Defining parameters
Level: | \( N \) | \(=\) | \( 24 = 2^{3} \cdot 3 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 24.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 8 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(16\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(24, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 14 | 6 | 8 |
Cusp forms | 10 | 6 | 4 |
Eisenstein series | 4 | 0 | 4 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(24, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
24.4.d.a | $6$ | $1.416$ | 6.0.8248384.1 | None | \(2\) | \(0\) | \(0\) | \(28\) | \(q+\beta _{3}q^{2}+\beta _{1}q^{3}+(3-\beta _{5})q^{4}+(2\beta _{1}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(24, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(24, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(8, [\chi])\)\(^{\oplus 2}\)