Properties

Label 336.4.bj.e.95.11
Level $336$
Weight $4$
Character 336.95
Analytic conductor $19.825$
Analytic rank $0$
Dimension $28$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [336,4,Mod(95,336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("336.95"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(336, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 3, 4])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 336 = 2^{4} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 336.bj (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [28,0,0,0,0,0,-38] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.8246417619\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 95.11
Character \(\chi\) \(=\) 336.95
Dual form 336.4.bj.e.191.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.63380 - 4.47918i) q^{3} +(10.1094 - 5.83669i) q^{5} +(-17.9159 + 4.69245i) q^{7} +(-13.1262 - 23.5946i) q^{9} +(-26.0496 + 45.1192i) q^{11} -75.3352 q^{13} +(0.482652 - 60.6547i) q^{15} +(-81.3838 - 46.9870i) q^{17} +(17.7187 - 10.2299i) q^{19} +(-26.1687 + 92.6078i) q^{21} +(12.2188 + 21.1636i) q^{23} +(5.63383 - 9.75808i) q^{25} +(-140.256 - 3.34877i) q^{27} -145.322i q^{29} +(164.228 + 94.8169i) q^{31} +(133.488 + 235.516i) q^{33} +(-153.732 + 152.008i) q^{35} +(-65.9875 - 114.294i) q^{37} +(-198.418 + 337.440i) q^{39} -215.221i q^{41} -293.071i q^{43} +(-270.412 - 161.914i) q^{45} +(85.5222 + 148.129i) q^{47} +(298.962 - 168.139i) q^{49} +(-424.812 + 240.779i) q^{51} +(42.6773 + 24.6398i) q^{53} +608.173i q^{55} +(0.845940 - 106.309i) q^{57} +(-316.152 + 547.591i) q^{59} +(147.099 + 254.783i) q^{61} +(345.884 + 361.125i) q^{63} +(-761.597 + 439.708i) q^{65} +(-801.987 - 463.027i) q^{67} +(126.977 + 1.01041i) q^{69} -955.286 q^{71} +(408.236 - 707.085i) q^{73} +(-28.8699 - 50.9358i) q^{75} +(254.983 - 930.589i) q^{77} +(770.551 - 444.878i) q^{79} +(-384.407 + 619.413i) q^{81} +188.840 q^{83} -1096.99 q^{85} +(-650.922 - 382.748i) q^{87} +(-901.644 + 520.564i) q^{89} +(1349.70 - 353.507i) q^{91} +(857.245 - 485.877i) q^{93} +(119.418 - 206.837i) q^{95} -1630.72 q^{97} +(1406.50 + 22.3855i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q - 38 q^{7} - 70 q^{9} + 124 q^{13} + 462 q^{19} + 500 q^{21} + 566 q^{25} - 1266 q^{31} + 64 q^{33} + 338 q^{37} - 1254 q^{39} - 488 q^{45} - 206 q^{49} - 522 q^{51} + 2324 q^{57} - 340 q^{61} + 840 q^{63}+ \cdots - 3344 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/336\mathbb{Z}\right)^\times\).

\(n\) \(85\) \(113\) \(127\) \(241\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.63380 4.47918i 0.506875 0.862019i
\(4\) 0 0
\(5\) 10.1094 5.83669i 0.904216 0.522049i 0.0256501 0.999671i \(-0.491834\pi\)
0.878566 + 0.477622i \(0.158501\pi\)
\(6\) 0 0
\(7\) −17.9159 + 4.69245i −0.967370 + 0.253368i
\(8\) 0 0
\(9\) −13.1262 23.5946i −0.486155 0.873873i
\(10\) 0 0
\(11\) −26.0496 + 45.1192i −0.714022 + 1.23672i 0.249314 + 0.968423i \(0.419795\pi\)
−0.963336 + 0.268299i \(0.913538\pi\)
\(12\) 0 0
\(13\) −75.3352 −1.60725 −0.803624 0.595137i \(-0.797098\pi\)
−0.803624 + 0.595137i \(0.797098\pi\)
\(14\) 0 0
\(15\) 0.482652 60.6547i 0.00830801 1.04407i
\(16\) 0 0
\(17\) −81.3838 46.9870i −1.16109 0.670354i −0.209522 0.977804i \(-0.567191\pi\)
−0.951564 + 0.307450i \(0.900524\pi\)
\(18\) 0 0
\(19\) 17.7187 10.2299i 0.213945 0.123521i −0.389198 0.921154i \(-0.627248\pi\)
0.603143 + 0.797633i \(0.293915\pi\)
\(20\) 0 0
\(21\) −26.1687 + 92.6078i −0.271927 + 0.962318i
\(22\) 0 0
\(23\) 12.2188 + 21.1636i 0.110774 + 0.191866i 0.916082 0.400990i \(-0.131334\pi\)
−0.805309 + 0.592856i \(0.798000\pi\)
\(24\) 0 0
\(25\) 5.63383 9.75808i 0.0450707 0.0780647i
\(26\) 0 0
\(27\) −140.256 3.34877i −0.999715 0.0238693i
\(28\) 0 0
\(29\) 145.322i 0.930535i −0.885170 0.465268i \(-0.845958\pi\)
0.885170 0.465268i \(-0.154042\pi\)
\(30\) 0 0
\(31\) 164.228 + 94.8169i 0.951489 + 0.549343i 0.893543 0.448977i \(-0.148212\pi\)
0.0579460 + 0.998320i \(0.481545\pi\)
\(32\) 0 0
\(33\) 133.488 + 235.516i 0.704158 + 1.24236i
\(34\) 0 0
\(35\) −153.732 + 152.008i −0.742440 + 0.734114i
\(36\) 0 0
\(37\) −65.9875 114.294i −0.293197 0.507831i 0.681367 0.731942i \(-0.261386\pi\)
−0.974564 + 0.224110i \(0.928052\pi\)
\(38\) 0 0
\(39\) −198.418 + 337.440i −0.814674 + 1.38548i
\(40\) 0 0
\(41\) 215.221i 0.819803i −0.912130 0.409902i \(-0.865563\pi\)
0.912130 0.409902i \(-0.134437\pi\)
\(42\) 0 0
\(43\) 293.071i 1.03937i −0.854358 0.519685i \(-0.826049\pi\)
0.854358 0.519685i \(-0.173951\pi\)
\(44\) 0 0
\(45\) −270.412 161.914i −0.895793 0.536372i
\(46\) 0 0
\(47\) 85.5222 + 148.129i 0.265419 + 0.459719i 0.967673 0.252207i \(-0.0811564\pi\)
−0.702254 + 0.711926i \(0.747823\pi\)
\(48\) 0 0
\(49\) 298.962 168.139i 0.871609 0.490202i
\(50\) 0 0
\(51\) −424.812 + 240.779i −1.16638 + 0.661093i
\(52\) 0 0
\(53\) 42.6773 + 24.6398i 0.110607 + 0.0638591i 0.554283 0.832328i \(-0.312993\pi\)
−0.443676 + 0.896187i \(0.646326\pi\)
\(54\) 0 0
\(55\) 608.173i 1.49102i
\(56\) 0 0
\(57\) 0.845940 106.309i 0.00196574 0.247035i
\(58\) 0 0
\(59\) −316.152 + 547.591i −0.697618 + 1.20831i 0.271672 + 0.962390i \(0.412424\pi\)
−0.969290 + 0.245920i \(0.920910\pi\)
\(60\) 0 0
\(61\) 147.099 + 254.783i 0.308756 + 0.534781i 0.978091 0.208180i \(-0.0667540\pi\)
−0.669334 + 0.742961i \(0.733421\pi\)
\(62\) 0 0
\(63\) 345.884 + 361.125i 0.691703 + 0.722182i
\(64\) 0 0
\(65\) −761.597 + 439.708i −1.45330 + 0.839063i
\(66\) 0 0
\(67\) −801.987 463.027i −1.46236 0.844295i −0.463242 0.886232i \(-0.653314\pi\)
−0.999120 + 0.0419364i \(0.986647\pi\)
\(68\) 0 0
\(69\) 126.977 + 1.01041i 0.221540 + 0.00176288i
\(70\) 0 0
\(71\) −955.286 −1.59678 −0.798391 0.602139i \(-0.794315\pi\)
−0.798391 + 0.602139i \(0.794315\pi\)
\(72\) 0 0
\(73\) 408.236 707.085i 0.654526 1.13367i −0.327487 0.944856i \(-0.606202\pi\)
0.982012 0.188816i \(-0.0604651\pi\)
\(74\) 0 0
\(75\) −28.8699 50.9358i −0.0444481 0.0784208i
\(76\) 0 0
\(77\) 254.983 930.589i 0.377377 1.37728i
\(78\) 0 0
\(79\) 770.551 444.878i 1.09739 0.633578i 0.161855 0.986815i \(-0.448252\pi\)
0.935534 + 0.353237i \(0.114919\pi\)
\(80\) 0 0
\(81\) −384.407 + 619.413i −0.527307 + 0.849675i
\(82\) 0 0
\(83\) 188.840 0.249733 0.124867 0.992174i \(-0.460150\pi\)
0.124867 + 0.992174i \(0.460150\pi\)
\(84\) 0 0
\(85\) −1096.99 −1.39983
\(86\) 0 0
\(87\) −650.922 382.748i −0.802140 0.471665i
\(88\) 0 0
\(89\) −901.644 + 520.564i −1.07387 + 0.619997i −0.929235 0.369489i \(-0.879533\pi\)
−0.144631 + 0.989486i \(0.546199\pi\)
\(90\) 0 0
\(91\) 1349.70 353.507i 1.55480 0.407226i
\(92\) 0 0
\(93\) 857.245 485.877i 0.955830 0.541754i
\(94\) 0 0
\(95\) 119.418 206.837i 0.128968 0.223380i
\(96\) 0 0
\(97\) −1630.72 −1.70695 −0.853476 0.521132i \(-0.825510\pi\)
−0.853476 + 0.521132i \(0.825510\pi\)
\(98\) 0 0
\(99\) 1406.50 + 22.3855i 1.42786 + 0.0227255i
\(100\) 0 0
\(101\) 1340.54 + 773.963i 1.32068 + 0.762497i 0.983838 0.179063i \(-0.0573066\pi\)
0.336846 + 0.941560i \(0.390640\pi\)
\(102\) 0 0
\(103\) 247.491 142.889i 0.236758 0.136692i −0.376928 0.926243i \(-0.623020\pi\)
0.613686 + 0.789551i \(0.289686\pi\)
\(104\) 0 0
\(105\) 275.972 + 1088.95i 0.256496 + 1.01210i
\(106\) 0 0
\(107\) −46.1409 79.9183i −0.0416879 0.0722056i 0.844429 0.535668i \(-0.179940\pi\)
−0.886117 + 0.463463i \(0.846607\pi\)
\(108\) 0 0
\(109\) 1054.05 1825.67i 0.926238 1.60429i 0.136680 0.990615i \(-0.456357\pi\)
0.789558 0.613676i \(-0.210310\pi\)
\(110\) 0 0
\(111\) −685.740 5.45669i −0.586375 0.00466600i
\(112\) 0 0
\(113\) 196.677i 0.163733i −0.996643 0.0818665i \(-0.973912\pi\)
0.996643 0.0818665i \(-0.0260881\pi\)
\(114\) 0 0
\(115\) 247.050 + 142.635i 0.200327 + 0.115659i
\(116\) 0 0
\(117\) 988.864 + 1777.50i 0.781372 + 1.40453i
\(118\) 0 0
\(119\) 1678.55 + 459.926i 1.29305 + 0.354297i
\(120\) 0 0
\(121\) −691.660 1197.99i −0.519654 0.900068i
\(122\) 0 0
\(123\) −964.016 566.850i −0.706686 0.415538i
\(124\) 0 0
\(125\) 1327.64i 0.949982i
\(126\) 0 0
\(127\) 347.624i 0.242887i −0.992598 0.121443i \(-0.961248\pi\)
0.992598 0.121443i \(-0.0387523\pi\)
\(128\) 0 0
\(129\) −1312.72 771.891i −0.895958 0.526831i
\(130\) 0 0
\(131\) −1118.75 1937.73i −0.746148 1.29237i −0.949656 0.313294i \(-0.898568\pi\)
0.203508 0.979073i \(-0.434766\pi\)
\(132\) 0 0
\(133\) −269.444 + 266.423i −0.175668 + 0.173698i
\(134\) 0 0
\(135\) −1437.46 + 784.777i −0.916419 + 0.500317i
\(136\) 0 0
\(137\) 1325.50 + 765.277i 0.826605 + 0.477241i 0.852689 0.522419i \(-0.174970\pi\)
−0.0260835 + 0.999660i \(0.508304\pi\)
\(138\) 0 0
\(139\) 1941.36i 1.18463i 0.805705 + 0.592317i \(0.201787\pi\)
−0.805705 + 0.592317i \(0.798213\pi\)
\(140\) 0 0
\(141\) 888.744 + 7.07206i 0.530821 + 0.00422394i
\(142\) 0 0
\(143\) 1962.45 3399.06i 1.14761 1.98772i
\(144\) 0 0
\(145\) −848.196 1469.12i −0.485785 0.841405i
\(146\) 0 0
\(147\) 34.2792 1781.95i 0.0192333 0.999815i
\(148\) 0 0
\(149\) 1120.99 647.206i 0.616344 0.355847i −0.159100 0.987262i \(-0.550859\pi\)
0.775444 + 0.631416i \(0.217526\pi\)
\(150\) 0 0
\(151\) −80.5558 46.5089i −0.0434142 0.0250652i 0.478136 0.878286i \(-0.341313\pi\)
−0.521550 + 0.853221i \(0.674646\pi\)
\(152\) 0 0
\(153\) −40.3778 + 2536.97i −0.0213356 + 1.34054i
\(154\) 0 0
\(155\) 2213.67 1.14714
\(156\) 0 0
\(157\) −80.3111 + 139.103i −0.0408250 + 0.0707110i −0.885716 0.464228i \(-0.846332\pi\)
0.844891 + 0.534939i \(0.179665\pi\)
\(158\) 0 0
\(159\) 222.770 126.263i 0.111112 0.0629770i
\(160\) 0 0
\(161\) −318.220 321.829i −0.155772 0.157539i
\(162\) 0 0
\(163\) −836.490 + 482.948i −0.401957 + 0.232070i −0.687328 0.726347i \(-0.741216\pi\)
0.285371 + 0.958417i \(0.407883\pi\)
\(164\) 0 0
\(165\) 2724.12 + 1601.81i 1.28529 + 0.755760i
\(166\) 0 0
\(167\) 820.917 0.380386 0.190193 0.981747i \(-0.439089\pi\)
0.190193 + 0.981747i \(0.439089\pi\)
\(168\) 0 0
\(169\) 3478.39 1.58325
\(170\) 0 0
\(171\) −473.950 283.786i −0.211952 0.126910i
\(172\) 0 0
\(173\) 402.310 232.274i 0.176804 0.102078i −0.408986 0.912541i \(-0.634118\pi\)
0.585790 + 0.810463i \(0.300784\pi\)
\(174\) 0 0
\(175\) −55.1461 + 201.262i −0.0238209 + 0.0869369i
\(176\) 0 0
\(177\) 1620.08 + 2858.35i 0.687982 + 1.21382i
\(178\) 0 0
\(179\) −587.268 + 1017.18i −0.245220 + 0.424734i −0.962194 0.272367i \(-0.912194\pi\)
0.716973 + 0.697101i \(0.245527\pi\)
\(180\) 0 0
\(181\) 820.675 0.337018 0.168509 0.985700i \(-0.446105\pi\)
0.168509 + 0.985700i \(0.446105\pi\)
\(182\) 0 0
\(183\) 1528.65 + 12.1640i 0.617492 + 0.00491361i
\(184\) 0 0
\(185\) −1334.19 770.297i −0.530226 0.306126i
\(186\) 0 0
\(187\) 4240.03 2447.98i 1.65808 0.957294i
\(188\) 0 0
\(189\) 2528.53 598.148i 0.973142 0.230206i
\(190\) 0 0
\(191\) 488.766 + 846.567i 0.185162 + 0.320709i 0.943631 0.330999i \(-0.107386\pi\)
−0.758469 + 0.651709i \(0.774052\pi\)
\(192\) 0 0
\(193\) −70.2833 + 121.734i −0.0262130 + 0.0454022i −0.878834 0.477127i \(-0.841678\pi\)
0.852621 + 0.522529i \(0.175011\pi\)
\(194\) 0 0
\(195\) −36.3607 + 4569.44i −0.0133530 + 1.67807i
\(196\) 0 0
\(197\) 4489.07i 1.62352i −0.583994 0.811758i \(-0.698511\pi\)
0.583994 0.811758i \(-0.301489\pi\)
\(198\) 0 0
\(199\) 751.774 + 434.037i 0.267798 + 0.154613i 0.627887 0.778305i \(-0.283920\pi\)
−0.360088 + 0.932918i \(0.617253\pi\)
\(200\) 0 0
\(201\) −4186.26 + 2372.73i −1.46903 + 0.832632i
\(202\) 0 0
\(203\) 681.914 + 2603.57i 0.235768 + 0.900172i
\(204\) 0 0
\(205\) −1256.18 2175.77i −0.427978 0.741279i
\(206\) 0 0
\(207\) 338.959 566.094i 0.113813 0.190079i
\(208\) 0 0
\(209\) 1065.94i 0.352787i
\(210\) 0 0
\(211\) 2999.07i 0.978506i −0.872142 0.489253i \(-0.837270\pi\)
0.872142 0.489253i \(-0.162730\pi\)
\(212\) 0 0
\(213\) −2516.03 + 4278.90i −0.809370 + 1.37646i
\(214\) 0 0
\(215\) −1710.57 2962.79i −0.542603 0.939815i
\(216\) 0 0
\(217\) −3387.22 928.104i −1.05963 0.290340i
\(218\) 0 0
\(219\) −2091.95 3690.89i −0.645484 1.13884i
\(220\) 0 0
\(221\) 6131.07 + 3539.77i 1.86615 + 1.07742i
\(222\) 0 0
\(223\) 4094.88i 1.22966i −0.788661 0.614828i \(-0.789225\pi\)
0.788661 0.614828i \(-0.210775\pi\)
\(224\) 0 0
\(225\) −304.188 4.84138i −0.0901299 0.00143448i
\(226\) 0 0
\(227\) 632.034 1094.71i 0.184800 0.320083i −0.758709 0.651429i \(-0.774170\pi\)
0.943509 + 0.331347i \(0.107503\pi\)
\(228\) 0 0
\(229\) −2748.83 4761.11i −0.793221 1.37390i −0.923962 0.382483i \(-0.875069\pi\)
0.130741 0.991417i \(-0.458264\pi\)
\(230\) 0 0
\(231\) −3496.70 3593.10i −0.995958 1.02341i
\(232\) 0 0
\(233\) −5790.08 + 3342.91i −1.62799 + 0.939919i −0.643294 + 0.765619i \(0.722433\pi\)
−0.984693 + 0.174299i \(0.944234\pi\)
\(234\) 0 0
\(235\) 1729.16 + 998.332i 0.479992 + 0.277123i
\(236\) 0 0
\(237\) 36.7882 4623.16i 0.0100829 1.26712i
\(238\) 0 0
\(239\) −2110.79 −0.571278 −0.285639 0.958337i \(-0.592206\pi\)
−0.285639 + 0.958337i \(0.592206\pi\)
\(240\) 0 0
\(241\) −198.046 + 343.026i −0.0529348 + 0.0916858i −0.891279 0.453456i \(-0.850191\pi\)
0.838344 + 0.545142i \(0.183524\pi\)
\(242\) 0 0
\(243\) 1762.02 + 3353.24i 0.465158 + 0.885228i
\(244\) 0 0
\(245\) 2040.96 3444.74i 0.532213 0.898271i
\(246\) 0 0
\(247\) −1334.84 + 770.673i −0.343863 + 0.198529i
\(248\) 0 0
\(249\) 497.366 845.848i 0.126584 0.215275i
\(250\) 0 0
\(251\) −2121.66 −0.533538 −0.266769 0.963760i \(-0.585956\pi\)
−0.266769 + 0.963760i \(0.585956\pi\)
\(252\) 0 0
\(253\) −1273.18 −0.316379
\(254\) 0 0
\(255\) −2889.26 + 4913.63i −0.709539 + 1.20668i
\(256\) 0 0
\(257\) −5065.60 + 2924.62i −1.22951 + 0.709856i −0.966927 0.255054i \(-0.917907\pi\)
−0.262580 + 0.964910i \(0.584573\pi\)
\(258\) 0 0
\(259\) 1718.55 + 1738.04i 0.412298 + 0.416974i
\(260\) 0 0
\(261\) −3428.80 + 1907.52i −0.813169 + 0.452384i
\(262\) 0 0
\(263\) −3645.55 + 6314.27i −0.854730 + 1.48044i 0.0221652 + 0.999754i \(0.492944\pi\)
−0.876895 + 0.480681i \(0.840389\pi\)
\(264\) 0 0
\(265\) 575.259 0.133350
\(266\) 0 0
\(267\) −43.0469 + 5409.69i −0.00986677 + 1.23995i
\(268\) 0 0
\(269\) −3404.04 1965.33i −0.771555 0.445457i 0.0618741 0.998084i \(-0.480292\pi\)
−0.833429 + 0.552627i \(0.813626\pi\)
\(270\) 0 0
\(271\) −5473.93 + 3160.37i −1.22700 + 0.708410i −0.966401 0.257037i \(-0.917254\pi\)
−0.260600 + 0.965447i \(0.583920\pi\)
\(272\) 0 0
\(273\) 1971.42 6976.63i 0.437055 1.54668i
\(274\) 0 0
\(275\) 293.518 + 508.388i 0.0643629 + 0.111480i
\(276\) 0 0
\(277\) 609.453 1055.60i 0.132197 0.228972i −0.792326 0.610098i \(-0.791130\pi\)
0.924523 + 0.381126i \(0.124464\pi\)
\(278\) 0 0
\(279\) 81.4801 5119.46i 0.0174842 1.09855i
\(280\) 0 0
\(281\) 6339.31i 1.34581i −0.739730 0.672903i \(-0.765047\pi\)
0.739730 0.672903i \(-0.234953\pi\)
\(282\) 0 0
\(283\) −3048.55 1760.08i −0.640344 0.369703i 0.144403 0.989519i \(-0.453874\pi\)
−0.784747 + 0.619816i \(0.787207\pi\)
\(284\) 0 0
\(285\) −611.940 1079.66i −0.127187 0.224399i
\(286\) 0 0
\(287\) 1009.92 + 3855.89i 0.207712 + 0.793053i
\(288\) 0 0
\(289\) 1959.05 + 3393.17i 0.398748 + 0.690651i
\(290\) 0 0
\(291\) −4294.99 + 7304.29i −0.865212 + 1.47143i
\(292\) 0 0
\(293\) 4735.36i 0.944173i 0.881552 + 0.472087i \(0.156499\pi\)
−0.881552 + 0.472087i \(0.843501\pi\)
\(294\) 0 0
\(295\) 7381.12i 1.45676i
\(296\) 0 0
\(297\) 3804.71 6241.01i 0.743338 1.21933i
\(298\) 0 0
\(299\) −920.506 1594.36i −0.178041 0.308376i
\(300\) 0 0
\(301\) 1375.22 + 5250.65i 0.263344 + 1.00546i
\(302\) 0 0
\(303\) 6997.45 3966.07i 1.32671 0.751964i
\(304\) 0 0
\(305\) 2974.18 + 1717.14i 0.558364 + 0.322372i
\(306\) 0 0
\(307\) 5508.31i 1.02403i −0.858978 0.512013i \(-0.828900\pi\)
0.858978 0.512013i \(-0.171100\pi\)
\(308\) 0 0
\(309\) 11.8159 1484.90i 0.00217535 0.273375i
\(310\) 0 0
\(311\) −638.753 + 1106.35i −0.116464 + 0.201722i −0.918364 0.395737i \(-0.870489\pi\)
0.801900 + 0.597458i \(0.203823\pi\)
\(312\) 0 0
\(313\) 2335.14 + 4044.58i 0.421693 + 0.730394i 0.996105 0.0881723i \(-0.0281026\pi\)
−0.574412 + 0.818566i \(0.694769\pi\)
\(314\) 0 0
\(315\) 5604.47 + 1631.95i 1.00246 + 0.291905i
\(316\) 0 0
\(317\) 3745.92 2162.71i 0.663697 0.383186i −0.129987 0.991516i \(-0.541494\pi\)
0.793684 + 0.608330i \(0.208160\pi\)
\(318\) 0 0
\(319\) 6556.79 + 3785.56i 1.15081 + 0.664423i
\(320\) 0 0
\(321\) −479.495 3.81551i −0.0833732 0.000663431i
\(322\) 0 0
\(323\) −1922.69 −0.331211
\(324\) 0 0
\(325\) −424.426 + 735.127i −0.0724397 + 0.125469i
\(326\) 0 0
\(327\) −5401.36 9529.75i −0.913443 1.61161i
\(328\) 0 0
\(329\) −2227.30 2252.56i −0.373237 0.377470i
\(330\) 0 0
\(331\) 4609.30 2661.18i 0.765407 0.441908i −0.0658265 0.997831i \(-0.520968\pi\)
0.831234 + 0.555923i \(0.187635\pi\)
\(332\) 0 0
\(333\) −1830.55 + 3057.19i −0.301241 + 0.503101i
\(334\) 0 0
\(335\) −10810.2 −1.76305
\(336\) 0 0
\(337\) −498.469 −0.0805738 −0.0402869 0.999188i \(-0.512827\pi\)
−0.0402869 + 0.999188i \(0.512827\pi\)
\(338\) 0 0
\(339\) −880.953 518.008i −0.141141 0.0829922i
\(340\) 0 0
\(341\) −8556.12 + 4939.88i −1.35877 + 0.784485i
\(342\) 0 0
\(343\) −4567.20 + 4415.24i −0.718966 + 0.695045i
\(344\) 0 0
\(345\) 1289.57 730.913i 0.201241 0.114061i
\(346\) 0 0
\(347\) −3278.79 + 5679.03i −0.507247 + 0.878578i 0.492718 + 0.870189i \(0.336003\pi\)
−0.999965 + 0.00838846i \(0.997330\pi\)
\(348\) 0 0
\(349\) 10542.3 1.61695 0.808475 0.588530i \(-0.200293\pi\)
0.808475 + 0.588530i \(0.200293\pi\)
\(350\) 0 0
\(351\) 10566.2 + 252.281i 1.60679 + 0.0383639i
\(352\) 0 0
\(353\) −7715.99 4454.83i −1.16340 0.671690i −0.211284 0.977425i \(-0.567765\pi\)
−0.952117 + 0.305735i \(0.901098\pi\)
\(354\) 0 0
\(355\) −9657.40 + 5575.71i −1.44384 + 0.833599i
\(356\) 0 0
\(357\) 6481.06 6307.19i 0.960824 0.935047i
\(358\) 0 0
\(359\) 2919.13 + 5056.08i 0.429153 + 0.743314i 0.996798 0.0799588i \(-0.0254789\pi\)
−0.567645 + 0.823273i \(0.692146\pi\)
\(360\) 0 0
\(361\) −3220.20 + 5577.55i −0.469485 + 0.813172i
\(362\) 0 0
\(363\) −7187.71 57.1953i −1.03928 0.00826990i
\(364\) 0 0
\(365\) 9530.98i 1.36678i
\(366\) 0 0
\(367\) 6368.54 + 3676.88i 0.905818 + 0.522974i 0.879083 0.476668i \(-0.158156\pi\)
0.0267348 + 0.999643i \(0.491489\pi\)
\(368\) 0 0
\(369\) −5078.05 + 2825.04i −0.716404 + 0.398551i
\(370\) 0 0
\(371\) −880.226 241.183i −0.123178 0.0337510i
\(372\) 0 0
\(373\) 2446.46 + 4237.39i 0.339605 + 0.588214i 0.984358 0.176177i \(-0.0563732\pi\)
−0.644753 + 0.764391i \(0.723040\pi\)
\(374\) 0 0
\(375\) 5946.74 + 3496.74i 0.818903 + 0.481522i
\(376\) 0 0
\(377\) 10947.8i 1.49560i
\(378\) 0 0
\(379\) 9460.50i 1.28220i −0.767458 0.641099i \(-0.778479\pi\)
0.767458 0.641099i \(-0.221521\pi\)
\(380\) 0 0
\(381\) −1557.07 915.572i −0.209373 0.123113i
\(382\) 0 0
\(383\) 1020.83 + 1768.13i 0.136193 + 0.235893i 0.926053 0.377395i \(-0.123180\pi\)
−0.789860 + 0.613288i \(0.789847\pi\)
\(384\) 0 0
\(385\) −2853.82 10896.0i −0.377777 1.44237i
\(386\) 0 0
\(387\) −6914.89 + 3846.91i −0.908278 + 0.505295i
\(388\) 0 0
\(389\) 10891.2 + 6288.02i 1.41955 + 0.819576i 0.996259 0.0864182i \(-0.0275421\pi\)
0.423289 + 0.905995i \(0.360875\pi\)
\(390\) 0 0
\(391\) 2296.50i 0.297030i
\(392\) 0 0
\(393\) −11626.0 92.5123i −1.49225 0.0118744i
\(394\) 0 0
\(395\) 5193.22 8994.93i 0.661518 1.14578i
\(396\) 0 0
\(397\) 118.194 + 204.717i 0.0149420 + 0.0258803i 0.873400 0.487004i \(-0.161910\pi\)
−0.858458 + 0.512884i \(0.828577\pi\)
\(398\) 0 0
\(399\) 483.694 + 1908.60i 0.0606892 + 0.239472i
\(400\) 0 0
\(401\) 7501.26 4330.85i 0.934152 0.539333i 0.0460297 0.998940i \(-0.485343\pi\)
0.888122 + 0.459607i \(0.152010\pi\)
\(402\) 0 0
\(403\) −12372.1 7143.05i −1.52928 0.882930i
\(404\) 0 0
\(405\) −270.814 + 8505.58i −0.0332268 + 1.04357i
\(406\) 0 0
\(407\) 6875.78 0.837395
\(408\) 0 0
\(409\) −1584.33 + 2744.14i −0.191540 + 0.331757i −0.945761 0.324864i \(-0.894682\pi\)
0.754221 + 0.656621i \(0.228015\pi\)
\(410\) 0 0
\(411\) 6918.91 3921.56i 0.830377 0.470648i
\(412\) 0 0
\(413\) 3094.62 11294.1i 0.368707 1.34564i
\(414\) 0 0
\(415\) 1909.06 1102.20i 0.225813 0.130373i
\(416\) 0 0
\(417\) 8695.72 + 5113.16i 1.02118 + 0.600462i
\(418\) 0 0
\(419\) 11943.0 1.39249 0.696246 0.717803i \(-0.254852\pi\)
0.696246 + 0.717803i \(0.254852\pi\)
\(420\) 0 0
\(421\) −5960.13 −0.689974 −0.344987 0.938607i \(-0.612117\pi\)
−0.344987 + 0.938607i \(0.612117\pi\)
\(422\) 0 0
\(423\) 2372.45 3962.22i 0.272701 0.455437i
\(424\) 0 0
\(425\) −917.005 + 529.433i −0.104662 + 0.0604266i
\(426\) 0 0
\(427\) −3830.98 3874.43i −0.434178 0.439102i
\(428\) 0 0
\(429\) −10056.3 17742.6i −1.13176 1.99679i
\(430\) 0 0
\(431\) 4126.21 7146.80i 0.461143 0.798722i −0.537876 0.843024i \(-0.680773\pi\)
0.999018 + 0.0443019i \(0.0141063\pi\)
\(432\) 0 0
\(433\) −4148.78 −0.460457 −0.230228 0.973137i \(-0.573947\pi\)
−0.230228 + 0.973137i \(0.573947\pi\)
\(434\) 0 0
\(435\) −8814.43 70.1397i −0.971540 0.00773090i
\(436\) 0 0
\(437\) 433.003 + 249.994i 0.0473990 + 0.0273658i
\(438\) 0 0
\(439\) −12371.3 + 7142.59i −1.34499 + 0.776531i −0.987535 0.157399i \(-0.949689\pi\)
−0.357456 + 0.933930i \(0.616356\pi\)
\(440\) 0 0
\(441\) −7891.40 4846.85i −0.852111 0.523361i
\(442\) 0 0
\(443\) −3084.40 5342.34i −0.330800 0.572963i 0.651869 0.758332i \(-0.273985\pi\)
−0.982669 + 0.185369i \(0.940652\pi\)
\(444\) 0 0
\(445\) −6076.74 + 10525.2i −0.647338 + 1.12122i
\(446\) 0 0
\(447\) 53.5192 6725.74i 0.00566302 0.711671i
\(448\) 0 0
\(449\) 4035.96i 0.424207i −0.977247 0.212103i \(-0.931969\pi\)
0.977247 0.212103i \(-0.0680314\pi\)
\(450\) 0 0
\(451\) 9710.61 + 5606.42i 1.01387 + 0.585357i
\(452\) 0 0
\(453\) −420.490 + 238.329i −0.0436122 + 0.0247189i
\(454\) 0 0
\(455\) 11581.4 11451.5i 1.19329 1.17990i
\(456\) 0 0
\(457\) 4942.07 + 8559.92i 0.505865 + 0.876184i 0.999977 + 0.00678547i \(0.00215990\pi\)
−0.494112 + 0.869398i \(0.664507\pi\)
\(458\) 0 0
\(459\) 11257.2 + 6862.74i 1.14475 + 0.697877i
\(460\) 0 0
\(461\) 1480.53i 0.149577i 0.997199 + 0.0747885i \(0.0238282\pi\)
−0.997199 + 0.0747885i \(0.976172\pi\)
\(462\) 0 0
\(463\) 8933.95i 0.896751i −0.893845 0.448375i \(-0.852003\pi\)
0.893845 0.448375i \(-0.147997\pi\)
\(464\) 0 0
\(465\) 5830.36 9915.42i 0.581454 0.988853i
\(466\) 0 0
\(467\) −5745.73 9951.90i −0.569338 0.986122i −0.996632 0.0820095i \(-0.973866\pi\)
0.427293 0.904113i \(-0.359467\pi\)
\(468\) 0 0
\(469\) 16541.1 + 4532.29i 1.62856 + 0.446229i
\(470\) 0 0
\(471\) 411.544 + 726.098i 0.0402610 + 0.0710336i
\(472\) 0 0
\(473\) 13223.1 + 7634.38i 1.28541 + 0.742133i
\(474\) 0 0
\(475\) 230.534i 0.0222687i
\(476\) 0 0
\(477\) 21.1740 1330.38i 0.00203247 0.127702i
\(478\) 0 0
\(479\) −2746.28 + 4756.69i −0.261964 + 0.453734i −0.966764 0.255672i \(-0.917703\pi\)
0.704800 + 0.709406i \(0.251037\pi\)
\(480\) 0 0
\(481\) 4971.18 + 8610.34i 0.471240 + 0.816211i
\(482\) 0 0
\(483\) −2279.66 + 577.733i −0.214758 + 0.0544260i
\(484\) 0 0
\(485\) −16485.6 + 9517.99i −1.54345 + 0.891113i
\(486\) 0 0
\(487\) −841.476 485.826i −0.0782976 0.0452051i 0.460340 0.887743i \(-0.347727\pi\)
−0.538638 + 0.842538i \(0.681061\pi\)
\(488\) 0 0
\(489\) −39.9363 + 5018.78i −0.00369321 + 0.464125i
\(490\) 0 0
\(491\) 17356.7 1.59531 0.797655 0.603114i \(-0.206074\pi\)
0.797655 + 0.603114i \(0.206074\pi\)
\(492\) 0 0
\(493\) −6828.21 + 11826.8i −0.623788 + 1.08043i
\(494\) 0 0
\(495\) 14349.6 7982.99i 1.30296 0.724866i
\(496\) 0 0
\(497\) 17114.8 4482.63i 1.54468 0.404574i
\(498\) 0 0
\(499\) 4002.76 2311.00i 0.359095 0.207324i −0.309589 0.950871i \(-0.600191\pi\)
0.668684 + 0.743547i \(0.266858\pi\)
\(500\) 0 0
\(501\) 2162.13 3677.04i 0.192808 0.327900i
\(502\) 0 0
\(503\) −436.260 −0.0386718 −0.0193359 0.999813i \(-0.506155\pi\)
−0.0193359 + 0.999813i \(0.506155\pi\)
\(504\) 0 0
\(505\) 18069.5 1.59224
\(506\) 0 0
\(507\) 9161.40 15580.4i 0.802509 1.36479i
\(508\) 0 0
\(509\) −15929.7 + 9197.00i −1.38717 + 0.800884i −0.992996 0.118151i \(-0.962303\pi\)
−0.394176 + 0.919035i \(0.628970\pi\)
\(510\) 0 0
\(511\) −3995.97 + 14583.7i −0.345932 + 1.26252i
\(512\) 0 0
\(513\) −2519.42 + 1375.47i −0.216832 + 0.118379i
\(514\) 0 0
\(515\) 1668.00 2889.06i 0.142720 0.247198i
\(516\) 0 0
\(517\) −8911.26 −0.758060
\(518\) 0 0
\(519\) 19.2074 2413.78i 0.00162449 0.204149i
\(520\) 0 0
\(521\) 16719.7 + 9653.11i 1.40595 + 0.811728i 0.994995 0.0999257i \(-0.0318605\pi\)
0.410959 + 0.911654i \(0.365194\pi\)
\(522\) 0 0
\(523\) −3908.72 + 2256.70i −0.326800 + 0.188678i −0.654419 0.756132i \(-0.727087\pi\)
0.327620 + 0.944810i \(0.393754\pi\)
\(524\) 0 0
\(525\) 756.245 + 777.093i 0.0628671 + 0.0646002i
\(526\) 0 0
\(527\) −8910.32 15433.1i −0.736507 1.27567i
\(528\) 0 0
\(529\) 5784.90 10019.7i 0.475458 0.823518i
\(530\) 0 0
\(531\) 17070.0 + 271.682i 1.39506 + 0.0222034i
\(532\) 0 0
\(533\) 16213.7i 1.31763i
\(534\) 0 0
\(535\) −932.916 538.620i −0.0753897 0.0435263i
\(536\) 0 0
\(537\) 3009.38 + 5309.52i 0.241833 + 0.426672i
\(538\) 0 0
\(539\) −201.521 + 17868.9i −0.0161042 + 1.42795i
\(540\) 0 0
\(541\) −355.701 616.093i −0.0282676 0.0489610i 0.851546 0.524281i \(-0.175666\pi\)
−0.879813 + 0.475320i \(0.842332\pi\)
\(542\) 0 0
\(543\) 2161.49 3675.95i 0.170826 0.290516i
\(544\) 0 0
\(545\) 24608.7i 1.93417i
\(546\) 0 0
\(547\) 3530.92i 0.275999i 0.990432 + 0.137999i \(0.0440672\pi\)
−0.990432 + 0.137999i \(0.955933\pi\)
\(548\) 0 0
\(549\) 4080.65 6815.07i 0.317227 0.529800i
\(550\) 0 0
\(551\) −1486.63 2574.91i −0.114941 0.199083i
\(552\) 0 0
\(553\) −11717.6 + 11586.2i −0.901052 + 0.890948i
\(554\) 0 0
\(555\) −6964.30 + 3947.29i −0.532645 + 0.301897i
\(556\) 0 0
\(557\) −3130.25 1807.25i −0.238120 0.137479i 0.376192 0.926542i \(-0.377233\pi\)
−0.614313 + 0.789063i \(0.710567\pi\)
\(558\) 0 0
\(559\) 22078.6i 1.67053i
\(560\) 0 0
\(561\) 202.430 25439.3i 0.0152346 1.91453i
\(562\) 0 0
\(563\) −4095.04 + 7092.82i −0.306546 + 0.530954i −0.977604 0.210451i \(-0.932507\pi\)
0.671058 + 0.741405i \(0.265840\pi\)
\(564\) 0 0
\(565\) −1147.94 1988.29i −0.0854766 0.148050i
\(566\) 0 0
\(567\) 3980.44 12901.2i 0.294820 0.955553i
\(568\) 0 0
\(569\) −8058.29 + 4652.46i −0.593711 + 0.342779i −0.766563 0.642169i \(-0.778035\pi\)
0.172853 + 0.984948i \(0.444702\pi\)
\(570\) 0 0
\(571\) −9931.69 5734.06i −0.727895 0.420250i 0.0897565 0.995964i \(-0.471391\pi\)
−0.817652 + 0.575713i \(0.804724\pi\)
\(572\) 0 0
\(573\) 5079.24 + 40.4174i 0.370311 + 0.00294670i
\(574\) 0 0
\(575\) 275.355 0.0199706
\(576\) 0 0
\(577\) 3705.95 6418.89i 0.267384 0.463123i −0.700801 0.713356i \(-0.747174\pi\)
0.968185 + 0.250234i \(0.0805074\pi\)
\(578\) 0 0
\(579\) 360.158 + 635.436i 0.0258509 + 0.0456094i
\(580\) 0 0
\(581\) −3383.24 + 886.121i −0.241584 + 0.0632745i
\(582\) 0 0
\(583\) −2223.45 + 1283.71i −0.157952 + 0.0911936i
\(584\) 0 0
\(585\) 20371.6 + 12197.8i 1.43976 + 0.862084i
\(586\) 0 0
\(587\) −5262.08 −0.369999 −0.184999 0.982739i \(-0.559228\pi\)
−0.184999 + 0.982739i \(0.559228\pi\)
\(588\) 0 0
\(589\) 3879.87 0.271422
\(590\) 0 0
\(591\) −20107.4 11823.3i −1.39950 0.822920i
\(592\) 0 0
\(593\) 19317.8 11153.1i 1.33775 0.772351i 0.351277 0.936272i \(-0.385748\pi\)
0.986473 + 0.163921i \(0.0524142\pi\)
\(594\) 0 0
\(595\) 19653.7 5147.58i 1.35415 0.354673i
\(596\) 0 0
\(597\) 3924.16 2224.17i 0.269020 0.152478i
\(598\) 0 0
\(599\) −12850.2 + 22257.2i −0.876537 + 1.51821i −0.0214205 + 0.999771i \(0.506819\pi\)
−0.855116 + 0.518436i \(0.826514\pi\)
\(600\) 0 0
\(601\) 3267.67 0.221782 0.110891 0.993833i \(-0.464630\pi\)
0.110891 + 0.993833i \(0.464630\pi\)
\(602\) 0 0
\(603\) −397.898 + 25000.3i −0.0268718 + 1.68838i
\(604\) 0 0
\(605\) −13984.6 8074.01i −0.939759 0.542570i
\(606\) 0 0
\(607\) −10939.9 + 6316.14i −0.731526 + 0.422347i −0.818980 0.573822i \(-0.805460\pi\)
0.0874544 + 0.996169i \(0.472127\pi\)
\(608\) 0 0
\(609\) 13457.9 + 3802.87i 0.895471 + 0.253038i
\(610\) 0 0
\(611\) −6442.83 11159.3i −0.426594 0.738883i
\(612\) 0 0
\(613\) 12415.0 21503.3i 0.818002 1.41682i −0.0891504 0.996018i \(-0.528415\pi\)
0.907152 0.420803i \(-0.138251\pi\)
\(614\) 0 0
\(615\) −13054.2 103.877i −0.855928 0.00681093i
\(616\) 0 0
\(617\) 19575.4i 1.27727i 0.769509 + 0.638636i \(0.220501\pi\)
−0.769509 + 0.638636i \(0.779499\pi\)
\(618\) 0 0
\(619\) −6109.81 3527.50i −0.396727 0.229050i 0.288344 0.957527i \(-0.406895\pi\)
−0.685071 + 0.728477i \(0.740229\pi\)
\(620\) 0 0
\(621\) −1642.89 3009.24i −0.106162 0.194455i
\(622\) 0 0
\(623\) 13711.1 13557.3i 0.881738 0.871850i
\(624\) 0 0
\(625\) 8453.25 + 14641.5i 0.541008 + 0.937053i
\(626\) 0 0
\(627\) 4774.54 + 2807.47i 0.304110 + 0.178819i
\(628\) 0 0
\(629\) 12402.2i 0.786182i
\(630\) 0 0
\(631\) 6505.94i 0.410456i 0.978714 + 0.205228i \(0.0657935\pi\)
−0.978714 + 0.205228i \(0.934206\pi\)
\(632\) 0 0
\(633\) −13433.4 7898.96i −0.843491 0.495980i
\(634\) 0 0
\(635\) −2028.97 3514.28i −0.126799 0.219622i
\(636\) 0 0
\(637\) −22522.4 + 12666.8i −1.40089 + 0.787876i
\(638\) 0 0
\(639\) 12539.3 + 22539.6i 0.776284 + 1.39538i
\(640\) 0 0
\(641\) −20288.8 11713.7i −1.25017 0.721785i −0.279025 0.960284i \(-0.590011\pi\)
−0.971143 + 0.238499i \(0.923345\pi\)
\(642\) 0 0
\(643\) 9474.99i 0.581115i −0.956857 0.290558i \(-0.906159\pi\)
0.956857 0.290558i \(-0.0938408\pi\)
\(644\) 0 0
\(645\) −17776.2 141.451i −1.08517 0.00863510i
\(646\) 0 0
\(647\) −1446.08 + 2504.69i −0.0878692 + 0.152194i −0.906610 0.421969i \(-0.861339\pi\)
0.818741 + 0.574163i \(0.194672\pi\)
\(648\) 0 0
\(649\) −16471.2 28529.0i −0.996229 1.72552i
\(650\) 0 0
\(651\) −13078.4 + 12727.5i −0.787378 + 0.766254i
\(652\) 0 0
\(653\) 2929.46 1691.32i 0.175557 0.101358i −0.409647 0.912244i \(-0.634348\pi\)
0.585203 + 0.810887i \(0.301015\pi\)
\(654\) 0 0
\(655\) −22619.8 13059.6i −1.34936 0.779052i
\(656\) 0 0
\(657\) −22041.9 350.814i −1.30889 0.0208319i
\(658\) 0 0
\(659\) 8717.99 0.515333 0.257667 0.966234i \(-0.417046\pi\)
0.257667 + 0.966234i \(0.417046\pi\)
\(660\) 0 0
\(661\) −12639.7 + 21892.6i −0.743763 + 1.28823i 0.207008 + 0.978339i \(0.433627\pi\)
−0.950771 + 0.309896i \(0.899706\pi\)
\(662\) 0 0
\(663\) 32003.3 18139.1i 1.87467 1.06254i
\(664\) 0 0
\(665\) −1168.90 + 4266.05i −0.0681627 + 0.248767i
\(666\) 0 0
\(667\) 3075.52 1775.65i 0.178538 0.103079i
\(668\) 0 0
\(669\) −18341.7 10785.1i −1.05999 0.623282i
\(670\) 0 0
\(671\) −15327.5 −0.881834
\(672\) 0 0
\(673\) 5616.01 0.321666 0.160833 0.986982i \(-0.448582\pi\)
0.160833 + 0.986982i \(0.448582\pi\)
\(674\) 0 0
\(675\) −822.857 + 1349.76i −0.0469212 + 0.0769666i
\(676\) 0 0
\(677\) −14189.4 + 8192.27i −0.805530 + 0.465073i −0.845401 0.534132i \(-0.820639\pi\)
0.0398713 + 0.999205i \(0.487305\pi\)
\(678\) 0 0
\(679\) 29215.9 7652.06i 1.65125 0.432488i
\(680\) 0 0
\(681\) −3238.78 5714.26i −0.182247 0.321543i
\(682\) 0 0
\(683\) −12238.1 + 21197.0i −0.685619 + 1.18753i 0.287623 + 0.957744i \(0.407135\pi\)
−0.973242 + 0.229783i \(0.926198\pi\)
\(684\) 0 0
\(685\) 17866.7 0.996573
\(686\) 0 0
\(687\) −28565.8 227.308i −1.58639 0.0126235i
\(688\) 0 0
\(689\) −3215.11 1856.24i −0.177773 0.102637i
\(690\) 0 0
\(691\) 22386.9 12925.1i 1.23247 0.711567i 0.264925 0.964269i \(-0.414653\pi\)
0.967544 + 0.252702i \(0.0813193\pi\)
\(692\) 0 0
\(693\) −25303.8 + 6198.87i −1.38703 + 0.339791i
\(694\) 0 0
\(695\) 11331.1 + 19626.1i 0.618437 + 1.07116i
\(696\) 0 0
\(697\) −10112.6 + 17515.5i −0.549558 + 0.951862i
\(698\) 0 0
\(699\) −276.434 + 34739.4i −0.0149581 + 1.87978i
\(700\) 0 0
\(701\) 31618.3i 1.70357i −0.523888 0.851787i \(-0.675519\pi\)
0.523888 0.851787i \(-0.324481\pi\)
\(702\) 0 0
\(703\) −2338.43 1350.09i −0.125456 0.0724320i
\(704\) 0 0
\(705\) 9025.98 5115.83i 0.482182 0.273295i
\(706\) 0 0
\(707\) −27648.9 7575.84i −1.47078 0.402997i
\(708\) 0 0
\(709\) −8615.15 14921.9i −0.456345 0.790413i 0.542419 0.840108i \(-0.317508\pi\)
−0.998764 + 0.0496950i \(0.984175\pi\)
\(710\) 0 0
\(711\) −20611.1 12341.3i −1.08717 0.650961i
\(712\) 0 0
\(713\) 4634.19i 0.243411i
\(714\) 0 0
\(715\) 45816.8i 2.39644i
\(716\) 0 0
\(717\) −5559.39 + 9454.60i −0.289567 + 0.492453i
\(718\) 0 0
\(719\) 12974.4 + 22472.2i 0.672965 + 1.16561i 0.977059 + 0.212967i \(0.0683128\pi\)
−0.304094 + 0.952642i \(0.598354\pi\)
\(720\) 0 0
\(721\) −3763.54 + 3721.33i −0.194399 + 0.192219i
\(722\) 0 0
\(723\) 1014.86 + 1790.55i 0.0522036 + 0.0921041i
\(724\) 0 0
\(725\) −1418.06 818.717i −0.0726419 0.0419398i
\(726\) 0 0
\(727\) 10478.2i 0.534548i 0.963621 + 0.267274i \(0.0861228\pi\)
−0.963621 + 0.267274i \(0.913877\pi\)
\(728\) 0 0
\(729\) 19660.6 + 939.372i 0.998861 + 0.0477250i
\(730\) 0 0
\(731\) −13770.5 + 23851.2i −0.696746 + 1.20680i
\(732\) 0 0
\(733\) −3645.85 6314.79i −0.183714 0.318202i 0.759428 0.650591i \(-0.225479\pi\)
−0.943142 + 0.332389i \(0.892145\pi\)
\(734\) 0 0
\(735\) −10054.1 18214.6i −0.504562 0.914089i
\(736\) 0 0
\(737\) 41782.8 24123.3i 2.08832 1.20569i
\(738\) 0 0
\(739\) 22208.1 + 12821.9i 1.10547 + 0.638241i 0.937651 0.347577i \(-0.112996\pi\)
0.167815 + 0.985818i \(0.446329\pi\)
\(740\) 0 0
\(741\) −63.7290 + 8008.81i −0.00315944 + 0.397046i
\(742\) 0 0
\(743\) −14281.2 −0.705149 −0.352574 0.935784i \(-0.614694\pi\)
−0.352574 + 0.935784i \(0.614694\pi\)
\(744\) 0 0
\(745\) 7555.07 13085.8i 0.371539 0.643524i
\(746\) 0 0
\(747\) −2478.74 4455.59i −0.121409 0.218235i
\(748\) 0 0
\(749\) 1201.67 + 1215.30i 0.0586222 + 0.0592871i
\(750\) 0 0
\(751\) −21658.6 + 12504.6i −1.05237 + 0.607588i −0.923313 0.384049i \(-0.874529\pi\)
−0.129060 + 0.991637i \(0.541196\pi\)
\(752\) 0 0
\(753\) −5588.03 + 9503.31i −0.270437 + 0.459920i
\(754\) 0 0
\(755\) −1085.83 −0.0523410
\(756\) 0 0
\(757\) 24727.7 1.18724 0.593621 0.804745i \(-0.297698\pi\)
0.593621 + 0.804745i \(0.297698\pi\)
\(758\) 0 0
\(759\) −3353.30 + 5702.80i −0.160365 + 0.272725i
\(760\) 0 0
\(761\) −6629.71 + 3827.67i −0.315804 + 0.182330i −0.649521 0.760344i \(-0.725030\pi\)
0.333717 + 0.942673i \(0.391697\pi\)
\(762\) 0 0
\(763\) −10317.5 + 37654.7i −0.489538 + 1.78662i
\(764\) 0 0
\(765\) 14399.3 + 25883.1i 0.680534 + 1.22327i
\(766\) 0 0
\(767\) 23817.4 41252.9i 1.12125 1.94205i
\(768\) 0 0
\(769\) −25799.4 −1.20982 −0.604909 0.796295i \(-0.706791\pi\)
−0.604909 + 0.796295i \(0.706791\pi\)
\(770\) 0 0
\(771\) −241.845 + 30392.6i −0.0112968 + 1.41967i
\(772\) 0 0
\(773\) −12862.7 7426.30i −0.598500 0.345544i 0.169951 0.985452i \(-0.445639\pi\)
−0.768451 + 0.639908i \(0.778972\pi\)
\(774\) 0 0
\(775\) 1850.46 1068.37i 0.0857685 0.0495185i
\(776\) 0 0
\(777\) 12311.3 3120.04i 0.568423 0.144055i
\(778\) 0 0
\(779\) −2201.70 3813.45i −0.101263 0.175393i
\(780\) 0 0
\(781\) 24884.8 43101.7i 1.14014 1.97478i
\(782\) 0 0
\(783\) −486.649 + 20382.2i −0.0222113 + 0.930270i
\(784\) 0 0
\(785\) 1875.00i 0.0852506i
\(786\) 0 0
\(787\) 8537.77 + 4929.29i 0.386707 + 0.223266i 0.680733 0.732532i \(-0.261662\pi\)
−0.294025 + 0.955798i \(0.594995\pi\)
\(788\) 0 0
\(789\) 18681.1 + 32959.6i 0.842923 + 1.48719i
\(790\) 0 0
\(791\) 922.897 + 3523.65i 0.0414848 + 0.158390i
\(792\) 0 0
\(793\) −11081.7 19194.1i −0.496248 0.859526i
\(794\) 0 0
\(795\) 1515.12 2576.69i 0.0675920 0.114951i
\(796\) 0 0
\(797\) 28441.8i 1.26407i −0.774941 0.632034i \(-0.782220\pi\)
0.774941 0.632034i \(-0.217780\pi\)
\(798\) 0 0
\(799\) 16073.7i 0.711698i
\(800\) 0 0
\(801\) 24117.6 + 14440.9i 1.06386 + 0.637007i
\(802\) 0 0
\(803\) 21268.7 + 36838.5i 0.934692 + 1.61893i
\(804\) 0 0
\(805\) −5095.45 1396.16i −0.223094 0.0611282i
\(806\) 0 0
\(807\) −17768.6 + 10071.1i −0.775075 + 0.439304i
\(808\) 0 0
\(809\) −27174.8 15689.4i −1.18098 0.681842i −0.224742 0.974418i \(-0.572154\pi\)
−0.956242 + 0.292577i \(0.905487\pi\)
\(810\) 0 0
\(811\) 21590.6i 0.934832i −0.884037 0.467416i \(-0.845185\pi\)
0.884037 0.467416i \(-0.154815\pi\)
\(812\) 0 0
\(813\) −261.340 + 32842.5i −0.0112738 + 1.41677i
\(814\) 0 0
\(815\) −5637.63 + 9764.66i −0.242304 + 0.419682i
\(816\) 0 0
\(817\) −2998.09 5192.85i −0.128384 0.222368i
\(818\) 0 0
\(819\) −26057.3 27205.4i −1.11174 1.16073i
\(820\) 0 0
\(821\) −19883.2 + 11479.6i −0.845224 + 0.487990i −0.859037 0.511914i \(-0.828937\pi\)
0.0138124 + 0.999905i \(0.495603\pi\)
\(822\) 0 0
\(823\) −6481.85 3742.30i −0.274536 0.158503i 0.356411 0.934329i \(-0.384000\pi\)
−0.630947 + 0.775826i \(0.717334\pi\)
\(824\) 0 0
\(825\) 3050.23 + 24.2718i 0.128722 + 0.00102429i
\(826\) 0 0
\(827\) −16108.8 −0.677337 −0.338669 0.940906i \(-0.609977\pi\)
−0.338669 + 0.940906i \(0.609977\pi\)
\(828\) 0 0
\(829\) 4154.69 7196.14i 0.174063 0.301486i −0.765773 0.643110i \(-0.777644\pi\)
0.939837 + 0.341624i \(0.110977\pi\)
\(830\) 0 0
\(831\) −3123.07 5510.11i −0.130371 0.230016i
\(832\) 0 0
\(833\) −32231.0 363.495i −1.34062 0.0151193i
\(834\) 0 0
\(835\) 8299.01 4791.44i 0.343951 0.198580i
\(836\) 0 0
\(837\) −22716.4 13848.6i −0.938106 0.571897i
\(838\) 0 0
\(839\) −11408.7 −0.469452 −0.234726 0.972062i \(-0.575419\pi\)
−0.234726 + 0.972062i \(0.575419\pi\)
\(840\) 0 0
\(841\) 3270.66 0.134104
\(842\) 0 0
\(843\) −28395.0 16696.5i −1.16011 0.682156i
\(844\) 0 0
\(845\) 35164.6 20302.3i 1.43160 0.826533i
\(846\) 0 0
\(847\) 18013.2 + 18217.5i 0.730747 + 0.739034i
\(848\) 0 0
\(849\) −15913.0 + 9019.30i −0.643265 + 0.364596i
\(850\) 0 0
\(851\) 1612.58 2793.06i 0.0649570 0.112509i
\(852\) 0 0
\(853\) −8924.84 −0.358242 −0.179121 0.983827i \(-0.557325\pi\)
−0.179121 + 0.983827i \(0.557325\pi\)
\(854\) 0 0
\(855\) −6447.73 102.620i −0.257904 0.00410473i
\(856\) 0 0
\(857\) 12075.9 + 6972.01i 0.481335 + 0.277899i 0.720973 0.692964i \(-0.243695\pi\)
−0.239638 + 0.970862i \(0.577029\pi\)
\(858\) 0 0
\(859\) −34970.4 + 20190.1i −1.38903 + 0.801954i −0.993205 0.116374i \(-0.962873\pi\)
−0.395820 + 0.918328i \(0.629540\pi\)
\(860\) 0 0
\(861\) 19931.2 + 5632.06i 0.788911 + 0.222927i
\(862\) 0 0
\(863\) 15705.9 + 27203.4i 0.619507 + 1.07302i 0.989576 + 0.144013i \(0.0460008\pi\)
−0.370069 + 0.929004i \(0.620666\pi\)
\(864\) 0 0
\(865\) 2711.42 4696.32i 0.106579 0.184601i
\(866\) 0 0
\(867\) 20358.4 + 161.999i 0.797470 + 0.00634576i
\(868\) 0 0
\(869\) 46355.5i 1.80955i
\(870\) 0 0
\(871\) 60417.8 + 34882.3i 2.35038 + 1.35699i
\(872\) 0 0
\(873\) 21405.1 + 38476.1i 0.829843 + 1.49166i
\(874\) 0 0
\(875\) −6229.88 23785.9i −0.240695 0.918984i
\(876\) 0 0
\(877\) −11933.0 20668.6i −0.459463 0.795813i 0.539469 0.842005i \(-0.318625\pi\)
−0.998933 + 0.0461917i \(0.985291\pi\)
\(878\) 0 0
\(879\) 21210.6 + 12472.0i 0.813896 + 0.478578i
\(880\) 0 0
\(881\) 10693.7i 0.408944i 0.978872 + 0.204472i \(0.0655477\pi\)
−0.978872 + 0.204472i \(0.934452\pi\)
\(882\) 0 0
\(883\) 17145.5i 0.653443i −0.945121 0.326722i \(-0.894056\pi\)
0.945121 0.326722i \(-0.105944\pi\)
\(884\) 0 0
\(885\) 33061.4 + 19440.4i 1.25576 + 0.738398i
\(886\) 0 0
\(887\) −21163.0 36655.4i −0.801109 1.38756i −0.918887 0.394521i \(-0.870911\pi\)
0.117779 0.993040i \(-0.462423\pi\)
\(888\) 0 0
\(889\) 1631.21 + 6228.01i 0.0615398 + 0.234961i
\(890\) 0 0
\(891\) −17933.8 33479.5i −0.674303 1.25882i
\(892\) 0 0
\(893\) 3030.69 + 1749.77i 0.113570 + 0.0655697i
\(894\) 0 0
\(895\) 13710.8i 0.512068i
\(896\) 0 0
\(897\) −9565.87 76.1191i −0.356070 0.00283338i
\(898\) 0 0
\(899\) 13778.9 23865.8i 0.511183 0.885394i
\(900\) 0 0
\(901\) −2315.50 4010.56i −0.0856164 0.148292i
\(902\) 0 0
\(903\) 27140.7 + 7669.29i 1.00021 + 0.282633i
\(904\) 0 0
\(905\) 8296.56 4790.02i 0.304737 0.175940i
\(906\) 0 0
\(907\) −13945.2 8051.25i −0.510521 0.294749i 0.222527 0.974927i \(-0.428569\pi\)
−0.733048 + 0.680177i \(0.761903\pi\)
\(908\) 0 0
\(909\) 665.098 41788.7i 0.0242683 1.52480i
\(910\) 0 0
\(911\) 5902.78 0.214674 0.107337 0.994223i \(-0.465768\pi\)
0.107337 + 0.994223i \(0.465768\pi\)
\(912\) 0 0
\(913\) −4919.19 + 8520.29i −0.178315 + 0.308850i
\(914\) 0 0
\(915\) 15524.8 8799.29i 0.560912 0.317918i
\(916\) 0 0
\(917\) 29136.1 + 29466.5i 1.04925 + 1.06115i
\(918\) 0 0
\(919\) 11472.8 6623.84i 0.411810 0.237759i −0.279757 0.960071i \(-0.590254\pi\)
0.691567 + 0.722312i \(0.256921\pi\)
\(920\) 0 0
\(921\) −24672.7 14507.8i −0.882730 0.519053i
\(922\) 0 0
\(923\) 71966.7 2.56643
\(924\) 0 0
\(925\) −1487.05 −0.0528583
\(926\) 0 0
\(927\) −6620.02 3963.86i −0.234552 0.140442i
\(928\) 0 0
\(929\) 30085.2 17369.7i 1.06250 0.613436i 0.136378 0.990657i \(-0.456454\pi\)
0.926123 + 0.377221i \(0.123120\pi\)
\(930\) 0 0
\(931\) 3577.17 6037.57i 0.125926 0.212538i
\(932\) 0 0
\(933\) 3273.21 + 5775.01i 0.114855 + 0.202642i
\(934\) 0 0
\(935\) 28576.2 49495.4i 0.999509 1.73120i
\(936\) 0 0
\(937\) 23961.5 0.835420 0.417710 0.908581i \(-0.362833\pi\)
0.417710 + 0.908581i \(0.362833\pi\)
\(938\) 0 0
\(939\) 24266.7 + 193.099i 0.843360 + 0.00671092i
\(940\) 0 0
\(941\) 22649.9 + 13076.9i 0.784660 + 0.453024i 0.838079 0.545548i \(-0.183679\pi\)
−0.0534189 + 0.998572i \(0.517012\pi\)
\(942\) 0 0
\(943\) 4554.85 2629.75i 0.157292 0.0908126i
\(944\) 0 0
\(945\) 22070.9 20805.2i 0.759751 0.716184i
\(946\) 0 0
\(947\) −24556.6 42533.3i −0.842642 1.45950i −0.887653 0.460512i \(-0.847666\pi\)
0.0450116 0.998986i \(-0.485668\pi\)
\(948\) 0 0
\(949\) −30754.5 + 53268.4i −1.05199 + 1.82209i
\(950\) 0 0
\(951\) 178.840 22474.8i 0.00609810 0.766347i
\(952\) 0 0
\(953\) 34434.7i 1.17046i 0.810867 + 0.585230i \(0.198996\pi\)
−0.810867 + 0.585230i \(0.801004\pi\)
\(954\) 0 0
\(955\) 9882.30 + 5705.55i 0.334852 + 0.193327i
\(956\) 0 0
\(957\) 34225.5 19398.6i 1.15606 0.655244i
\(958\) 0 0
\(959\) −27338.6 7490.82i −0.920551 0.252233i
\(960\) 0 0
\(961\) 3084.99 + 5343.36i 0.103554 + 0.179362i
\(962\) 0 0
\(963\) −1279.98 + 2137.70i −0.0428317 + 0.0715330i
\(964\) 0 0
\(965\) 1640.89i 0.0547379i
\(966\) 0 0
\(967\) 23563.4i 0.783608i −0.920049 0.391804i \(-0.871851\pi\)
0.920049 0.391804i \(-0.128149\pi\)
\(968\) 0 0
\(969\) −5063.98 + 8612.08i −0.167883 + 0.285511i
\(970\) 0 0
\(971\) 16309.1 + 28248.1i 0.539014 + 0.933600i 0.998957 + 0.0456516i \(0.0145364\pi\)
−0.459943 + 0.887948i \(0.652130\pi\)
\(972\) 0 0
\(973\) −9109.74 34781.3i −0.300149 1.14598i
\(974\) 0 0
\(975\) 2174.92 + 3837.26i 0.0714391 + 0.126042i
\(976\) 0 0
\(977\) −7707.00 4449.64i −0.252373 0.145708i 0.368477 0.929637i \(-0.379879\pi\)
−0.620851 + 0.783929i \(0.713213\pi\)
\(978\) 0 0
\(979\) 54241.9i 1.77076i
\(980\) 0 0
\(981\) −56911.6 905.791i −1.85224 0.0294798i
\(982\) 0 0
\(983\) 612.048 1060.10i 0.0198589 0.0343966i −0.855925 0.517100i \(-0.827012\pi\)
0.875784 + 0.482703i \(0.160345\pi\)
\(984\) 0 0
\(985\) −26201.3 45381.9i −0.847555 1.46801i
\(986\) 0 0
\(987\) −15955.9 + 4043.68i −0.514570 + 0.130407i
\(988\) 0 0
\(989\) 6202.44 3580.98i 0.199420 0.115135i
\(990\) 0 0
\(991\) −284.983 164.535i −0.00913501 0.00527410i 0.495426 0.868650i \(-0.335012\pi\)
−0.504561 + 0.863376i \(0.668345\pi\)
\(992\) 0 0
\(993\) 220.060 27654.9i 0.00703263 0.883788i
\(994\) 0 0
\(995\) 10133.4 0.322863
\(996\) 0 0
\(997\) 18061.8 31283.9i 0.573744 0.993753i −0.422433 0.906394i \(-0.638824\pi\)
0.996177 0.0873593i \(-0.0278428\pi\)
\(998\) 0 0
\(999\) 8872.41 + 16251.4i 0.280992 + 0.514685i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 336.4.bj.e.95.11 yes 28
3.2 odd 2 inner 336.4.bj.e.95.5 28
4.3 odd 2 336.4.bj.f.95.4 yes 28
7.2 even 3 336.4.bj.f.191.10 yes 28
12.11 even 2 336.4.bj.f.95.10 yes 28
21.2 odd 6 336.4.bj.f.191.4 yes 28
28.23 odd 6 inner 336.4.bj.e.191.5 yes 28
84.23 even 6 inner 336.4.bj.e.191.11 yes 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
336.4.bj.e.95.5 28 3.2 odd 2 inner
336.4.bj.e.95.11 yes 28 1.1 even 1 trivial
336.4.bj.e.191.5 yes 28 28.23 odd 6 inner
336.4.bj.e.191.11 yes 28 84.23 even 6 inner
336.4.bj.f.95.4 yes 28 4.3 odd 2
336.4.bj.f.95.10 yes 28 12.11 even 2
336.4.bj.f.191.4 yes 28 21.2 odd 6
336.4.bj.f.191.10 yes 28 7.2 even 3