Properties

Label 336.8.a.t
Level $336$
Weight $8$
Character orbit 336.a
Self dual yes
Analytic conductor $104.961$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [336,8,Mod(1,336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("336.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(336, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 336 = 2^{4} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 336.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,-81,0,414] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(104.961368563\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4400x - 26848 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{5}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 168)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 27 q^{3} + (\beta_1 + 138) q^{5} - 343 q^{7} + 729 q^{9} + ( - \beta_{2} - 2 \beta_1 - 3184) q^{11} + ( - \beta_{2} - 3 \beta_1 + 318) q^{13} + ( - 27 \beta_1 - 3726) q^{15} + ( - 3 \beta_{2} + 48 \beta_1 - 10) q^{17}+ \cdots + ( - 729 \beta_{2} - 1458 \beta_1 - 2321136) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 81 q^{3} + 414 q^{5} - 1029 q^{7} + 2187 q^{9} - 9552 q^{11} + 954 q^{13} - 11178 q^{15} - 30 q^{17} - 39588 q^{19} + 27783 q^{21} + 31164 q^{23} + 139581 q^{25} - 59049 q^{27} + 38898 q^{29} - 147888 q^{31}+ \cdots - 6963408 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 4400x - 26848 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 6\nu - 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 12\nu^{2} - 114\nu - 35166 ) / 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 2 ) / 6 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 5\beta_{2} + 19\beta _1 + 35204 ) / 12 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−62.5141
−6.16367
69.6778
0 −27.0000 0 −239.085 0 −343.000 0 729.000 0
1.2 0 −27.0000 0 99.0180 0 −343.000 0 729.000 0
1.3 0 −27.0000 0 554.067 0 −343.000 0 729.000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 336.8.a.t 3
4.b odd 2 1 168.8.a.i 3
12.b even 2 1 504.8.a.h 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
168.8.a.i 3 4.b odd 2 1
336.8.a.t 3 1.a even 1 1 trivial
504.8.a.h 3 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{3} - 414T_{5}^{2} - 101280T_{5} + 13116800 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(336))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( (T + 27)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} - 414 T^{2} + \cdots + 13116800 \) Copy content Toggle raw display
$7$ \( (T + 343)^{3} \) Copy content Toggle raw display
$11$ \( T^{3} + \cdots - 161473698288 \) Copy content Toggle raw display
$13$ \( T^{3} + \cdots - 66548459736 \) Copy content Toggle raw display
$17$ \( T^{3} + \cdots + 5924949046912 \) Copy content Toggle raw display
$19$ \( T^{3} + \cdots - 1007347537472 \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots - 92556992606048 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots + 417898488103976 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots + 832811883624448 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots - 21\!\cdots\!28 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots - 24\!\cdots\!80 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots - 61\!\cdots\!40 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots + 96\!\cdots\!28 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots + 57\!\cdots\!96 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots - 88\!\cdots\!84 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots + 16\!\cdots\!24 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots + 30\!\cdots\!00 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots - 66\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots + 12\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots - 35\!\cdots\!84 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots - 13\!\cdots\!08 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots + 13\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots - 21\!\cdots\!68 \) Copy content Toggle raw display
show more
show less