43452e7 0.459752
\(162\) 0 0
\(163\) 4.14405e7 0.749495 0.374747 0.927127i \(-0.377729\pi\)
0.374747 + 0.927127i \(0.377729\pi\)
\(164\) 0 0
\(165\) −9.87974e6 −0.171219
\(166\) 0 0
\(167\) 6.33911e7 1.05322 0.526612 0.850106i \(-0.323462\pi\)
0.526612 + 0.850106i \(0.323462\pi\)
\(168\) 0 0
\(169\) −1.03825e7 −0.165462
\(170\) 0 0
\(171\) 6.93163e6 0.106011
\(172\) 0 0
\(173\) −8.20895e7 −1.20539 −0.602693 0.797973i \(-0.705906\pi\)
−0.602693 + 0.797973i \(0.705906\pi\)
\(174\) 0 0
\(175\) 2.34339e7 0.330531
\(176\) 0 0
\(177\) −6.43819e6 −0.0872684
\(178\) 0 0
\(179\) 1.08169e8 1.40967 0.704833 0.709373i \(-0.251022\pi\)
0.704833 + 0.709373i \(0.251022\pi\)
\(180\) 0 0
\(181\) 4.64906e7 0.582760 0.291380 0.956607i \(-0.405886\pi\)
0.291380 + 0.956607i \(0.405886\pi\)
\(182\) 0 0
\(183\) −4.10820e7 −0.495533
\(184\) 0 0
\(185\) 3.65526e7 0.424441
\(186\) 0 0
\(187\) 6.84521e7 0.765493
\(188\) 0 0
\(189\) 6.75127e6 0.0727393
\(190\) 0 0
\(191\) −8.40245e7 −0.872548 −0.436274 0.899814i \(-0.643702\pi\)
−0.436274 + 0.899814i \(0.643702\pi\)
\(192\) 0 0
\(193\) −4.46018e7 −0.446582 −0.223291 0.974752i \(-0.571680\pi\)
−0.223291 + 0.974752i \(0.571680\pi\)
\(194\) 0 0
\(195\) −1.93465e7 −0.186845
\(196\) 0 0
\(197\) −3.04765e7 −0.284010 −0.142005 0.989866i \(-0.545355\pi\)
−0.142005 + 0.989866i \(0.545355\pi\)
\(198\) 0 0
\(199\) 3.70526e7 0.333298 0.166649 0.986016i \(-0.446705\pi\)
0.166649 + 0.986016i \(0.446705\pi\)
\(200\) 0 0
\(201\) 1.86024e7 0.161578
\(202\) 0 0
\(203\) −1.48022e7 −0.124191
\(204\) 0 0
\(205\) −2.62156e6 −0.0212531
\(206\) 0 0
\(207\) −5.17425e7 −0.405463
\(208\) 0 0
\(209\) 3.51379e7 0.266234
\(210\) 0 0
\(211\) 1.38109e8 1.01212 0.506060 0.862498i \(-0.331101\pi\)
0.506060 + 0.862498i \(0.331101\pi\)
\(212\) 0 0
\(213\) 1.19517e8 0.847422
\(214\) 0 0
\(215\) −2.72484e7 −0.186985
\(216\) 0 0
\(217\) −5.24974e6 −0.0348761
\(218\) 0 0
\(219\) 2.41540e7 0.155394
\(220\) 0 0
\(221\) 1.34043e8 0.835355
\(222\) 0 0
\(223\) 2.07529e8 1.25317 0.626586 0.779352i \(-0.284452\pi\)
0.626586 + 0.779352i \(0.284452\pi\)
\(224\) 0 0
\(225\) −4.98056e7 −0.291501
\(226\) 0 0
\(227\) 7.24650e7 0.411185 0.205593 0.978638i \(-0.434088\pi\)
0.205593 + 0.978638i \(0.434088\pi\)
\(228\) 0 0
\(229\) −2.87710e8 −1.58318 −0.791590 0.611053i \(-0.790746\pi\)
−0.791590 + 0.611053i \(0.790746\pi\)
\(230\) 0 0
\(231\) 3.42236e7 0.182677
\(232\) 0 0
\(233\) 9.01798e7 0.467050 0.233525 0.972351i \(-0.424974\pi\)
0.233525 + 0.972351i \(0.424974\pi\)
\(234\) 0 0
\(235\) 1.12914e7 0.0567557
\(236\) 0 0
\(237\) 7.40992e7 0.361572
\(238\) 0 0
\(239\) 2.72154e8 1.28950 0.644752 0.764392i \(-0.276961\pi\)
0.644752 + 0.764392i \(0.276961\pi\)
\(240\) 0 0
\(241\) −1.36758e7 −0.0629349 −0.0314675 0.999505i \(-0.510018\pi\)
−0.0314675 + 0.999505i \(0.510018\pi\)
\(242\) 0 0
\(243\) −1.43489e7 −0.0641500
\(244\) 0 0
\(245\) 1.16494e7 0.0506082
\(246\) 0 0
\(247\) 6.88070e7 0.290532
\(248\) 0 0
\(249\) 1.49000e8 0.611630
\(250\) 0 0
\(251\) −1.79647e8 −0.717072 −0.358536 0.933516i \(-0.616724\pi\)
−0.358536 + 0.933516i \(0.616724\pi\)
\(252\) 0 0
\(253\) −2.62294e8 −1.01828
\(254\) 0 0
\(255\) −4.95219e7 −0.187028
\(256\) 0 0
\(257\) 2.08839e8 0.767442 0.383721 0.923449i \(-0.374642\pi\)
0.383721 + 0.923449i \(0.374642\pi\)
\(258\) 0 0
\(259\) −1.26619e8 −0.452845
\(260\) 0 0
\(261\) 3.14600e7 0.109526
\(262\) 0 0
\(263\) 419999. 0.00142365 0.000711825 1.00000i \(-0.499773\pi\)
0.000711825 1.00000i \(0.499773\pi\)
\(264\) 0 0
\(265\) −3.44380e7 −0.113678
\(266\) 0 0
\(267\) −1.27874e8 −0.411144
\(268\) 0 0
\(269\) 2.26486e8 0.709429 0.354715 0.934975i \(-0.384578\pi\)
0.354715 + 0.934975i \(0.384578\pi\)
\(270\) 0 0
\(271\) 2.36234e8 0.721024 0.360512 0.932755i \(-0.382602\pi\)
0.360512 + 0.932755i \(0.382602\pi\)
\(272\) 0 0
\(273\) 6.70166e7 0.199349
\(274\) 0 0
\(275\) −2.52475e8 −0.732072
\(276\) 0 0
\(277\) −3.22906e8 −0.912846 −0.456423 0.889763i \(-0.650870\pi\)
−0.456423 + 0.889763i \(0.650870\pi\)
\(278\) 0 0
\(279\) 1.11576e7 0.0307579
\(280\) 0 0
\(281\) 3.12684e8 0.840684 0.420342 0.907366i \(-0.361910\pi\)
0.420342 + 0.907366i \(0.361910\pi\)
\(282\) 0 0
\(283\) −3.61865e8 −0.949062 −0.474531 0.880239i \(-0.657382\pi\)
−0.474531 + 0.880239i \(0.657382\pi\)
\(284\) 0 0
\(285\) −2.54206e7 −0.0650472
\(286\) 0 0
\(287\) 9.08113e6 0.0226753
\(288\) 0 0
\(289\) −6.72248e7 −0.163828
\(290\) 0 0
\(291\) −1.52556e8 −0.362914
\(292\) 0 0
\(293\) 5.13942e8 1.19365 0.596826 0.802371i \(-0.296428\pi\)
0.596826 + 0.802371i \(0.296428\pi\)
\(294\) 0 0
\(295\) 2.36110e7 0.0535472
\(296\) 0 0
\(297\) −7.27376e7 −0.161106
\(298\) 0 0
\(299\) −5.13623e8 −1.11121
\(300\) 0 0
\(301\) 9.43888e7 0.199498
\(302\) 0 0
\(303\) −3.06370e8 −0.632699
\(304\) 0 0
\(305\) 1.50661e8 0.304055
\(306\) 0 0
\(307\) 1.35306e8 0.266890 0.133445 0.991056i \(-0.457396\pi\)
0.133445 + 0.991056i \(0.457396\pi\)
\(308\) 0 0
\(309\) −1.51895e8 −0.292880
\(310\) 0 0
\(311\) −4.15771e7 −0.0783778 −0.0391889 0.999232i \(-0.512477\pi\)
−0.0391889 + 0.999232i \(0.512477\pi\)
\(312\) 0 0
\(313\) 7.71847e8 1.42274 0.711370 0.702817i \(-0.248075\pi\)
0.711370 + 0.702817i \(0.248075\pi\)
\(314\) 0 0
\(315\) −2.47591e7 −0.0446322
\(316\) 0 0
\(317\) 502888. 0.000886674 0 0.000443337 1.00000i \(-0.499859\pi\)
0.000443337 1.00000i \(0.499859\pi\)
\(318\) 0 0
\(319\) 1.59477e8 0.275062
\(320\) 0 0
\(321\) −1.19730e8 −0.202039
\(322\) 0 0
\(323\) 1.76127e8 0.290816
\(324\) 0 0
\(325\) −4.94397e8 −0.798884
\(326\) 0 0
\(327\) −6.98945e8 −1.10542
\(328\) 0 0
\(329\) −3.91135e7 −0.0605538
\(330\) 0 0
\(331\) −2.31667e8 −0.351129 −0.175564 0.984468i \(-0.556175\pi\)
−0.175564 + 0.984468i \(0.556175\pi\)
\(332\) 0 0
\(333\) 2.69111e8 0.399372
\(334\) 0 0
\(335\) −6.82212e7 −0.0991432
\(336\) 0 0
\(337\) −2.52157e8 −0.358895 −0.179447 0.983768i \(-0.557431\pi\)
−0.179447 + 0.983768i \(0.557431\pi\)
\(338\) 0 0
\(339\) −5.18768e8 −0.723226
\(340\) 0 0
\(341\) 5.65602e7 0.0772451
\(342\) 0 0
\(343\) −4.03536e7 −0.0539949
\(344\) 0 0
\(345\) 1.89757e8 0.248789
\(346\) 0 0
\(347\) −3.88142e8 −0.498698 −0.249349 0.968414i \(-0.580217\pi\)
−0.249349 + 0.968414i \(0.580217\pi\)
\(348\) 0 0
\(349\) 2.15716e8 0.271640 0.135820 0.990734i \(-0.456633\pi\)
0.135820 + 0.990734i \(0.456633\pi\)
\(350\) 0 0
\(351\) −1.42435e8 −0.175809
\(352\) 0 0
\(353\) −1.01922e9 −1.23327 −0.616635 0.787250i \(-0.711504\pi\)
−0.616635 + 0.787250i \(0.711504\pi\)
\(354\) 0 0
\(355\) −4.38307e8 −0.519972
\(356\) 0 0
\(357\) 1.71545e8 0.199544
\(358\) 0 0
\(359\) −7.53375e8 −0.859371 −0.429686 0.902979i \(-0.641376\pi\)
−0.429686 + 0.902979i \(0.641376\pi\)
\(360\) 0 0
\(361\) −8.03462e8 −0.898856
\(362\) 0 0
\(363\) 1.57431e8 0.172750
\(364\) 0 0
\(365\) −8.85807e7 −0.0953485
\(366\) 0 0
\(367\) −1.07509e8 −0.113531 −0.0567654 0.998388i \(-0.518079\pi\)
−0.0567654 + 0.998388i \(0.518079\pi\)
\(368\) 0 0
\(369\) −1.93007e7 −0.0199977
\(370\) 0 0
\(371\) 1.19294e8 0.121285
\(372\) 0 0
\(373\) −8.64265e8 −0.862315 −0.431157 0.902277i \(-0.641895\pi\)
−0.431157 + 0.902277i \(0.641895\pi\)
\(374\) 0 0
\(375\) 3.91520e8 0.383393
\(376\) 0 0
\(377\) 3.12288e8 0.300165
\(378\) 0 0
\(379\) 5.55521e8 0.524159 0.262080 0.965046i \(-0.415592\pi\)
0.262080 + 0.965046i \(0.415592\pi\)
\(380\) 0 0
\(381\) −1.13967e9 −1.05570
\(382\) 0 0
\(383\) 8.64373e8 0.786150 0.393075 0.919506i \(-0.371411\pi\)
0.393075 + 0.919506i \(0.371411\pi\)
\(384\) 0 0
\(385\) −1.25509e8 −0.112089
\(386\) 0 0
\(387\) −2.00611e8 −0.175940
\(388\) 0 0
\(389\) 5.29805e8 0.456344 0.228172 0.973621i \(-0.426725\pi\)
0.228172 + 0.973621i \(0.426725\pi\)
\(390\) 0 0
\(391\) −1.31474e9 −1.11230
\(392\) 0 0
\(393\) −3.28431e8 −0.272942
\(394\) 0 0
\(395\) −2.71746e8 −0.221857
\(396\) 0 0
\(397\) 1.08934e7 0.00873768 0.00436884 0.999990i \(-0.498609\pi\)
0.00436884 + 0.999990i \(0.498609\pi\)
\(398\) 0 0
\(399\) 8.80574e7 0.0694002
\(400\) 0 0
\(401\) 7.35030e8 0.569245 0.284623 0.958640i \(-0.408132\pi\)
0.284623 + 0.958640i \(0.408132\pi\)
\(402\) 0 0
\(403\) 1.10756e8 0.0842947
\(404\) 0 0
\(405\) 5.26222e7 0.0393619
\(406\) 0 0
\(407\) 1.36418e9 1.00298
\(408\) 0 0
\(409\) −2.64878e9 −1.91432 −0.957160 0.289558i \(-0.906492\pi\)
−0.957160 + 0.289558i \(0.906492\pi\)
\(410\) 0 0
\(411\) −8.43849e8 −0.599540
\(412\) 0 0
\(413\) −8.17888e7 −0.0571306
\(414\) 0 0
\(415\) −5.46433e8 −0.375292
\(416\) 0 0
\(417\) −9.61771e8 −0.649525
\(418\) 0 0
\(419\) −1.02562e9 −0.681140 −0.340570 0.940219i \(-0.610620\pi\)
−0.340570 + 0.940219i \(0.610620\pi\)
\(420\) 0 0
\(421\) −2.18207e9 −1.42522 −0.712608 0.701563i \(-0.752486\pi\)
−0.712608 + 0.701563i \(0.752486\pi\)
\(422\) 0 0
\(423\) 8.31305e7 0.0534034
\(424\) 0 0
\(425\) −1.26552e9 −0.799666
\(426\) 0 0
\(427\) −5.21894e8 −0.324403
\(428\) 0 0
\(429\) −7.22032e8 −0.441526
\(430\) 0 0
\(431\) 2.96388e9 1.78316 0.891578 0.452866i \(-0.149599\pi\)
0.891578 + 0.452866i \(0.149599\pi\)
\(432\) 0 0
\(433\) −6.91187e8 −0.409155 −0.204578 0.978850i \(-0.565582\pi\)
−0.204578 + 0.978850i \(0.565582\pi\)
\(434\) 0 0
\(435\) −1.15374e8 −0.0672042
\(436\) 0 0
\(437\) −6.74882e8 −0.386850
\(438\) 0 0
\(439\) −9.87163e8 −0.556882 −0.278441 0.960453i \(-0.589818\pi\)
−0.278441 + 0.960453i \(0.589818\pi\)
\(440\) 0 0
\(441\) 8.57661e7 0.0476190
\(442\) 0 0
\(443\) 2.74519e9 1.50024 0.750118 0.661304i \(-0.229997\pi\)
0.750118 + 0.661304i \(0.229997\pi\)
\(444\) 0 0
\(445\) 4.68958e8 0.252275
\(446\) 0 0
\(447\) −1.20108e9 −0.636057
\(448\) 0 0
\(449\) −4.80638e8 −0.250585 −0.125293 0.992120i \(-0.539987\pi\)
−0.125293 + 0.992120i \(0.539987\pi\)
\(450\) 0 0
\(451\) −9.78394e7 −0.0502222
\(452\) 0 0
\(453\) −4.29115e7 −0.0216885
\(454\) 0 0
\(455\) −2.45772e8 −0.122319
\(456\) 0 0
\(457\) −8.43345e8 −0.413332 −0.206666 0.978412i \(-0.566261\pi\)
−0.206666 + 0.978412i \(0.566261\pi\)
\(458\) 0 0
\(459\) −3.64595e8 −0.175981
\(460\) 0 0
\(461\) 2.31800e9 1.10195 0.550973 0.834523i \(-0.314257\pi\)
0.550973 + 0.834523i \(0.314257\pi\)
\(462\) 0 0
\(463\) 8.07564e8 0.378132 0.189066 0.981964i \(-0.439454\pi\)
0.189066 + 0.981964i \(0.439454\pi\)
\(464\) 0 0
\(465\) −4.09186e7 −0.0188728
\(466\) 0 0
\(467\) −3.95717e9 −1.79794 −0.898970 0.438011i \(-0.855683\pi\)
−0.898970 + 0.438011i \(0.855683\pi\)
\(468\) 0 0
\(469\) 2.36320e8 0.105778
\(470\) 0 0
\(471\) 1.99994e9 0.881948
\(472\) 0 0
\(473\) −1.01694e9 −0.441855
\(474\) 0 0
\(475\) −6.49619e8 −0.278119
\(476\) 0 0
\(477\) −2.53543e8 −0.106964
\(478\) 0 0
\(479\) 3.24574e9 1.34940 0.674698 0.738094i \(-0.264274\pi\)
0.674698 + 0.738094i \(0.264274\pi\)
\(480\) 0 0
\(481\) 2.67134e9 1.09451
\(482\) 0 0
\(483\) −6.57321e8 −0.265438
\(484\) 0 0
\(485\) 5.59474e8 0.222681
\(486\) 0 0
\(487\) 1.11073e9 0.435769 0.217885 0.975975i \(-0.430084\pi\)
0.217885 + 0.975975i \(0.430084\pi\)
\(488\) 0 0
\(489\) −1.11889e9 −0.432721
\(490\) 0 0
\(491\) 3.46672e9 1.32170 0.660851 0.750517i \(-0.270195\pi\)
0.660851 + 0.750517i \(0.270195\pi\)
\(492\) 0 0
\(493\) 7.99374e8 0.300459
\(494\) 0 0
\(495\) 2.66753e8 0.0988533
\(496\) 0 0
\(497\) 1.51830e9 0.554768
\(498\) 0 0
\(499\) −2.69715e9 −0.971746 −0.485873 0.874029i \(-0.661498\pi\)
−0.485873 + 0.874029i \(0.661498\pi\)
\(500\) 0 0
\(501\) −1.71156e9 −0.608079
\(502\) 0 0
\(503\) 1.75257e9 0.614027 0.307014 0.951705i \(-0.400670\pi\)
0.307014 + 0.951705i \(0.400670\pi\)
\(504\) 0 0
\(505\) 1.12356e9 0.388219
\(506\) 0 0
\(507\) 2.80328e8 0.0955296
\(508\) 0 0
\(509\) 3.25027e9 1.09247 0.546233 0.837634i \(-0.316061\pi\)
0.546233 + 0.837634i \(0.316061\pi\)
\(510\) 0 0
\(511\) 3.06845e8 0.101729
\(512\) 0 0
\(513\) −1.87154e8 −0.0612052
\(514\) 0 0
\(515\) 5.57051e8 0.179709
\(516\) 0 0
\(517\) 4.21406e8 0.134117
\(518\) 0 0
\(519\) 2.21642e9 0.695930
\(520\) 0 0
\(521\) −1.74813e9 −0.541554 −0.270777 0.962642i \(-0.587281\pi\)
−0.270777 + 0.962642i \(0.587281\pi\)
\(522\) 0 0
\(523\) −5.96418e9 −1.82304 −0.911518 0.411261i \(-0.865088\pi\)
−0.911518 + 0.411261i \(0.865088\pi\)
\(524\) 0 0
\(525\) −6.32716e8 −0.190832
\(526\) 0 0
\(527\) 2.83506e8 0.0843773
\(528\) 0 0
\(529\) 1.63296e9 0.479602
\(530\) 0 0
\(531\) 1.73831e8 0.0503845
\(532\) 0 0
\(533\) −1.91589e8 −0.0548057
\(534\) 0 0
\(535\) 4.39089e8 0.123969
\(536\) 0 0
\(537\) −2.92056e9 −0.813871
\(538\) 0 0
\(539\) 4.34767e8 0.119590
\(540\) 0 0
\(541\) 4.42149e9 1.20054 0.600272 0.799796i \(-0.295059\pi\)
0.600272 + 0.799796i \(0.295059\pi\)
\(542\) 0 0
\(543\) −1.25525e9 −0.336457
\(544\) 0 0
\(545\) 2.56326e9 0.678275
\(546\) 0 0
\(547\) 3.66088e9 0.956380 0.478190 0.878256i \(-0.341293\pi\)
0.478190 + 0.878256i \(0.341293\pi\)
\(548\) 0 0
\(549\) 1.10921e9 0.286096
\(550\) 0 0
\(551\) 4.10335e8 0.104498
\(552\) 0 0
\(553\) 9.41334e8 0.236704
\(554\) 0 0
\(555\) −9.86921e8 −0.245051
\(556\) 0 0
\(557\) −4.16407e9 −1.02100 −0.510499 0.859878i \(-0.670539\pi\)
−0.510499 + 0.859878i \(0.670539\pi\)
\(558\) 0 0
\(559\) −1.99137e9 −0.482180
\(560\) 0 0
\(561\) −1.84821e9 −0.441958
\(562\) 0 0
\(563\) 1.88169e9 0.444394 0.222197 0.975002i \(-0.428677\pi\)
0.222197 + 0.975002i \(0.428677\pi\)
\(564\) 0 0
\(565\) 1.90249e9 0.443766
\(566\) 0 0
\(567\) −1.82284e8 −0.0419961
\(568\) 0 0
\(569\) 7.84632e9 1.78556 0.892778 0.450497i \(-0.148753\pi\)
0.892778 + 0.450497i \(0.148753\pi\)
\(570\) 0 0
\(571\) −3.53026e9 −0.793562 −0.396781 0.917913i \(-0.629873\pi\)
−0.396781 + 0.917913i \(0.629873\pi\)
\(572\) 0 0
\(573\) 2.26866e9 0.503766
\(574\) 0 0
\(575\) 4.84921e9 1.06373
\(576\) 0 0
\(577\) −1.30432e9 −0.282663 −0.141331 0.989962i \(-0.545138\pi\)
−0.141331 + 0.989962i \(0.545138\pi\)
\(578\) 0 0
\(579\) 1.20425e9 0.257834
\(580\) 0 0
\(581\) 1.89285e9 0.400406
\(582\) 0 0
\(583\) −1.28526e9 −0.268628
\(584\) 0 0
\(585\) 5.22356e8 0.107875
\(586\) 0 0
\(587\) 1.96984e9 0.401973 0.200986 0.979594i \(-0.435585\pi\)
0.200986 + 0.979594i \(0.435585\pi\)
\(588\) 0 0
\(589\) 1.45530e8 0.0293459
\(590\) 0 0
\(591\) 8.22867e8 0.163973
\(592\) 0 0
\(593\) 6.32425e9 1.24542 0.622712 0.782451i \(-0.286031\pi\)
0.622712 + 0.782451i \(0.286031\pi\)
\(594\) 0 0
\(595\) −6.29111e8 −0.122438
\(596\) 0 0
\(597\) −1.00042e9 −0.192430
\(598\) 0 0
\(599\) 3.45689e9 0.657191 0.328596 0.944471i \(-0.393425\pi\)
0.328596 + 0.944471i \(0.393425\pi\)
\(600\) 0 0
\(601\) 7.76561e9 1.45920 0.729600 0.683874i \(-0.239706\pi\)
0.729600 + 0.683874i \(0.239706\pi\)
\(602\) 0 0
\(603\) −5.02265e8 −0.0932873
\(604\) 0 0
\(605\) −5.77353e8 −0.105998
\(606\) 0 0
\(607\) 1.59452e9 0.289381 0.144691 0.989477i \(-0.453781\pi\)
0.144691 + 0.989477i \(0.453781\pi\)
\(608\) 0 0
\(609\) 3.99658e8 0.0717015
\(610\) 0 0
\(611\) 8.25197e8 0.146357
\(612\) 0 0
\(613\) 9.11892e8 0.159894 0.0799469 0.996799i \(-0.474525\pi\)
0.0799469 + 0.996799i \(0.474525\pi\)
\(614\) 0 0
\(615\) 7.07821e7 0.0122705
\(616\) 0 0
\(617\) −5.96004e9 −1.02153 −0.510765 0.859720i \(-0.670638\pi\)
−0.510765 + 0.859720i \(0.670638\pi\)
\(618\) 0 0
\(619\) −1.13437e10 −1.92237 −0.961185 0.275905i \(-0.911023\pi\)
−0.961185 + 0.275905i \(0.911023\pi\)
\(620\) 0 0
\(621\) 1.39705e9 0.234094
\(622\) 0 0
\(623\) −1.62448e9 −0.269157
\(624\) 0 0
\(625\) 3.90170e9 0.639255
\(626\) 0 0
\(627\) −9.48723e8 −0.153710
\(628\) 0 0
\(629\) 6.83791e9 1.09559
\(630\) 0 0
\(631\) 7.83067e9 1.24078 0.620392 0.784292i \(-0.286974\pi\)
0.620392 + 0.784292i \(0.286974\pi\)
\(632\) 0 0
\(633\) −3.72893e9 −0.584348
\(634\) 0 0
\(635\) 4.17955e9 0.647771
\(636\) 0 0
\(637\) 8.51360e8 0.130504
\(638\) 0 0
\(639\) −3.22695e9 −0.489260
\(640\) 0 0
\(641\) 5.57392e9 0.835906 0.417953 0.908469i \(-0.362748\pi\)
0.417953 + 0.908469i \(0.362748\pi\)
\(642\) 0 0
\(643\) −1.15645e10 −1.71549 −0.857744 0.514077i \(-0.828134\pi\)
−0.857744 + 0.514077i \(0.828134\pi\)
\(644\) 0 0
\(645\) 7.35705e8 0.107956
\(646\) 0 0
\(647\) 3.85801e9 0.560013 0.280007 0.959998i \(-0.409663\pi\)
0.280007 + 0.959998i \(0.409663\pi\)
\(648\) 0 0
\(649\) 8.81186e8 0.126535
\(650\) 0 0
\(651\) 1.41743e8 0.0201358
\(652\) 0 0
\(653\) 6.73377e9 0.946373 0.473187 0.880962i \(-0.343104\pi\)
0.473187 + 0.880962i \(0.343104\pi\)
\(654\) 0 0
\(655\) 1.20446e9 0.167475
\(656\) 0 0
\(657\) −6.52158e8 −0.0897168
\(658\) 0 0
\(659\) 2.72188e9 0.370485 0.185242 0.982693i \(-0.440693\pi\)
0.185242 + 0.982693i \(0.440693\pi\)
\(660\) 0 0
\(661\) −3.23681e9 −0.435925 −0.217962 0.975957i \(-0.569941\pi\)
−0.217962 + 0.975957i \(0.569941\pi\)
\(662\) 0 0
\(663\) −3.61916e9 −0.482292
\(664\) 0 0
\(665\) −3.22936e8 −0.0425834
\(666\) 0 0
\(667\) −3.06303e9 −0.399678
\(668\) 0 0
\(669\) −5.60327e9 −0.723519
\(670\) 0 0
\(671\) 5.62284e9 0.718500
\(672\) 0 0
\(673\) −1.04198e10 −1.31768 −0.658838 0.752285i \(-0.728952\pi\)
−0.658838 + 0.752285i \(0.728952\pi\)
\(674\) 0 0
\(675\) 1.34475e9 0.168298
\(676\) 0 0
\(677\) 8.01041e9 0.992189 0.496094 0.868269i \(-0.334767\pi\)
0.496094 + 0.868269i \(0.334767\pi\)
\(678\) 0 0
\(679\) −1.93803e9 −0.237583
\(680\) 0 0
\(681\) −1.95655e9 −0.237398
\(682\) 0 0
\(683\) −7.15349e9 −0.859104 −0.429552 0.903042i \(-0.641328\pi\)
−0.429552 + 0.903042i \(0.641328\pi\)
\(684\) 0 0
\(685\) 3.09467e9 0.367873
\(686\) 0 0
\(687\) 7.76816e9 0.914049
\(688\) 0 0
\(689\) −2.51680e9 −0.293144
\(690\) 0 0
\(691\) −1.25797e10 −1.45043 −0.725216 0.688521i \(-0.758260\pi\)
−0.725216 + 0.688521i \(0.758260\pi\)
\(692\) 0 0
\(693\) −9.24037e8 −0.105469
\(694\) 0 0
\(695\) 3.52713e9 0.398543
\(696\) 0 0
\(697\) −4.90416e8 −0.0548593
\(698\) 0 0
\(699\) −2.43485e9 −0.269651
\(700\) 0 0
\(701\) −2.83761e9 −0.311128 −0.155564 0.987826i \(-0.549719\pi\)
−0.155564 + 0.987826i \(0.549719\pi\)
\(702\) 0 0
\(703\) 3.51004e9 0.381038
\(704\) 0 0
\(705\) −3.04867e8 −0.0327679
\(706\) 0 0
\(707\) −3.89203e9 −0.414198
\(708\) 0 0
\(709\) 1.32544e10 1.39668 0.698341 0.715765i \(-0.253922\pi\)
0.698341 + 0.715765i \(0.253922\pi\)
\(710\) 0 0
\(711\) −2.00068e9 −0.208753
\(712\) 0 0
\(713\) −1.08633e9 −0.112241
\(714\) 0 0
\(715\) 2.64793e9 0.270917
\(716\) 0 0
\(717\) −7.34816e9 −0.744495
\(718\) 0 0
\(719\) 5.30334e9 0.532107 0.266053 0.963958i \(-0.414280\pi\)
0.266053 + 0.963958i \(0.414280\pi\)
\(720\) 0 0
\(721\) −1.92963e9 −0.191735
\(722\) 0 0
\(723\) 3.69245e8 0.0363355
\(724\) 0 0
\(725\) −2.94837e9 −0.287342
\(726\) 0 0
\(727\) 1.14181e10 1.10210 0.551052 0.834471i \(-0.314226\pi\)
0.551052 + 0.834471i \(0.314226\pi\)
\(728\) 0 0
\(729\) 3.87420e8 0.0370370
\(730\) 0 0
\(731\) −5.09736e9 −0.482652
\(732\) 0 0
\(733\) −1.12247e10 −1.05271 −0.526355 0.850265i \(-0.676442\pi\)
−0.526355 + 0.850265i \(0.676442\pi\)
\(734\) 0 0
\(735\) −3.14533e8 −0.0292187
\(736\) 0 0
\(737\) −2.54609e9 −0.234281
\(738\) 0 0
\(739\) 1.91114e10 1.74196 0.870980 0.491319i \(-0.163485\pi\)
0.870980 + 0.491319i \(0.163485\pi\)
\(740\) 0 0
\(741\) −1.85779e9 −0.167738
\(742\) 0 0
\(743\) 1.48601e10 1.32911 0.664554 0.747241i \(-0.268622\pi\)
0.664554 + 0.747241i \(0.268622\pi\)
\(744\) 0 0
\(745\) 4.40477e9 0.390280
\(746\) 0 0
\(747\) −4.02301e9 −0.353125
\(748\) 0 0
\(749\) −1.52101e9 −0.132265
\(750\) 0 0
\(751\) 2.11232e10 1.81978 0.909892 0.414846i \(-0.136165\pi\)
0.909892 + 0.414846i \(0.136165\pi\)
\(752\) 0 0
\(753\) 4.85048e9 0.414002
\(754\) 0 0
\(755\) 1.57371e8 0.0133079
\(756\) 0 0
\(757\) −1.24838e10 −1.04595 −0.522977 0.852347i \(-0.675179\pi\)
−0.522977 + 0.852347i \(0.675179\pi\)
\(758\) 0 0
\(759\) 7.08193e9 0.587903
\(760\) 0 0
\(761\) −1.10735e10 −0.910836 −0.455418 0.890278i \(-0.650510\pi\)
−0.455418 + 0.890278i \(0.650510\pi\)
\(762\) 0 0
\(763\) −8.87919e9 −0.723665
\(764\) 0 0
\(765\) 1.33709e9 0.107981
\(766\) 0 0
\(767\) 1.72554e9 0.138083
\(768\) 0 0
\(769\) −1.71862e9 −0.136282 −0.0681409 0.997676i \(-0.521707\pi\)
−0.0681409 + 0.997676i \(0.521707\pi\)
\(770\) 0 0
\(771\) −5.63865e9 −0.443083
\(772\) 0 0
\(773\) −6.13658e8 −0.0477857 −0.0238929 0.999715i \(-0.507606\pi\)
−0.0238929 + 0.999715i \(0.507606\pi\)
\(774\) 0 0
\(775\) −1.04567e9 −0.0806934
\(776\) 0 0
\(777\) 3.41871e9 0.261450
\(778\) 0 0
\(779\) −2.51741e8 −0.0190798
\(780\) 0 0
\(781\) −1.63581e10 −1.22872
\(782\) 0 0
\(783\) −8.49419e8 −0.0632348
\(784\) 0 0
\(785\) −7.33443e9 −0.541156
\(786\) 0 0
\(787\) 1.38237e10 1.01091 0.505455 0.862853i \(-0.331325\pi\)
0.505455 + 0.862853i \(0.331325\pi\)
\(788\) 0 0
\(789\) −1.13400e7 −0.000821944 0
\(790\) 0 0
\(791\) −6.59028e9 −0.473463
\(792\) 0 0
\(793\) 1.10106e10 0.784073
\(794\) 0 0
\(795\) 9.29825e8 0.0656321
\(796\) 0 0
\(797\) 2.37930e9 0.166474 0.0832368 0.996530i \(-0.473474\pi\)
0.0832368 + 0.996530i \(0.473474\pi\)
\(798\) 0 0
\(799\) 2.11228e9 0.146500
\(800\) 0 0
\(801\) 3.45261e9 0.237374
\(802\) 0 0
\(803\) −3.30592e9 −0.225314
\(804\) 0 0
\(805\) 2.41062e9 0.162871
\(806\) 0 0
\(807\) −6.11513e9 −0.409589
\(808\) 0 0
\(809\) −4.24121e8 −0.0281624 −0.0140812 0.999901i \(-0.504482\pi\)
−0.0140812 + 0.999901i \(0.504482\pi\)
\(810\) 0 0
\(811\) −7.61503e9 −0.501301 −0.250651 0.968078i \(-0.580645\pi\)
−0.250651 + 0.968078i \(0.580645\pi\)
\(812\) 0 0
\(813\) −6.37831e9 −0.416283
\(814\) 0 0
\(815\) 4.10336e9 0.265514
\(816\) 0 0
\(817\) −2.61658e9 −0.167864
\(818\) 0 0
\(819\) −1.80945e9 −0.115094
\(820\) 0 0
\(821\) −8.22147e9 −0.518500 −0.259250 0.965810i \(-0.583475\pi\)
−0.259250 + 0.965810i \(0.583475\pi\)
\(822\) 0 0
\(823\) −5.71466e9 −0.357348 −0.178674 0.983908i \(-0.557181\pi\)
−0.178674 + 0.983908i \(0.557181\pi\)
\(824\) 0 0
\(825\) 6.81683e9 0.422662
\(826\) 0 0
\(827\) −9.12989e9 −0.561302 −0.280651 0.959810i \(-0.590550\pi\)
−0.280651 + 0.959810i \(0.590550\pi\)
\(828\) 0 0
\(829\) −6.93786e9 −0.422946 −0.211473 0.977384i \(-0.567826\pi\)
−0.211473 + 0.977384i \(0.567826\pi\)
\(830\) 0 0
\(831\) 8.71848e9 0.527032
\(832\) 0 0
\(833\) 2.17925e9 0.130632
\(834\) 0 0
\(835\) 6.27686e9 0.373113
\(836\) 0 0
\(837\) −3.01255e8 −0.0177581
\(838\) 0 0
\(839\) −5.69445e9 −0.332878 −0.166439 0.986052i \(-0.553227\pi\)
−0.166439 + 0.986052i \(0.553227\pi\)
\(840\) 0 0
\(841\) −1.53875e10 −0.892037
\(842\) 0 0
\(843\) −8.44246e9 −0.485369
\(844\) 0 0
\(845\) −1.02805e9 −0.0586162
\(846\) 0 0
\(847\) 1.99996e9 0.113091
\(848\) 0 0
\(849\) 9.77036e9 0.547941
\(850\) 0 0
\(851\) −2.62014e10 −1.45737
\(852\) 0 0
\(853\) −2.87194e10 −1.58436 −0.792180 0.610288i \(-0.791054\pi\)
−0.792180 + 0.610288i \(0.791054\pi\)
\(854\) 0 0
\(855\) 6.86356e8 0.0375550
\(856\) 0 0
\(857\) −1.23544e10 −0.670483 −0.335241 0.942132i \(-0.608818\pi\)
−0.335241 + 0.942132i \(0.608818\pi\)
\(858\) 0 0
\(859\) −5.46709e9 −0.294293 −0.147146 0.989115i \(-0.547009\pi\)
−0.147146 + 0.989115i \(0.547009\pi\)
\(860\) 0 0
\(861\) −2.45191e8 −0.0130916
\(862\) 0 0
\(863\) 2.03580e10 1.07820 0.539098 0.842243i \(-0.318765\pi\)
0.539098 + 0.842243i \(0.318765\pi\)
\(864\) 0 0
\(865\) −8.12834e9 −0.427017
\(866\) 0 0
\(867\) 1.81507e9 0.0945859
\(868\) 0 0
\(869\) −1.01419e10 −0.524262
\(870\) 0 0
\(871\) −4.98575e9 −0.255662
\(872\) 0 0
\(873\) 4.11902e9 0.209529
\(874\) 0 0
\(875\) 4.97375e9 0.250990
\(876\) 0 0
\(877\) 3.28998e10 1.64700 0.823502 0.567313i \(-0.192017\pi\)
0.823502 + 0.567313i \(0.192017\pi\)
\(878\) 0 0
\(879\) −1.38764e10 −0.689155
\(880\) 0 0
\(881\) 3.29513e10 1.62352 0.811759 0.583992i \(-0.198510\pi\)
0.811759 + 0.583992i \(0.198510\pi\)
\(882\) 0 0
\(883\) −9.84034e9 −0.481003 −0.240501 0.970649i \(-0.577312\pi\)
−0.240501 + 0.970649i \(0.577312\pi\)
\(884\) 0 0
\(885\) −6.37496e8 −0.0309155
\(886\) 0 0
\(887\) −3.83050e10 −1.84299 −0.921494 0.388392i \(-0.873031\pi\)
−0.921494 + 0.388392i \(0.873031\pi\)
\(888\) 0 0
\(889\) −1.44780e10 −0.691120
\(890\) 0 0
\(891\) 1.96392e9 0.0930146
\(892\) 0 0
\(893\) 1.08428e9 0.0509519
\(894\) 0 0
\(895\) 1.07106e10 0.499385
\(896\) 0 0
\(897\) 1.38678e10 0.641556
\(898\) 0 0
\(899\) 6.60502e8 0.0303190
\(900\) 0 0
\(901\) −6.44232e9 −0.293431
\(902\) 0 0
\(903\) −2.54850e9 −0.115180
\(904\) 0 0
\(905\) 4.60340e9 0.206447
\(906\) 0 0
\(907\) −6.85297e9 −0.304967 −0.152484 0.988306i \(-0.548727\pi\)
−0.152484 + 0.988306i \(0.548727\pi\)
\(908\) 0 0
\(909\) 8.27199e9 0.365289
\(910\) 0 0
\(911\) −1.68852e9 −0.0739933 −0.0369966 0.999315i \(-0.511779\pi\)
−0.0369966 + 0.999315i \(0.511779\pi\)
\(912\) 0 0
\(913\) −2.03935e10 −0.886836
\(914\) 0 0
\(915\) −4.06786e9 −0.175546
\(916\) 0 0
\(917\) −4.17229e9 −0.178682
\(918\) 0 0
\(919\) −8.49261e9 −0.360942 −0.180471 0.983580i \(-0.557762\pi\)
−0.180471 + 0.983580i \(0.557762\pi\)
\(920\) 0 0
\(921\) −3.65326e9 −0.154089
\(922\) 0 0
\(923\) −3.20324e10 −1.34086
\(924\) 0 0
\(925\) −2.52206e10 −1.04775
\(926\) 0 0
\(927\) 4.10117e9 0.169094
\(928\) 0 0
\(929\) −1.01380e10 −0.414854 −0.207427 0.978251i \(-0.566509\pi\)
−0.207427 + 0.978251i \(0.566509\pi\)
\(930\) 0 0
\(931\) 1.11865e9 0.0454331
\(932\) 0 0
\(933\) 1.12258e9 0.0452514
\(934\) 0 0
\(935\) 6.77799e9 0.271182
\(936\) 0 0
\(937\) 2.73102e10 1.08452 0.542258 0.840212i \(-0.317569\pi\)
0.542258 + 0.840212i \(0.317569\pi\)
\(938\) 0 0
\(939\) −2.08399e10 −0.821420
\(940\) 0 0
\(941\) −1.11756e10 −0.437229 −0.218614 0.975811i \(-0.570154\pi\)
−0.218614 + 0.975811i \(0.570154\pi\)
\(942\) 0 0
\(943\) 1.87917e9 0.0729751
\(944\) 0 0
\(945\) 6.68497e8 0.0257684
\(946\) 0 0
\(947\) −1.14842e10 −0.439416 −0.219708 0.975566i \(-0.570510\pi\)
−0.219708 + 0.975566i \(0.570510\pi\)
\(948\) 0 0
\(949\) −6.47366e9 −0.245877
\(950\) 0 0
\(951\) −1.35780e7 −0.000511922 0
\(952\) 0 0
\(953\) 3.24527e10 1.21458 0.607289 0.794481i \(-0.292257\pi\)
0.607289 + 0.794481i \(0.292257\pi\)
\(954\) 0 0
\(955\) −8.31994e9 −0.309107
\(956\) 0 0
\(957\) −4.30588e9 −0.158807
\(958\) 0 0
\(959\) −1.07200e10 −0.392491
\(960\) 0 0
\(961\) −2.72784e10 −0.991486
\(962\) 0 0
\(963\) 3.23270e9 0.116647
\(964\) 0 0
\(965\) −4.41638e9 −0.158205
\(966\) 0 0
\(967\) 1.48412e10 0.527807 0.263903 0.964549i \(-0.414990\pi\)
0.263903 + 0.964549i \(0.414990\pi\)
\(968\) 0 0
\(969\) −4.75544e9 −0.167903
\(970\) 0 0
\(971\) −5.11293e10 −1.79227 −0.896134 0.443784i \(-0.853636\pi\)
−0.896134 + 0.443784i \(0.853636\pi\)
\(972\) 0 0
\(973\) −1.22181e10 −0.425214
\(974\) 0 0
\(975\) 1.33487e10 0.461236
\(976\) 0 0
\(977\) −3.72350e10 −1.27738 −0.638691 0.769464i \(-0.720524\pi\)
−0.638691 + 0.769464i \(0.720524\pi\)
\(978\) 0 0
\(979\) 1.75020e10 0.596140
\(980\) 0 0
\(981\) 1.88715e10 0.638212
\(982\) 0 0
\(983\) −2.51039e10 −0.842953 −0.421476 0.906839i \(-0.638488\pi\)
−0.421476 + 0.906839i \(0.638488\pi\)
\(984\) 0 0
\(985\) −3.01773e9 −0.100613
\(986\) 0 0
\(987\) 1.05607e9 0.0349608
\(988\) 0 0
\(989\) 1.95320e10 0.642036
\(990\) 0 0
\(991\) −9.08794e9 −0.296625 −0.148312 0.988941i \(-0.547384\pi\)
−0.148312 + 0.988941i \(0.547384\pi\)
\(992\) 0 0
\(993\) 6.25501e9 0.202724
\(994\) 0 0
\(995\) 3.66887e9 0.118073
\(996\) 0 0
\(997\) 3.04492e10 0.973068 0.486534 0.873662i \(-0.338261\pi\)
0.486534 + 0.873662i \(0.338261\pi\)
\(998\) 0 0
\(999\) −7.26601e9 −0.230577
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 336.8.a.t.1.2 3
4.3 odd 2 168.8.a.i.1.2 3
12.11 even 2 504.8.a.h.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.8.a.i.1.2 3 4.3 odd 2
336.8.a.t.1.2 3 1.1 even 1 trivial
504.8.a.h.1.2 3 12.11 even 2