Properties

Label 336.4.bj.e.95.14
Level $336$
Weight $4$
Character 336.95
Analytic conductor $19.825$
Analytic rank $0$
Dimension $28$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [336,4,Mod(95,336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("336.95"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(336, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 3, 4])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 336 = 2^{4} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 336.bj (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [28,0,0,0,0,0,-38] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.8246417619\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 95.14
Character \(\chi\) \(=\) 336.95
Dual form 336.4.bj.e.191.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(5.18844 - 0.283083i) q^{3} +(-8.90809 + 5.14309i) q^{5} +(-9.06303 - 16.1512i) q^{7} +(26.8397 - 2.93751i) q^{9} +(-23.0995 + 40.0094i) q^{11} +26.5424 q^{13} +(-44.7631 + 29.2063i) q^{15} +(102.989 + 59.4610i) q^{17} +(142.904 - 82.5056i) q^{19} +(-51.5951 - 81.2339i) q^{21} +(65.7775 + 113.930i) q^{23} +(-9.59729 + 16.6230i) q^{25} +(138.425 - 22.8390i) q^{27} -15.1194i q^{29} +(101.152 + 58.4004i) q^{31} +(-108.524 + 214.126i) q^{33} +(163.801 + 97.2644i) q^{35} +(113.596 + 196.753i) q^{37} +(137.714 - 7.51370i) q^{39} +220.200i q^{41} -338.962i q^{43} +(-223.983 + 164.207i) q^{45} +(-169.340 - 293.305i) q^{47} +(-178.723 + 292.758i) q^{49} +(551.187 + 279.355i) q^{51} +(-660.198 - 381.166i) q^{53} -475.210i q^{55} +(718.092 - 468.529i) q^{57} +(-238.395 + 412.913i) q^{59} +(-148.601 - 257.384i) q^{61} +(-290.694 - 406.871i) q^{63} +(-236.442 + 136.510i) q^{65} +(596.062 + 344.137i) q^{67} +(373.534 + 572.498i) q^{69} +700.236 q^{71} +(-155.048 + 268.552i) q^{73} +(-45.0893 + 88.9642i) q^{75} +(855.552 + 10.4773i) q^{77} +(248.663 - 143.566i) q^{79} +(711.742 - 157.684i) q^{81} +906.485 q^{83} -1223.25 q^{85} +(-4.28003 - 78.4459i) q^{87} +(-616.098 + 355.704i) q^{89} +(-240.555 - 428.692i) q^{91} +(541.355 + 274.372i) q^{93} +(-848.667 + 1469.93i) q^{95} +354.982 q^{97} +(-502.455 + 1141.70i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q - 38 q^{7} - 70 q^{9} + 124 q^{13} + 462 q^{19} + 500 q^{21} + 566 q^{25} - 1266 q^{31} + 64 q^{33} + 338 q^{37} - 1254 q^{39} - 488 q^{45} - 206 q^{49} - 522 q^{51} + 2324 q^{57} - 340 q^{61} + 840 q^{63}+ \cdots - 3344 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/336\mathbb{Z}\right)^\times\).

\(n\) \(85\) \(113\) \(127\) \(241\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 5.18844 0.283083i 0.998515 0.0544793i
\(4\) 0 0
\(5\) −8.90809 + 5.14309i −0.796764 + 0.460012i −0.842338 0.538949i \(-0.818821\pi\)
0.0455745 + 0.998961i \(0.485488\pi\)
\(6\) 0 0
\(7\) −9.06303 16.1512i −0.489358 0.872083i
\(8\) 0 0
\(9\) 26.8397 2.93751i 0.994064 0.108797i
\(10\) 0 0
\(11\) −23.0995 + 40.0094i −0.633159 + 1.09666i 0.353743 + 0.935343i \(0.384909\pi\)
−0.986902 + 0.161321i \(0.948425\pi\)
\(12\) 0 0
\(13\) 26.5424 0.566272 0.283136 0.959080i \(-0.408625\pi\)
0.283136 + 0.959080i \(0.408625\pi\)
\(14\) 0 0
\(15\) −44.7631 + 29.2063i −0.770519 + 0.502736i
\(16\) 0 0
\(17\) 102.989 + 59.4610i 1.46933 + 0.848318i 0.999409 0.0343895i \(-0.0109487\pi\)
0.469922 + 0.882708i \(0.344282\pi\)
\(18\) 0 0
\(19\) 142.904 82.5056i 1.72550 0.996215i 0.819286 0.573385i \(-0.194370\pi\)
0.906209 0.422830i \(-0.138963\pi\)
\(20\) 0 0
\(21\) −51.5951 81.2339i −0.536141 0.844128i
\(22\) 0 0
\(23\) 65.7775 + 113.930i 0.596328 + 1.03287i 0.993358 + 0.115065i \(0.0367077\pi\)
−0.397030 + 0.917806i \(0.629959\pi\)
\(24\) 0 0
\(25\) −9.59729 + 16.6230i −0.0767784 + 0.132984i
\(26\) 0 0
\(27\) 138.425 22.8390i 0.986661 0.162791i
\(28\) 0 0
\(29\) 15.1194i 0.0968137i −0.998828 0.0484068i \(-0.984586\pi\)
0.998828 0.0484068i \(-0.0154144\pi\)
\(30\) 0 0
\(31\) 101.152 + 58.4004i 0.586049 + 0.338355i 0.763534 0.645768i \(-0.223463\pi\)
−0.177485 + 0.984124i \(0.556796\pi\)
\(32\) 0 0
\(33\) −108.524 + 214.126i −0.572473 + 1.12953i
\(34\) 0 0
\(35\) 163.801 + 97.2644i 0.791071 + 0.469734i
\(36\) 0 0
\(37\) 113.596 + 196.753i 0.504730 + 0.874218i 0.999985 + 0.00547025i \(0.00174124\pi\)
−0.495255 + 0.868748i \(0.664925\pi\)
\(38\) 0 0
\(39\) 137.714 7.51370i 0.565431 0.0308501i
\(40\) 0 0
\(41\) 220.200i 0.838768i 0.907809 + 0.419384i \(0.137754\pi\)
−0.907809 + 0.419384i \(0.862246\pi\)
\(42\) 0 0
\(43\) 338.962i 1.20212i −0.799203 0.601061i \(-0.794745\pi\)
0.799203 0.601061i \(-0.205255\pi\)
\(44\) 0 0
\(45\) −223.983 + 164.207i −0.741986 + 0.543966i
\(46\) 0 0
\(47\) −169.340 293.305i −0.525547 0.910274i −0.999557 0.0297547i \(-0.990527\pi\)
0.474010 0.880519i \(-0.342806\pi\)
\(48\) 0 0
\(49\) −178.723 + 292.758i −0.521058 + 0.853521i
\(50\) 0 0
\(51\) 551.187 + 279.355i 1.51336 + 0.767010i
\(52\) 0 0
\(53\) −660.198 381.166i −1.71104 0.987870i −0.933162 0.359456i \(-0.882962\pi\)
−0.777879 0.628414i \(-0.783704\pi\)
\(54\) 0 0
\(55\) 475.210i 1.16504i
\(56\) 0 0
\(57\) 718.092 468.529i 1.66866 1.08874i
\(58\) 0 0
\(59\) −238.395 + 412.913i −0.526041 + 0.911130i 0.473498 + 0.880795i \(0.342991\pi\)
−0.999540 + 0.0303356i \(0.990342\pi\)
\(60\) 0 0
\(61\) −148.601 257.384i −0.311908 0.540240i 0.666867 0.745176i \(-0.267635\pi\)
−0.978775 + 0.204936i \(0.934301\pi\)
\(62\) 0 0
\(63\) −290.694 406.871i −0.581333 0.813666i
\(64\) 0 0
\(65\) −236.442 + 136.510i −0.451185 + 0.260492i
\(66\) 0 0
\(67\) 596.062 + 344.137i 1.08687 + 0.627507i 0.932743 0.360543i \(-0.117409\pi\)
0.154132 + 0.988050i \(0.450742\pi\)
\(68\) 0 0
\(69\) 373.534 + 572.498i 0.651713 + 0.998850i
\(70\) 0 0
\(71\) 700.236 1.17046 0.585230 0.810867i \(-0.301004\pi\)
0.585230 + 0.810867i \(0.301004\pi\)
\(72\) 0 0
\(73\) −155.048 + 268.552i −0.248590 + 0.430570i −0.963135 0.269020i \(-0.913300\pi\)
0.714545 + 0.699589i \(0.246634\pi\)
\(74\) 0 0
\(75\) −45.0893 + 88.9642i −0.0694195 + 0.136969i
\(76\) 0 0
\(77\) 855.552 + 10.4773i 1.26622 + 0.0155065i
\(78\) 0 0
\(79\) 248.663 143.566i 0.354136 0.204461i −0.312369 0.949961i \(-0.601123\pi\)
0.666506 + 0.745500i \(0.267789\pi\)
\(80\) 0 0
\(81\) 711.742 157.684i 0.976327 0.216302i
\(82\) 0 0
\(83\) 906.485 1.19879 0.599395 0.800453i \(-0.295408\pi\)
0.599395 + 0.800453i \(0.295408\pi\)
\(84\) 0 0
\(85\) −1223.25 −1.56095
\(86\) 0 0
\(87\) −4.28003 78.4459i −0.00527434 0.0966699i
\(88\) 0 0
\(89\) −616.098 + 355.704i −0.733778 + 0.423647i −0.819803 0.572646i \(-0.805917\pi\)
0.0860247 + 0.996293i \(0.472584\pi\)
\(90\) 0 0
\(91\) −240.555 428.692i −0.277110 0.493837i
\(92\) 0 0
\(93\) 541.355 + 274.372i 0.603612 + 0.305925i
\(94\) 0 0
\(95\) −848.667 + 1469.93i −0.916541 + 1.58750i
\(96\) 0 0
\(97\) 354.982 0.371576 0.185788 0.982590i \(-0.440516\pi\)
0.185788 + 0.982590i \(0.440516\pi\)
\(98\) 0 0
\(99\) −502.455 + 1141.70i −0.510087 + 1.15904i
\(100\) 0 0
\(101\) 244.408 + 141.109i 0.240787 + 0.139018i 0.615538 0.788107i \(-0.288939\pi\)
−0.374751 + 0.927125i \(0.622272\pi\)
\(102\) 0 0
\(103\) −332.881 + 192.189i −0.318444 + 0.183854i −0.650699 0.759336i \(-0.725524\pi\)
0.332255 + 0.943190i \(0.392191\pi\)
\(104\) 0 0
\(105\) 877.407 + 458.281i 0.815487 + 0.425939i
\(106\) 0 0
\(107\) −453.666 785.772i −0.409883 0.709939i 0.584993 0.811038i \(-0.301097\pi\)
−0.994876 + 0.101100i \(0.967764\pi\)
\(108\) 0 0
\(109\) −13.2311 + 22.9170i −0.0116267 + 0.0201381i −0.871780 0.489897i \(-0.837034\pi\)
0.860154 + 0.510035i \(0.170368\pi\)
\(110\) 0 0
\(111\) 645.081 + 988.685i 0.551607 + 0.845422i
\(112\) 0 0
\(113\) 141.133i 0.117493i −0.998273 0.0587465i \(-0.981290\pi\)
0.998273 0.0587465i \(-0.0187104\pi\)
\(114\) 0 0
\(115\) −1171.90 676.599i −0.950266 0.548636i
\(116\) 0 0
\(117\) 712.391 77.9687i 0.562911 0.0616086i
\(118\) 0 0
\(119\) 26.9699 2202.30i 0.0207759 1.69651i
\(120\) 0 0
\(121\) −401.671 695.714i −0.301781 0.522700i
\(122\) 0 0
\(123\) 62.3348 + 1142.49i 0.0456955 + 0.837522i
\(124\) 0 0
\(125\) 1483.21i 1.06130i
\(126\) 0 0
\(127\) 83.0109i 0.0580002i 0.999579 + 0.0290001i \(0.00923232\pi\)
−0.999579 + 0.0290001i \(0.990768\pi\)
\(128\) 0 0
\(129\) −95.9544 1758.68i −0.0654908 1.20034i
\(130\) 0 0
\(131\) −891.896 1544.81i −0.594850 1.03031i −0.993568 0.113236i \(-0.963878\pi\)
0.398719 0.917073i \(-0.369455\pi\)
\(132\) 0 0
\(133\) −2627.71 1560.32i −1.71317 1.01727i
\(134\) 0 0
\(135\) −1115.64 + 915.382i −0.711250 + 0.583582i
\(136\) 0 0
\(137\) 1480.51 + 854.774i 0.923275 + 0.533053i 0.884678 0.466202i \(-0.154378\pi\)
0.0385966 + 0.999255i \(0.487711\pi\)
\(138\) 0 0
\(139\) 1054.62i 0.643537i −0.946818 0.321769i \(-0.895723\pi\)
0.946818 0.321769i \(-0.104277\pi\)
\(140\) 0 0
\(141\) −961.637 1473.86i −0.574358 0.880291i
\(142\) 0 0
\(143\) −613.116 + 1061.95i −0.358541 + 0.621010i
\(144\) 0 0
\(145\) 77.7602 + 134.685i 0.0445354 + 0.0771376i
\(146\) 0 0
\(147\) −844.418 + 1569.55i −0.473785 + 0.880641i
\(148\) 0 0
\(149\) −1108.12 + 639.771i −0.609265 + 0.351759i −0.772678 0.634799i \(-0.781083\pi\)
0.163413 + 0.986558i \(0.447750\pi\)
\(150\) 0 0
\(151\) −895.560 517.052i −0.482647 0.278656i 0.238872 0.971051i \(-0.423222\pi\)
−0.721519 + 0.692395i \(0.756556\pi\)
\(152\) 0 0
\(153\) 2938.88 + 1293.38i 1.55290 + 0.683424i
\(154\) 0 0
\(155\) −1201.43 −0.622590
\(156\) 0 0
\(157\) −1357.37 + 2351.04i −0.690000 + 1.19512i 0.281837 + 0.959462i \(0.409056\pi\)
−0.971837 + 0.235653i \(0.924277\pi\)
\(158\) 0 0
\(159\) −3533.30 1790.76i −1.76232 0.893187i
\(160\) 0 0
\(161\) 1243.96 2094.94i 0.608932 1.02549i
\(162\) 0 0
\(163\) −852.102 + 491.962i −0.409459 + 0.236401i −0.690557 0.723278i \(-0.742635\pi\)
0.281098 + 0.959679i \(0.409301\pi\)
\(164\) 0 0
\(165\) −134.524 2465.60i −0.0634707 1.16331i
\(166\) 0 0
\(167\) 1061.36 0.491799 0.245900 0.969295i \(-0.420917\pi\)
0.245900 + 0.969295i \(0.420917\pi\)
\(168\) 0 0
\(169\) −1492.50 −0.679336
\(170\) 0 0
\(171\) 3593.14 2634.21i 1.60687 1.17803i
\(172\) 0 0
\(173\) 905.923 523.035i 0.398127 0.229859i −0.287548 0.957766i \(-0.592840\pi\)
0.685676 + 0.727907i \(0.259507\pi\)
\(174\) 0 0
\(175\) 355.462 + 4.35307i 0.153545 + 0.00188035i
\(176\) 0 0
\(177\) −1120.01 + 2209.86i −0.475622 + 0.938435i
\(178\) 0 0
\(179\) 425.015 736.148i 0.177470 0.307387i −0.763543 0.645757i \(-0.776542\pi\)
0.941013 + 0.338370i \(0.109875\pi\)
\(180\) 0 0
\(181\) −4169.39 −1.71220 −0.856101 0.516808i \(-0.827120\pi\)
−0.856101 + 0.516808i \(0.827120\pi\)
\(182\) 0 0
\(183\) −843.867 1293.35i −0.340877 0.522446i
\(184\) 0 0
\(185\) −2023.84 1168.46i −0.804301 0.464363i
\(186\) 0 0
\(187\) −4758.00 + 2747.04i −1.86064 + 1.07424i
\(188\) 0 0
\(189\) −1623.42 2028.73i −0.624797 0.780787i
\(190\) 0 0
\(191\) 5.25965 + 9.10997i 0.00199254 + 0.00345118i 0.867020 0.498273i \(-0.166032\pi\)
−0.865027 + 0.501725i \(0.832699\pi\)
\(192\) 0 0
\(193\) 1099.62 1904.59i 0.410115 0.710339i −0.584787 0.811187i \(-0.698822\pi\)
0.994902 + 0.100847i \(0.0321554\pi\)
\(194\) 0 0
\(195\) −1188.12 + 775.206i −0.436324 + 0.284685i
\(196\) 0 0
\(197\) 273.840i 0.0990371i −0.998773 0.0495185i \(-0.984231\pi\)
0.998773 0.0495185i \(-0.0157687\pi\)
\(198\) 0 0
\(199\) 553.900 + 319.794i 0.197311 + 0.113918i 0.595401 0.803429i \(-0.296993\pi\)
−0.398089 + 0.917347i \(0.630327\pi\)
\(200\) 0 0
\(201\) 3190.05 + 1616.80i 1.11945 + 0.567363i
\(202\) 0 0
\(203\) −244.196 + 137.027i −0.0844296 + 0.0473765i
\(204\) 0 0
\(205\) −1132.51 1961.56i −0.385843 0.668300i
\(206\) 0 0
\(207\) 2100.12 + 2864.63i 0.705162 + 0.961861i
\(208\) 0 0
\(209\) 7623.34i 2.52305i
\(210\) 0 0
\(211\) 4168.54i 1.36007i −0.733181 0.680034i \(-0.761965\pi\)
0.733181 0.680034i \(-0.238035\pi\)
\(212\) 0 0
\(213\) 3633.13 198.225i 1.16872 0.0637659i
\(214\) 0 0
\(215\) 1743.31 + 3019.51i 0.552990 + 0.957807i
\(216\) 0 0
\(217\) 26.4888 2163.02i 0.00828654 0.676660i
\(218\) 0 0
\(219\) −728.436 + 1437.25i −0.224763 + 0.443473i
\(220\) 0 0
\(221\) 2733.59 + 1578.24i 0.832041 + 0.480379i
\(222\) 0 0
\(223\) 2173.86i 0.652790i 0.945234 + 0.326395i \(0.105834\pi\)
−0.945234 + 0.326395i \(0.894166\pi\)
\(224\) 0 0
\(225\) −208.758 + 474.349i −0.0618544 + 0.140548i
\(226\) 0 0
\(227\) 323.916 561.038i 0.0947094 0.164041i −0.814778 0.579773i \(-0.803141\pi\)
0.909487 + 0.415732i \(0.136474\pi\)
\(228\) 0 0
\(229\) 2312.58 + 4005.51i 0.667335 + 1.15586i 0.978646 + 0.205551i \(0.0658985\pi\)
−0.311311 + 0.950308i \(0.600768\pi\)
\(230\) 0 0
\(231\) 4441.94 187.831i 1.26519 0.0534995i
\(232\) 0 0
\(233\) 4316.55 2492.16i 1.21368 0.700717i 0.250119 0.968215i \(-0.419530\pi\)
0.963558 + 0.267498i \(0.0861968\pi\)
\(234\) 0 0
\(235\) 3016.98 + 1741.86i 0.837474 + 0.483516i
\(236\) 0 0
\(237\) 1249.53 815.273i 0.342472 0.223450i
\(238\) 0 0
\(239\) 1928.51 0.521944 0.260972 0.965346i \(-0.415957\pi\)
0.260972 + 0.965346i \(0.415957\pi\)
\(240\) 0 0
\(241\) −637.435 + 1104.07i −0.170377 + 0.295101i −0.938552 0.345139i \(-0.887832\pi\)
0.768175 + 0.640240i \(0.221165\pi\)
\(242\) 0 0
\(243\) 3648.19 1019.62i 0.963093 0.269170i
\(244\) 0 0
\(245\) 86.4004 3527.10i 0.0225303 0.919748i
\(246\) 0 0
\(247\) 3793.01 2189.90i 0.977100 0.564129i
\(248\) 0 0
\(249\) 4703.24 256.610i 1.19701 0.0653093i
\(250\) 0 0
\(251\) −6391.89 −1.60738 −0.803690 0.595048i \(-0.797133\pi\)
−0.803690 + 0.595048i \(0.797133\pi\)
\(252\) 0 0
\(253\) −6077.70 −1.51028
\(254\) 0 0
\(255\) −6346.77 + 346.282i −1.55863 + 0.0850392i
\(256\) 0 0
\(257\) −4908.79 + 2834.09i −1.19145 + 0.687882i −0.958635 0.284640i \(-0.908126\pi\)
−0.232812 + 0.972522i \(0.574793\pi\)
\(258\) 0 0
\(259\) 2148.28 3617.89i 0.515397 0.867972i
\(260\) 0 0
\(261\) −44.4133 405.800i −0.0105330 0.0962390i
\(262\) 0 0
\(263\) −1633.34 + 2829.03i −0.382951 + 0.663290i −0.991483 0.130239i \(-0.958426\pi\)
0.608532 + 0.793530i \(0.291759\pi\)
\(264\) 0 0
\(265\) 7841.47 1.81773
\(266\) 0 0
\(267\) −3095.89 + 2019.96i −0.709608 + 0.462993i
\(268\) 0 0
\(269\) −5303.41 3061.92i −1.20206 0.694011i −0.241048 0.970513i \(-0.577491\pi\)
−0.961013 + 0.276503i \(0.910825\pi\)
\(270\) 0 0
\(271\) 3323.07 1918.58i 0.744879 0.430056i −0.0789619 0.996878i \(-0.525161\pi\)
0.823840 + 0.566822i \(0.191827\pi\)
\(272\) 0 0
\(273\) −1369.46 2156.14i −0.303602 0.478006i
\(274\) 0 0
\(275\) −443.385 767.965i −0.0972258 0.168400i
\(276\) 0 0
\(277\) 2231.60 3865.25i 0.484058 0.838413i −0.515774 0.856724i \(-0.672496\pi\)
0.999832 + 0.0183116i \(0.00582907\pi\)
\(278\) 0 0
\(279\) 2886.46 + 1270.31i 0.619382 + 0.272587i
\(280\) 0 0
\(281\) 120.474i 0.0255761i −0.999918 0.0127881i \(-0.995929\pi\)
0.999918 0.0127881i \(-0.00407068\pi\)
\(282\) 0 0
\(283\) −25.9998 15.0110i −0.00546124 0.00315305i 0.497267 0.867598i \(-0.334337\pi\)
−0.502728 + 0.864445i \(0.667670\pi\)
\(284\) 0 0
\(285\) −3987.14 + 7866.91i −0.828694 + 1.63507i
\(286\) 0 0
\(287\) 3556.50 1995.68i 0.731475 0.410457i
\(288\) 0 0
\(289\) 4614.72 + 7992.93i 0.939288 + 1.62689i
\(290\) 0 0
\(291\) 1841.80 100.489i 0.371025 0.0202432i
\(292\) 0 0
\(293\) 5144.02i 1.02565i −0.858492 0.512827i \(-0.828598\pi\)
0.858492 0.512827i \(-0.171402\pi\)
\(294\) 0 0
\(295\) 4904.35i 0.967941i
\(296\) 0 0
\(297\) −2283.76 + 6065.86i −0.446186 + 1.18511i
\(298\) 0 0
\(299\) 1745.89 + 3023.98i 0.337684 + 0.584886i
\(300\) 0 0
\(301\) −5474.65 + 3072.03i −1.04835 + 0.588268i
\(302\) 0 0
\(303\) 1308.04 + 662.946i 0.248003 + 0.125694i
\(304\) 0 0
\(305\) 2647.50 + 1528.53i 0.497034 + 0.286963i
\(306\) 0 0
\(307\) 1899.14i 0.353060i −0.984295 0.176530i \(-0.943513\pi\)
0.984295 0.176530i \(-0.0564873\pi\)
\(308\) 0 0
\(309\) −1672.73 + 1091.39i −0.307955 + 0.200930i
\(310\) 0 0
\(311\) 1249.59 2164.35i 0.227838 0.394627i −0.729329 0.684163i \(-0.760168\pi\)
0.957167 + 0.289536i \(0.0935011\pi\)
\(312\) 0 0
\(313\) 2677.63 + 4637.79i 0.483542 + 0.837519i 0.999821 0.0189010i \(-0.00601672\pi\)
−0.516279 + 0.856420i \(0.672683\pi\)
\(314\) 0 0
\(315\) 4682.10 + 2129.38i 0.837481 + 0.380880i
\(316\) 0 0
\(317\) −4683.20 + 2703.85i −0.829763 + 0.479064i −0.853771 0.520648i \(-0.825690\pi\)
0.0240088 + 0.999712i \(0.492357\pi\)
\(318\) 0 0
\(319\) 604.918 + 349.249i 0.106172 + 0.0612985i
\(320\) 0 0
\(321\) −2576.25 3948.50i −0.447951 0.686554i
\(322\) 0 0
\(323\) 19623.5 3.38043
\(324\) 0 0
\(325\) −254.735 + 441.215i −0.0434775 + 0.0753052i
\(326\) 0 0
\(327\) −62.1615 + 122.649i −0.0105124 + 0.0207416i
\(328\) 0 0
\(329\) −3202.49 + 5393.27i −0.536654 + 0.903770i
\(330\) 0 0
\(331\) −384.614 + 222.057i −0.0638680 + 0.0368742i −0.531594 0.846999i \(-0.678407\pi\)
0.467726 + 0.883874i \(0.345073\pi\)
\(332\) 0 0
\(333\) 3626.84 + 4947.12i 0.596846 + 0.814115i
\(334\) 0 0
\(335\) −7079.70 −1.15464
\(336\) 0 0
\(337\) −2057.65 −0.332603 −0.166302 0.986075i \(-0.553183\pi\)
−0.166302 + 0.986075i \(0.553183\pi\)
\(338\) 0 0
\(339\) −39.9524 732.262i −0.00640094 0.117319i
\(340\) 0 0
\(341\) −4673.14 + 2698.04i −0.742124 + 0.428466i
\(342\) 0 0
\(343\) 6348.16 + 233.317i 0.999325 + 0.0367286i
\(344\) 0 0
\(345\) −6271.88 3178.74i −0.978744 0.496052i
\(346\) 0 0
\(347\) −786.088 + 1361.54i −0.121612 + 0.210638i −0.920404 0.390970i \(-0.872140\pi\)
0.798791 + 0.601608i \(0.205473\pi\)
\(348\) 0 0
\(349\) 6576.76 1.00873 0.504364 0.863491i \(-0.331727\pi\)
0.504364 + 0.863491i \(0.331727\pi\)
\(350\) 0 0
\(351\) 3674.12 606.201i 0.558719 0.0921841i
\(352\) 0 0
\(353\) −4637.28 2677.33i −0.699199 0.403683i 0.107850 0.994167i \(-0.465603\pi\)
−0.807049 + 0.590484i \(0.798937\pi\)
\(354\) 0 0
\(355\) −6237.76 + 3601.37i −0.932581 + 0.538426i
\(356\) 0 0
\(357\) −483.502 11434.1i −0.0716796 1.69512i
\(358\) 0 0
\(359\) −2238.44 3877.08i −0.329081 0.569985i 0.653249 0.757143i \(-0.273406\pi\)
−0.982330 + 0.187158i \(0.940072\pi\)
\(360\) 0 0
\(361\) 10184.9 17640.7i 1.48489 2.57190i
\(362\) 0 0
\(363\) −2280.99 3495.96i −0.329809 0.505483i
\(364\) 0 0
\(365\) 3189.71i 0.457417i
\(366\) 0 0
\(367\) 6293.20 + 3633.38i 0.895101 + 0.516787i 0.875608 0.483023i \(-0.160461\pi\)
0.0194937 + 0.999810i \(0.493795\pi\)
\(368\) 0 0
\(369\) 646.841 + 5910.11i 0.0912552 + 0.833789i
\(370\) 0 0
\(371\) −172.886 + 14117.5i −0.0241936 + 1.97559i
\(372\) 0 0
\(373\) 3548.78 + 6146.66i 0.492624 + 0.853250i 0.999964 0.00849638i \(-0.00270451\pi\)
−0.507340 + 0.861746i \(0.669371\pi\)
\(374\) 0 0
\(375\) −419.871 7695.54i −0.0578188 1.05972i
\(376\) 0 0
\(377\) 401.305i 0.0548229i
\(378\) 0 0
\(379\) 6866.01i 0.930562i −0.885163 0.465281i \(-0.845953\pi\)
0.885163 0.465281i \(-0.154047\pi\)
\(380\) 0 0
\(381\) 23.4990 + 430.697i 0.00315981 + 0.0579141i
\(382\) 0 0
\(383\) −4522.00 7832.33i −0.603299 1.04494i −0.992318 0.123714i \(-0.960519\pi\)
0.389019 0.921230i \(-0.372814\pi\)
\(384\) 0 0
\(385\) −7675.22 + 4306.85i −1.01601 + 0.570123i
\(386\) 0 0
\(387\) −995.706 9097.65i −0.130787 1.19499i
\(388\) 0 0
\(389\) 5996.28 + 3461.95i 0.781551 + 0.451229i 0.836980 0.547234i \(-0.184319\pi\)
−0.0554287 + 0.998463i \(0.517653\pi\)
\(390\) 0 0
\(391\) 15644.8i 2.02351i
\(392\) 0 0
\(393\) −5064.85 7762.66i −0.650097 0.996372i
\(394\) 0 0
\(395\) −1476.74 + 2557.79i −0.188109 + 0.325814i
\(396\) 0 0
\(397\) −43.4716 75.2951i −0.00549567 0.00951877i 0.863264 0.504752i \(-0.168416\pi\)
−0.868760 + 0.495233i \(0.835083\pi\)
\(398\) 0 0
\(399\) −14075.4 7351.76i −1.76604 0.922427i
\(400\) 0 0
\(401\) 6816.88 3935.73i 0.848925 0.490127i −0.0113630 0.999935i \(-0.503617\pi\)
0.860288 + 0.509808i \(0.170284\pi\)
\(402\) 0 0
\(403\) 2684.83 + 1550.09i 0.331863 + 0.191601i
\(404\) 0 0
\(405\) −5529.28 + 5065.22i −0.678400 + 0.621463i
\(406\) 0 0
\(407\) −10496.0 −1.27830
\(408\) 0 0
\(409\) −1204.58 + 2086.40i −0.145630 + 0.252239i −0.929608 0.368550i \(-0.879854\pi\)
0.783978 + 0.620789i \(0.213188\pi\)
\(410\) 0 0
\(411\) 7923.51 + 4015.83i 0.950944 + 0.481962i
\(412\) 0 0
\(413\) 8829.63 + 108.130i 1.05200 + 0.0128831i
\(414\) 0 0
\(415\) −8075.05 + 4662.13i −0.955153 + 0.551458i
\(416\) 0 0
\(417\) −298.545 5471.83i −0.0350595 0.642582i
\(418\) 0 0
\(419\) −1198.61 −0.139752 −0.0698759 0.997556i \(-0.522260\pi\)
−0.0698759 + 0.997556i \(0.522260\pi\)
\(420\) 0 0
\(421\) 14676.6 1.69903 0.849517 0.527560i \(-0.176893\pi\)
0.849517 + 0.527560i \(0.176893\pi\)
\(422\) 0 0
\(423\) −5406.61 7374.78i −0.621462 0.847693i
\(424\) 0 0
\(425\) −1976.84 + 1141.33i −0.225626 + 0.130265i
\(426\) 0 0
\(427\) −2810.29 + 4732.76i −0.318500 + 0.536381i
\(428\) 0 0
\(429\) −2880.49 + 5683.41i −0.324176 + 0.639621i
\(430\) 0 0
\(431\) −517.940 + 897.099i −0.0578847 + 0.100259i −0.893516 0.449032i \(-0.851769\pi\)
0.835631 + 0.549291i \(0.185102\pi\)
\(432\) 0 0
\(433\) 265.669 0.0294856 0.0147428 0.999891i \(-0.495307\pi\)
0.0147428 + 0.999891i \(0.495307\pi\)
\(434\) 0 0
\(435\) 441.581 + 676.790i 0.0486717 + 0.0745968i
\(436\) 0 0
\(437\) 18799.7 + 10854.0i 2.05792 + 1.18814i
\(438\) 0 0
\(439\) −10568.1 + 6101.48i −1.14895 + 0.663344i −0.948630 0.316388i \(-0.897530\pi\)
−0.200315 + 0.979731i \(0.564197\pi\)
\(440\) 0 0
\(441\) −3936.89 + 8382.54i −0.425105 + 0.905144i
\(442\) 0 0
\(443\) −1990.83 3448.21i −0.213515 0.369818i 0.739297 0.673379i \(-0.235158\pi\)
−0.952812 + 0.303561i \(0.901824\pi\)
\(444\) 0 0
\(445\) 3658.84 6337.29i 0.389765 0.675093i
\(446\) 0 0
\(447\) −5568.28 + 3633.10i −0.589196 + 0.384429i
\(448\) 0 0
\(449\) 11976.2i 1.25878i −0.777090 0.629390i \(-0.783305\pi\)
0.777090 0.629390i \(-0.216695\pi\)
\(450\) 0 0
\(451\) −8810.08 5086.50i −0.919846 0.531073i
\(452\) 0 0
\(453\) −4792.92 2429.17i −0.497111 0.251948i
\(454\) 0 0
\(455\) 4347.68 + 2581.63i 0.447962 + 0.265997i
\(456\) 0 0
\(457\) −7780.24 13475.8i −0.796377 1.37937i −0.921961 0.387283i \(-0.873414\pi\)
0.125584 0.992083i \(-0.459920\pi\)
\(458\) 0 0
\(459\) 15614.3 + 5878.70i 1.58783 + 0.597808i
\(460\) 0 0
\(461\) 3643.51i 0.368102i −0.982917 0.184051i \(-0.941079\pi\)
0.982917 0.184051i \(-0.0589212\pi\)
\(462\) 0 0
\(463\) 6689.74i 0.671487i 0.941953 + 0.335744i \(0.108988\pi\)
−0.941953 + 0.335744i \(0.891012\pi\)
\(464\) 0 0
\(465\) −6233.56 + 340.105i −0.621665 + 0.0339183i
\(466\) 0 0
\(467\) −3809.87 6598.88i −0.377515 0.653876i 0.613185 0.789940i \(-0.289888\pi\)
−0.990700 + 0.136064i \(0.956555\pi\)
\(468\) 0 0
\(469\) 156.091 12746.0i 0.0153681 1.25492i
\(470\) 0 0
\(471\) −6377.10 + 12582.4i −0.623866 + 1.23093i
\(472\) 0 0
\(473\) 13561.7 + 7829.85i 1.31832 + 0.761135i
\(474\) 0 0
\(475\) 3167.32i 0.305951i
\(476\) 0 0
\(477\) −18839.2 8291.04i −1.80836 0.795850i
\(478\) 0 0
\(479\) 7645.37 13242.2i 0.729281 1.26315i −0.227906 0.973683i \(-0.573188\pi\)
0.957187 0.289469i \(-0.0934788\pi\)
\(480\) 0 0
\(481\) 3015.10 + 5222.31i 0.285815 + 0.495045i
\(482\) 0 0
\(483\) 5861.18 11221.6i 0.552159 1.05714i
\(484\) 0 0
\(485\) −3162.21 + 1825.70i −0.296059 + 0.170930i
\(486\) 0 0
\(487\) 8234.35 + 4754.10i 0.766189 + 0.442359i 0.831513 0.555505i \(-0.187475\pi\)
−0.0653246 + 0.997864i \(0.520808\pi\)
\(488\) 0 0
\(489\) −4281.81 + 2793.73i −0.395972 + 0.258357i
\(490\) 0 0
\(491\) −8714.87 −0.801011 −0.400505 0.916294i \(-0.631165\pi\)
−0.400505 + 0.916294i \(0.631165\pi\)
\(492\) 0 0
\(493\) 899.013 1557.14i 0.0821288 0.142251i
\(494\) 0 0
\(495\) −1395.94 12754.5i −0.126753 1.15813i
\(496\) 0 0
\(497\) −6346.26 11309.7i −0.572774 1.02074i
\(498\) 0 0
\(499\) −13070.1 + 7546.00i −1.17254 + 0.676965i −0.954277 0.298925i \(-0.903372\pi\)
−0.218261 + 0.975890i \(0.570039\pi\)
\(500\) 0 0
\(501\) 5506.80 300.453i 0.491069 0.0267929i
\(502\) 0 0
\(503\) −331.156 −0.0293549 −0.0146775 0.999892i \(-0.504672\pi\)
−0.0146775 + 0.999892i \(0.504672\pi\)
\(504\) 0 0
\(505\) −2902.94 −0.255800
\(506\) 0 0
\(507\) −7743.74 + 422.501i −0.678327 + 0.0370097i
\(508\) 0 0
\(509\) −12688.4 + 7325.67i −1.10492 + 0.637926i −0.937509 0.347961i \(-0.886874\pi\)
−0.167412 + 0.985887i \(0.553541\pi\)
\(510\) 0 0
\(511\) 5742.64 + 70.3258i 0.497142 + 0.00608812i
\(512\) 0 0
\(513\) 17897.1 14684.6i 1.54030 1.26382i
\(514\) 0 0
\(515\) 1976.89 3424.08i 0.169150 0.292976i
\(516\) 0 0
\(517\) 15646.6 1.33102
\(518\) 0 0
\(519\) 4552.26 2970.18i 0.385014 0.251207i
\(520\) 0 0
\(521\) −7534.02 4349.77i −0.633534 0.365771i 0.148585 0.988900i \(-0.452528\pi\)
−0.782120 + 0.623128i \(0.785861\pi\)
\(522\) 0 0
\(523\) −11948.8 + 6898.65i −0.999015 + 0.576782i −0.907957 0.419064i \(-0.862358\pi\)
−0.0910584 + 0.995846i \(0.529025\pi\)
\(524\) 0 0
\(525\) 1845.52 78.0396i 0.153420 0.00648748i
\(526\) 0 0
\(527\) 6945.09 + 12029.3i 0.574066 + 0.994312i
\(528\) 0 0
\(529\) −2569.86 + 4451.12i −0.211215 + 0.365835i
\(530\) 0 0
\(531\) −5185.53 + 11782.8i −0.423791 + 0.962953i
\(532\) 0 0
\(533\) 5844.64i 0.474971i
\(534\) 0 0
\(535\) 8082.59 + 4666.48i 0.653160 + 0.377102i
\(536\) 0 0
\(537\) 1996.77 3939.77i 0.160460 0.316599i
\(538\) 0 0
\(539\) −7584.67 13913.2i −0.606113 1.11184i
\(540\) 0 0
\(541\) 4621.58 + 8004.81i 0.367278 + 0.636144i 0.989139 0.146984i \(-0.0469565\pi\)
−0.621861 + 0.783128i \(0.713623\pi\)
\(542\) 0 0
\(543\) −21632.6 + 1180.28i −1.70966 + 0.0932796i
\(544\) 0 0
\(545\) 272.196i 0.0213937i
\(546\) 0 0
\(547\) 3127.25i 0.244445i −0.992503 0.122223i \(-0.960998\pi\)
0.992503 0.122223i \(-0.0390022\pi\)
\(548\) 0 0
\(549\) −4744.48 6471.60i −0.368833 0.503099i
\(550\) 0 0
\(551\) −1247.43 2160.62i −0.0964472 0.167052i
\(552\) 0 0
\(553\) −4572.40 2715.07i −0.351606 0.208782i
\(554\) 0 0
\(555\) −10831.3 5489.59i −0.828405 0.419856i
\(556\) 0 0
\(557\) −17984.4 10383.3i −1.36809 0.789866i −0.377405 0.926048i \(-0.623183\pi\)
−0.990684 + 0.136182i \(0.956517\pi\)
\(558\) 0 0
\(559\) 8996.88i 0.680729i
\(560\) 0 0
\(561\) −23909.0 + 15599.7i −1.79935 + 1.17401i
\(562\) 0 0
\(563\) −3127.18 + 5416.43i −0.234094 + 0.405462i −0.959009 0.283376i \(-0.908546\pi\)
0.724915 + 0.688838i \(0.241879\pi\)
\(564\) 0 0
\(565\) 725.861 + 1257.23i 0.0540482 + 0.0936142i
\(566\) 0 0
\(567\) −8997.33 10066.4i −0.666406 0.745589i
\(568\) 0 0
\(569\) −6412.61 + 3702.32i −0.472462 + 0.272776i −0.717270 0.696796i \(-0.754608\pi\)
0.244808 + 0.969572i \(0.421275\pi\)
\(570\) 0 0
\(571\) −17462.8 10082.1i −1.27985 0.738922i −0.303029 0.952981i \(-0.597998\pi\)
−0.976821 + 0.214060i \(0.931331\pi\)
\(572\) 0 0
\(573\) 29.8682 + 45.7776i 0.00217760 + 0.00333750i
\(574\) 0 0
\(575\) −2525.14 −0.183140
\(576\) 0 0
\(577\) −11609.9 + 20109.0i −0.837655 + 1.45086i 0.0541958 + 0.998530i \(0.482740\pi\)
−0.891851 + 0.452330i \(0.850593\pi\)
\(578\) 0 0
\(579\) 5166.13 10193.1i 0.370807 0.731627i
\(580\) 0 0
\(581\) −8215.50 14640.8i −0.586638 1.04545i
\(582\) 0 0
\(583\) 30500.4 17609.4i 2.16672 1.25096i
\(584\) 0 0
\(585\) −5945.04 + 4358.44i −0.420166 + 0.308033i
\(586\) 0 0
\(587\) 18902.3 1.32910 0.664548 0.747245i \(-0.268624\pi\)
0.664548 + 0.747245i \(0.268624\pi\)
\(588\) 0 0
\(589\) 19273.4 1.34830
\(590\) 0 0
\(591\) −77.5194 1420.80i −0.00539547 0.0988900i
\(592\) 0 0
\(593\) 7207.29 4161.13i 0.499103 0.288157i −0.229240 0.973370i \(-0.573624\pi\)
0.728343 + 0.685213i \(0.240291\pi\)
\(594\) 0 0
\(595\) 11086.4 + 19757.0i 0.763861 + 1.36127i
\(596\) 0 0
\(597\) 2964.40 + 1502.43i 0.203224 + 0.102999i
\(598\) 0 0
\(599\) 5083.16 8804.29i 0.346732 0.600557i −0.638935 0.769261i \(-0.720625\pi\)
0.985667 + 0.168704i \(0.0539581\pi\)
\(600\) 0 0
\(601\) 7382.80 0.501082 0.250541 0.968106i \(-0.419391\pi\)
0.250541 + 0.968106i \(0.419391\pi\)
\(602\) 0 0
\(603\) 17009.1 + 7485.59i 1.14869 + 0.505534i
\(604\) 0 0
\(605\) 7156.24 + 4131.66i 0.480896 + 0.277646i
\(606\) 0 0
\(607\) −22555.6 + 13022.5i −1.50825 + 0.870786i −0.508292 + 0.861185i \(0.669723\pi\)
−0.999954 + 0.00960128i \(0.996944\pi\)
\(608\) 0 0
\(609\) −1228.21 + 780.085i −0.0817231 + 0.0519058i
\(610\) 0 0
\(611\) −4494.68 7785.01i −0.297603 0.515463i
\(612\) 0 0
\(613\) 13474.9 23339.3i 0.887843 1.53779i 0.0454229 0.998968i \(-0.485536\pi\)
0.842420 0.538821i \(-0.181130\pi\)
\(614\) 0 0
\(615\) −6431.23 9856.84i −0.421678 0.646287i
\(616\) 0 0
\(617\) 14682.5i 0.958015i −0.877811 0.479008i \(-0.840997\pi\)
0.877811 0.479008i \(-0.159003\pi\)
\(618\) 0 0
\(619\) 1044.45 + 603.014i 0.0678191 + 0.0391554i 0.533526 0.845784i \(-0.320867\pi\)
−0.465707 + 0.884939i \(0.654200\pi\)
\(620\) 0 0
\(621\) 11707.3 + 14268.4i 0.756516 + 0.922016i
\(622\) 0 0
\(623\) 11328.8 + 6726.96i 0.728535 + 0.432600i
\(624\) 0 0
\(625\) 6428.62 + 11134.7i 0.411432 + 0.712621i
\(626\) 0 0
\(627\) 2158.04 + 39553.2i 0.137454 + 2.51930i
\(628\) 0 0
\(629\) 27018.0i 1.71269i
\(630\) 0 0
\(631\) 13176.2i 0.831278i −0.909530 0.415639i \(-0.863558\pi\)
0.909530 0.415639i \(-0.136442\pi\)
\(632\) 0 0
\(633\) −1180.04 21628.2i −0.0740956 1.35805i
\(634\) 0 0
\(635\) −426.932 739.469i −0.0266808 0.0462125i
\(636\) 0 0
\(637\) −4743.74 + 7770.50i −0.295061 + 0.483326i
\(638\) 0 0
\(639\) 18794.1 2056.95i 1.16351 0.127342i
\(640\) 0 0
\(641\) −1227.53 708.712i −0.0756386 0.0436700i 0.461704 0.887034i \(-0.347238\pi\)
−0.537342 + 0.843364i \(0.680572\pi\)
\(642\) 0 0
\(643\) 25482.4i 1.56287i −0.623986 0.781435i \(-0.714488\pi\)
0.623986 0.781435i \(-0.285512\pi\)
\(644\) 0 0
\(645\) 9899.83 + 15173.0i 0.604350 + 0.926258i
\(646\) 0 0
\(647\) −14423.4 + 24982.1i −0.876419 + 1.51800i −0.0211764 + 0.999776i \(0.506741\pi\)
−0.855243 + 0.518227i \(0.826592\pi\)
\(648\) 0 0
\(649\) −11013.6 19076.1i −0.666136 1.15378i
\(650\) 0 0
\(651\) −474.878 11230.2i −0.0285897 0.676107i
\(652\) 0 0
\(653\) −12400.6 + 7159.50i −0.743145 + 0.429055i −0.823212 0.567734i \(-0.807820\pi\)
0.0800665 + 0.996790i \(0.474487\pi\)
\(654\) 0 0
\(655\) 15890.2 + 9174.20i 0.947909 + 0.547276i
\(656\) 0 0
\(657\) −3372.58 + 7663.31i −0.200269 + 0.455060i
\(658\) 0 0
\(659\) −14347.2 −0.848087 −0.424044 0.905642i \(-0.639390\pi\)
−0.424044 + 0.905642i \(0.639390\pi\)
\(660\) 0 0
\(661\) 4791.01 8298.28i 0.281920 0.488299i −0.689938 0.723868i \(-0.742362\pi\)
0.971857 + 0.235570i \(0.0756955\pi\)
\(662\) 0 0
\(663\) 14629.8 + 7414.76i 0.856976 + 0.434337i
\(664\) 0 0
\(665\) 31432.7 + 384.933i 1.83295 + 0.0224467i
\(666\) 0 0
\(667\) 1722.55 994.514i 0.0999960 0.0577327i
\(668\) 0 0
\(669\) 615.381 + 11278.9i 0.0355635 + 0.651820i
\(670\) 0 0
\(671\) 13730.4 0.789950
\(672\) 0 0
\(673\) −14186.2 −0.812536 −0.406268 0.913754i \(-0.633170\pi\)
−0.406268 + 0.913754i \(0.633170\pi\)
\(674\) 0 0
\(675\) −948.850 + 2520.23i −0.0541056 + 0.143709i
\(676\) 0 0
\(677\) 29942.4 17287.3i 1.69982 0.981394i 0.753911 0.656977i \(-0.228165\pi\)
0.945914 0.324417i \(-0.105168\pi\)
\(678\) 0 0
\(679\) −3217.21 5733.38i −0.181834 0.324046i
\(680\) 0 0
\(681\) 1521.79 3002.61i 0.0856319 0.168958i
\(682\) 0 0
\(683\) −9232.44 + 15991.1i −0.517232 + 0.895873i 0.482567 + 0.875859i \(0.339704\pi\)
−0.999800 + 0.0200138i \(0.993629\pi\)
\(684\) 0 0
\(685\) −17584.7 −0.980843
\(686\) 0 0
\(687\) 13132.6 + 20127.7i 0.729315 + 1.11779i
\(688\) 0 0
\(689\) −17523.3 10117.1i −0.968915 0.559404i
\(690\) 0 0
\(691\) 9805.41 5661.16i 0.539820 0.311665i −0.205186 0.978723i \(-0.565780\pi\)
0.745006 + 0.667058i \(0.232447\pi\)
\(692\) 0 0
\(693\) 22993.6 2231.99i 1.26039 0.122347i
\(694\) 0 0
\(695\) 5424.00 + 9394.65i 0.296035 + 0.512747i
\(696\) 0 0
\(697\) −13093.3 + 22678.3i −0.711542 + 1.23243i
\(698\) 0 0
\(699\) 21690.7 14152.4i 1.17370 0.765797i
\(700\) 0 0
\(701\) 30474.6i 1.64196i 0.570960 + 0.820978i \(0.306571\pi\)
−0.570960 + 0.820978i \(0.693429\pi\)
\(702\) 0 0
\(703\) 32466.5 + 18744.6i 1.74182 + 1.00564i
\(704\) 0 0
\(705\) 16146.5 + 8183.45i 0.862571 + 0.437173i
\(706\) 0 0
\(707\) 64.0032 5226.35i 0.00340465 0.278016i
\(708\) 0 0
\(709\) 1460.53 + 2529.71i 0.0773642 + 0.133999i 0.902112 0.431502i \(-0.142016\pi\)
−0.824748 + 0.565501i \(0.808683\pi\)
\(710\) 0 0
\(711\) 6252.32 4583.71i 0.329790 0.241776i
\(712\) 0 0
\(713\) 15365.7i 0.807084i
\(714\) 0 0
\(715\) 12613.2i 0.659732i
\(716\) 0 0
\(717\) 10005.9 545.927i 0.521169 0.0284352i
\(718\) 0 0
\(719\) 12648.1 + 21907.2i 0.656043 + 1.13630i 0.981631 + 0.190788i \(0.0611044\pi\)
−0.325588 + 0.945512i \(0.605562\pi\)
\(720\) 0 0
\(721\) 6121.00 + 3634.62i 0.316169 + 0.187740i
\(722\) 0 0
\(723\) −2994.75 + 5908.85i −0.154047 + 0.303945i
\(724\) 0 0
\(725\) 251.329 + 145.105i 0.0128747 + 0.00743319i
\(726\) 0 0
\(727\) 16158.5i 0.824326i 0.911110 + 0.412163i \(0.135227\pi\)
−0.911110 + 0.412163i \(0.864773\pi\)
\(728\) 0 0
\(729\) 18639.8 6322.95i 0.946998 0.321239i
\(730\) 0 0
\(731\) 20155.0 34909.5i 1.01978 1.76631i
\(732\) 0 0
\(733\) 12158.6 + 21059.2i 0.612669 + 1.06117i 0.990789 + 0.135418i \(0.0432376\pi\)
−0.378119 + 0.925757i \(0.623429\pi\)
\(734\) 0 0
\(735\) −550.178 18324.6i −0.0276104 0.919609i
\(736\) 0 0
\(737\) −27537.4 + 15898.7i −1.37633 + 0.794624i
\(738\) 0 0
\(739\) −11107.7 6413.05i −0.552915 0.319226i 0.197382 0.980327i \(-0.436756\pi\)
−0.750297 + 0.661101i \(0.770089\pi\)
\(740\) 0 0
\(741\) 19059.9 12435.9i 0.944916 0.616523i
\(742\) 0 0
\(743\) −20204.7 −0.997630 −0.498815 0.866708i \(-0.666231\pi\)
−0.498815 + 0.866708i \(0.666231\pi\)
\(744\) 0 0
\(745\) 6580.80 11398.3i 0.323627 0.560538i
\(746\) 0 0
\(747\) 24329.8 2662.81i 1.19167 0.130425i
\(748\) 0 0
\(749\) −8579.58 + 14448.7i −0.418546 + 0.704866i
\(750\) 0 0
\(751\) 18460.2 10658.0i 0.896966 0.517863i 0.0207513 0.999785i \(-0.493394\pi\)
0.876215 + 0.481921i \(0.160061\pi\)
\(752\) 0 0
\(753\) −33163.9 + 1809.43i −1.60499 + 0.0875689i
\(754\) 0 0
\(755\) 10637.0 0.512740
\(756\) 0 0
\(757\) −13791.8 −0.662183 −0.331091 0.943599i \(-0.607417\pi\)
−0.331091 + 0.943599i \(0.607417\pi\)
\(758\) 0 0
\(759\) −31533.8 + 1720.49i −1.50804 + 0.0822792i
\(760\) 0 0
\(761\) −4722.71 + 2726.66i −0.224965 + 0.129883i −0.608247 0.793748i \(-0.708127\pi\)
0.383282 + 0.923631i \(0.374794\pi\)
\(762\) 0 0
\(763\) 490.052 + 6.00129i 0.0232517 + 0.000284746i
\(764\) 0 0
\(765\) −32831.8 + 3593.32i −1.55168 + 0.169826i
\(766\) 0 0
\(767\) −6327.59 + 10959.7i −0.297883 + 0.515948i
\(768\) 0 0
\(769\) −55.4518 −0.00260032 −0.00130016 0.999999i \(-0.500414\pi\)
−0.00130016 + 0.999999i \(0.500414\pi\)
\(770\) 0 0
\(771\) −24666.6 + 16094.1i −1.15220 + 0.751770i
\(772\) 0 0
\(773\) 8936.18 + 5159.30i 0.415798 + 0.240061i 0.693278 0.720670i \(-0.256166\pi\)
−0.277480 + 0.960731i \(0.589499\pi\)
\(774\) 0 0
\(775\) −1941.58 + 1120.97i −0.0899917 + 0.0519568i
\(776\) 0 0
\(777\) 10122.1 19379.3i 0.467345 0.894761i
\(778\) 0 0
\(779\) 18167.7 + 31467.5i 0.835593 + 1.44729i
\(780\) 0 0
\(781\) −16175.1 + 28016.0i −0.741088 + 1.28360i
\(782\) 0 0
\(783\) −345.311 2092.89i −0.0157604 0.0955222i
\(784\) 0 0
\(785\) 27924.3i 1.26963i
\(786\) 0 0
\(787\) 3830.02 + 2211.27i 0.173476 + 0.100156i 0.584224 0.811593i \(-0.301399\pi\)
−0.410748 + 0.911749i \(0.634732\pi\)
\(788\) 0 0
\(789\) −7673.63 + 15140.6i −0.346247 + 0.683168i
\(790\) 0 0
\(791\) −2279.47 + 1279.10i −0.102464 + 0.0574961i
\(792\) 0 0
\(793\) −3944.22 6831.60i −0.176625 0.305923i
\(794\) 0 0
\(795\) 40685.0 2219.79i 1.81503 0.0990285i
\(796\) 0 0
\(797\) 41181.2i 1.83025i −0.403166 0.915127i \(-0.632090\pi\)
0.403166 0.915127i \(-0.367910\pi\)
\(798\) 0 0
\(799\) 40276.4i 1.78332i
\(800\) 0 0
\(801\) −15491.0 + 11356.8i −0.683331 + 0.500965i
\(802\) 0 0
\(803\) −7163.07 12406.8i −0.314794 0.545238i
\(804\) 0 0
\(805\) −306.887 + 25059.7i −0.0134365 + 1.09719i
\(806\) 0 0
\(807\) −28383.2 14385.3i −1.23809 0.627492i
\(808\) 0 0
\(809\) 9981.59 + 5762.88i 0.433788 + 0.250447i 0.700959 0.713202i \(-0.252756\pi\)
−0.267171 + 0.963649i \(0.586089\pi\)
\(810\) 0 0
\(811\) 32671.1i 1.41460i −0.706916 0.707298i \(-0.749914\pi\)
0.706916 0.707298i \(-0.250086\pi\)
\(812\) 0 0
\(813\) 16698.4 10895.1i 0.720343 0.469998i
\(814\) 0 0
\(815\) 5060.40 8764.88i 0.217495 0.376712i
\(816\) 0 0
\(817\) −27966.3 48439.0i −1.19757 2.07426i
\(818\) 0 0
\(819\) −7715.71 10799.3i −0.329193 0.460757i
\(820\) 0 0
\(821\) 21050.2 12153.4i 0.894834 0.516633i 0.0193135 0.999813i \(-0.493852\pi\)
0.875521 + 0.483181i \(0.160519\pi\)
\(822\) 0 0
\(823\) −27531.1 15895.1i −1.16607 0.673229i −0.213316 0.976983i \(-0.568427\pi\)
−0.952750 + 0.303754i \(0.901760\pi\)
\(824\) 0 0
\(825\) −2517.87 3859.02i −0.106256 0.162853i
\(826\) 0 0
\(827\) −6134.87 −0.257957 −0.128978 0.991647i \(-0.541170\pi\)
−0.128978 + 0.991647i \(0.541170\pi\)
\(828\) 0 0
\(829\) −3983.44 + 6899.52i −0.166889 + 0.289060i −0.937324 0.348458i \(-0.886705\pi\)
0.770436 + 0.637518i \(0.220039\pi\)
\(830\) 0 0
\(831\) 10484.3 20686.3i 0.437663 0.863539i
\(832\) 0 0
\(833\) −35814.3 + 19523.9i −1.48966 + 0.812082i
\(834\) 0 0
\(835\) −9454.68 + 5458.66i −0.391848 + 0.226233i
\(836\) 0 0
\(837\) 15335.8 + 5773.84i 0.633313 + 0.238438i
\(838\) 0 0
\(839\) 7513.33 0.309164 0.154582 0.987980i \(-0.450597\pi\)
0.154582 + 0.987980i \(0.450597\pi\)
\(840\) 0 0
\(841\) 24160.4 0.990627
\(842\) 0 0
\(843\) −34.1042 625.073i −0.00139337 0.0255382i
\(844\) 0 0
\(845\) 13295.3 7676.06i 0.541270 0.312502i
\(846\) 0 0
\(847\) −7596.27 + 12792.7i −0.308159 + 0.518966i
\(848\) 0 0
\(849\) −139.148 70.5236i −0.00562490 0.00285084i
\(850\) 0 0
\(851\) −14944.1 + 25883.9i −0.601970 + 1.04264i
\(852\) 0 0
\(853\) −9449.12 −0.379287 −0.189643 0.981853i \(-0.560733\pi\)
−0.189643 + 0.981853i \(0.560733\pi\)
\(854\) 0 0
\(855\) −18460.0 + 41945.6i −0.738386 + 1.67779i
\(856\) 0 0
\(857\) 12638.9 + 7297.05i 0.503775 + 0.290855i 0.730271 0.683158i \(-0.239394\pi\)
−0.226496 + 0.974012i \(0.572727\pi\)
\(858\) 0 0
\(859\) −11743.5 + 6780.09i −0.466451 + 0.269306i −0.714753 0.699377i \(-0.753461\pi\)
0.248302 + 0.968683i \(0.420128\pi\)
\(860\) 0 0
\(861\) 17887.7 11361.2i 0.708027 0.449698i
\(862\) 0 0
\(863\) −1866.70 3233.22i −0.0736307 0.127532i 0.826859 0.562409i \(-0.190125\pi\)
−0.900490 + 0.434877i \(0.856792\pi\)
\(864\) 0 0
\(865\) −5380.03 + 9318.48i −0.211476 + 0.366287i
\(866\) 0 0
\(867\) 26205.9 + 40164.5i 1.02653 + 1.57331i
\(868\) 0 0
\(869\) 13265.2i 0.517825i
\(870\) 0 0
\(871\) 15820.9 + 9134.22i 0.615467 + 0.355340i
\(872\) 0 0
\(873\) 9527.61 1042.76i 0.369371 0.0404263i
\(874\) 0 0
\(875\) −23955.6 + 13442.4i −0.925541 + 0.519355i
\(876\) 0 0
\(877\) 8209.54 + 14219.3i 0.316096 + 0.547495i 0.979670 0.200616i \(-0.0642944\pi\)
−0.663574 + 0.748111i \(0.730961\pi\)
\(878\) 0 0
\(879\) −1456.18 26689.4i −0.0558770 1.02413i
\(880\) 0 0
\(881\) 962.335i 0.0368012i −0.999831 0.0184006i \(-0.994143\pi\)
0.999831 0.0184006i \(-0.00585743\pi\)
\(882\) 0 0
\(883\) 33314.0i 1.26966i −0.772653 0.634828i \(-0.781071\pi\)
0.772653 0.634828i \(-0.218929\pi\)
\(884\) 0 0
\(885\) −1388.34 25445.9i −0.0527327 0.966503i
\(886\) 0 0
\(887\) −23752.6 41140.8i −0.899138 1.55735i −0.828598 0.559844i \(-0.810861\pi\)
−0.0705404 0.997509i \(-0.522472\pi\)
\(888\) 0 0
\(889\) 1340.73 752.331i 0.0505810 0.0283829i
\(890\) 0 0
\(891\) −10132.0 + 32118.8i −0.380960 + 1.20766i
\(892\) 0 0
\(893\) −48398.6 27942.9i −1.81366 1.04712i
\(894\) 0 0
\(895\) 8743.57i 0.326553i
\(896\) 0 0
\(897\) 9914.49 + 15195.5i 0.369047 + 0.565621i
\(898\) 0 0
\(899\) 882.977 1529.36i 0.0327574 0.0567375i
\(900\) 0 0
\(901\) −45329.0 78512.1i −1.67606 2.90302i
\(902\) 0 0
\(903\) −27535.2 + 17488.8i −1.01475 + 0.644508i
\(904\) 0 0
\(905\) 37141.3 21443.6i 1.36422 0.787633i
\(906\) 0 0
\(907\) −26136.2 15089.8i −0.956824 0.552423i −0.0616301 0.998099i \(-0.519630\pi\)
−0.895194 + 0.445676i \(0.852963\pi\)
\(908\) 0 0
\(909\) 6974.34 + 3069.37i 0.254482 + 0.111996i
\(910\) 0 0
\(911\) 41036.3 1.49242 0.746209 0.665711i \(-0.231872\pi\)
0.746209 + 0.665711i \(0.231872\pi\)
\(912\) 0 0
\(913\) −20939.3 + 36268.0i −0.759025 + 1.31467i
\(914\) 0 0
\(915\) 14169.1 + 7181.24i 0.511929 + 0.259458i
\(916\) 0 0
\(917\) −16867.2 + 28405.8i −0.607421 + 1.02295i
\(918\) 0 0
\(919\) 45414.4 26220.0i 1.63012 0.941151i 0.646068 0.763280i \(-0.276412\pi\)
0.984054 0.177871i \(-0.0569209\pi\)
\(920\) 0 0
\(921\) −537.613 9853.55i −0.0192345 0.352536i
\(922\) 0 0
\(923\) 18585.9 0.662799
\(924\) 0 0
\(925\) −4360.84 −0.155009
\(926\) 0 0
\(927\) −8369.89 + 6136.15i −0.296551 + 0.217408i
\(928\) 0 0
\(929\) 2104.90 1215.26i 0.0743373 0.0429187i −0.462371 0.886687i \(-0.653001\pi\)
0.536708 + 0.843768i \(0.319668\pi\)
\(930\) 0 0
\(931\) −1386.04 + 56581.9i −0.0487922 + 1.99183i
\(932\) 0 0
\(933\) 5870.71 11583.3i 0.206000 0.406453i
\(934\) 0 0
\(935\) 28256.5 48941.7i 0.988327 1.71183i
\(936\) 0 0
\(937\) −37791.5 −1.31760 −0.658802 0.752316i \(-0.728937\pi\)
−0.658802 + 0.752316i \(0.728937\pi\)
\(938\) 0 0
\(939\) 15205.6 + 23304.9i 0.528451 + 0.809932i
\(940\) 0 0
\(941\) −2206.46 1273.90i −0.0764385 0.0441318i 0.461294 0.887248i \(-0.347385\pi\)
−0.537732 + 0.843116i \(0.680719\pi\)
\(942\) 0 0
\(943\) −25087.4 + 14484.2i −0.866339 + 0.500181i
\(944\) 0 0
\(945\) 24895.6 + 9722.74i 0.856987 + 0.334689i
\(946\) 0 0
\(947\) −22338.2 38690.9i −0.766520 1.32765i −0.939439 0.342716i \(-0.888653\pi\)
0.172919 0.984936i \(-0.444680\pi\)
\(948\) 0 0
\(949\) −4115.36 + 7128.01i −0.140769 + 0.243820i
\(950\) 0 0
\(951\) −23533.1 + 15354.5i −0.802431 + 0.523557i
\(952\) 0 0
\(953\) 19279.1i 0.655312i 0.944797 + 0.327656i \(0.106259\pi\)
−0.944797 + 0.327656i \(0.893741\pi\)
\(954\) 0 0
\(955\) −93.7068 54.1016i −0.00317516 0.00183318i
\(956\) 0 0
\(957\) 3237.44 + 1640.82i 0.109354 + 0.0554232i
\(958\) 0 0
\(959\) 387.702 31658.9i 0.0130548 1.06603i
\(960\) 0 0
\(961\) −8074.29 13985.1i −0.271031 0.469440i
\(962\) 0 0
\(963\) −14484.5 19757.3i −0.484689 0.661130i
\(964\) 0 0
\(965\) 22621.7i 0.754630i
\(966\) 0 0
\(967\) 57463.4i 1.91096i 0.295056 + 0.955480i \(0.404662\pi\)
−0.295056 + 0.955480i \(0.595338\pi\)
\(968\) 0 0
\(969\) 101815. 5555.07i 3.37541 0.184163i
\(970\) 0 0
\(971\) 4687.33 + 8118.69i 0.154916 + 0.268323i 0.933028 0.359802i \(-0.117156\pi\)
−0.778112 + 0.628125i \(0.783823\pi\)
\(972\) 0 0
\(973\) −17033.4 + 9558.05i −0.561218 + 0.314920i
\(974\) 0 0
\(975\) −1196.78 + 2361.32i −0.0393103 + 0.0775620i
\(976\) 0 0
\(977\) 12444.4 + 7184.77i 0.407504 + 0.235272i 0.689717 0.724079i \(-0.257735\pi\)
−0.282213 + 0.959352i \(0.591068\pi\)
\(978\) 0 0
\(979\) 32866.3i 1.07294i
\(980\) 0 0
\(981\) −287.801 + 653.953i −0.00936675 + 0.0212835i
\(982\) 0 0
\(983\) −15117.9 + 26185.0i −0.490525 + 0.849614i −0.999941 0.0109064i \(-0.996528\pi\)
0.509415 + 0.860521i \(0.329862\pi\)
\(984\) 0 0
\(985\) 1408.38 + 2439.39i 0.0455582 + 0.0789091i
\(986\) 0 0
\(987\) −15089.2 + 28889.2i −0.486620 + 0.931665i
\(988\) 0 0
\(989\) 38617.9 22296.1i 1.24164 0.716860i
\(990\) 0 0
\(991\) −44663.4 25786.4i −1.43167 0.826573i −0.434418 0.900712i \(-0.643046\pi\)
−0.997248 + 0.0741390i \(0.976379\pi\)
\(992\) 0 0
\(993\) −1932.69 + 1261.01i −0.0617643 + 0.0402989i
\(994\) 0 0
\(995\) −6578.92 −0.209614
\(996\) 0 0
\(997\) −3761.60 + 6515.28i −0.119489 + 0.206962i −0.919565 0.392937i \(-0.871459\pi\)
0.800076 + 0.599899i \(0.204792\pi\)
\(998\) 0 0
\(999\) 20218.1 + 24641.1i 0.640312 + 0.780391i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 336.4.bj.e.95.14 yes 28
3.2 odd 2 inner 336.4.bj.e.95.10 28
4.3 odd 2 336.4.bj.f.95.1 yes 28
7.2 even 3 336.4.bj.f.191.5 yes 28
12.11 even 2 336.4.bj.f.95.5 yes 28
21.2 odd 6 336.4.bj.f.191.1 yes 28
28.23 odd 6 inner 336.4.bj.e.191.10 yes 28
84.23 even 6 inner 336.4.bj.e.191.14 yes 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
336.4.bj.e.95.10 28 3.2 odd 2 inner
336.4.bj.e.95.14 yes 28 1.1 even 1 trivial
336.4.bj.e.191.10 yes 28 28.23 odd 6 inner
336.4.bj.e.191.14 yes 28 84.23 even 6 inner
336.4.bj.f.95.1 yes 28 4.3 odd 2
336.4.bj.f.95.5 yes 28 12.11 even 2
336.4.bj.f.191.1 yes 28 21.2 odd 6
336.4.bj.f.191.5 yes 28 7.2 even 3