Properties

Label 336.4.c
Level 336336
Weight 44
Character orbit 336.c
Rep. character χ336(169,)\chi_{336}(169,\cdot)
Character field Q\Q
Dimension 00
Newform subspaces 00
Sturm bound 256256
Trace bound 00

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 336=2437 336 = 2^{4} \cdot 3 \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 336.c (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 8 8
Character field: Q\Q
Newform subspaces: 0 0
Sturm bound: 256256
Trace bound: 00

Dimensions

The following table gives the dimensions of various subspaces of M4(336,[χ])M_{4}(336, [\chi]).

Total New Old
Modular forms 200 0 200
Cusp forms 184 0 184
Eisenstein series 16 0 16

Decomposition of S4old(336,[χ])S_{4}^{\mathrm{old}}(336, [\chi]) into lower level spaces

S4old(336,[χ]) S_{4}^{\mathrm{old}}(336, [\chi]) \simeq S4new(8,[χ])S_{4}^{\mathrm{new}}(8, [\chi])8^{\oplus 8}\oplusS4new(24,[χ])S_{4}^{\mathrm{new}}(24, [\chi])4^{\oplus 4}\oplusS4new(56,[χ])S_{4}^{\mathrm{new}}(56, [\chi])4^{\oplus 4}\oplusS4new(168,[χ])S_{4}^{\mathrm{new}}(168, [\chi])2^{\oplus 2}