Properties

Label 336.4.bj.e.191.1
Level $336$
Weight $4$
Character 336.191
Analytic conductor $19.825$
Analytic rank $0$
Dimension $28$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [336,4,Mod(95,336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("336.95"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(336, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 3, 4])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 336 = 2^{4} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 336.bj (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [28,0,0,0,0,0,-38] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.8246417619\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 191.1
Character \(\chi\) \(=\) 336.191
Dual form 336.4.bj.e.95.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.77395 + 2.05167i) q^{3} +(-13.4200 - 7.74804i) q^{5} +(-15.7299 - 9.77601i) q^{7} +(18.5813 - 19.5892i) q^{9} +(-31.0035 - 53.6997i) q^{11} +39.3264 q^{13} +(79.9629 + 9.45536i) q^{15} +(-25.3292 + 14.6238i) q^{17} +(-7.16713 - 4.13795i) q^{19} +(95.1510 + 14.3977i) q^{21} +(-78.8896 + 136.641i) q^{23} +(57.5644 + 99.7044i) q^{25} +(-48.5157 + 131.641i) q^{27} -296.354i q^{29} +(-196.737 + 113.586i) q^{31} +(258.183 + 192.751i) q^{33} +(135.350 + 253.070i) q^{35} +(11.5861 - 20.0677i) q^{37} +(-187.743 + 80.6849i) q^{39} +175.780i q^{41} +257.358i q^{43} +(-401.139 + 118.918i) q^{45} +(194.065 - 336.131i) q^{47} +(151.859 + 307.551i) q^{49} +(90.9173 - 121.781i) q^{51} +(228.240 - 131.774i) q^{53} +960.866i q^{55} +(42.7053 + 5.04976i) q^{57} +(-95.0928 - 164.706i) q^{59} +(-234.249 + 405.732i) q^{61} +(-483.786 + 126.485i) q^{63} +(-527.761 - 304.703i) q^{65} +(280.189 - 161.767i) q^{67} +(96.2733 - 814.172i) q^{69} -490.223 q^{71} +(461.186 + 798.797i) q^{73} +(-479.370 - 357.881i) q^{75} +(-37.2867 + 1147.78i) q^{77} +(346.282 + 199.926i) q^{79} +(-38.4716 - 727.984i) q^{81} +673.416 q^{83} +453.225 q^{85} +(608.021 + 1414.78i) q^{87} +(1059.20 + 611.531i) q^{89} +(-618.600 - 384.456i) q^{91} +(706.171 - 945.894i) q^{93} +(64.1220 + 111.063i) q^{95} +805.185 q^{97} +(-1628.02 - 390.476i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q - 38 q^{7} - 70 q^{9} + 124 q^{13} + 462 q^{19} + 500 q^{21} + 566 q^{25} - 1266 q^{31} + 64 q^{33} + 338 q^{37} - 1254 q^{39} - 488 q^{45} - 206 q^{49} - 522 q^{51} + 2324 q^{57} - 340 q^{61} + 840 q^{63}+ \cdots - 3344 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/336\mathbb{Z}\right)^\times\).

\(n\) \(85\) \(113\) \(127\) \(241\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −4.77395 + 2.05167i −0.918748 + 0.394844i
\(4\) 0 0
\(5\) −13.4200 7.74804i −1.20032 0.693006i −0.239695 0.970848i \(-0.577047\pi\)
−0.960627 + 0.277842i \(0.910381\pi\)
\(6\) 0 0
\(7\) −15.7299 9.77601i −0.849334 0.527855i
\(8\) 0 0
\(9\) 18.5813 19.5892i 0.688196 0.725525i
\(10\) 0 0
\(11\) −31.0035 53.6997i −0.849810 1.47191i −0.881377 0.472413i \(-0.843383\pi\)
0.0315673 0.999502i \(-0.489950\pi\)
\(12\) 0 0
\(13\) 39.3264 0.839014 0.419507 0.907752i \(-0.362203\pi\)
0.419507 + 0.907752i \(0.362203\pi\)
\(14\) 0 0
\(15\) 79.9629 + 9.45536i 1.37642 + 0.162758i
\(16\) 0 0
\(17\) −25.3292 + 14.6238i −0.361367 + 0.208635i −0.669680 0.742650i \(-0.733569\pi\)
0.308313 + 0.951285i \(0.400236\pi\)
\(18\) 0 0
\(19\) −7.16713 4.13795i −0.0865396 0.0499637i 0.456106 0.889926i \(-0.349244\pi\)
−0.542645 + 0.839962i \(0.682577\pi\)
\(20\) 0 0
\(21\) 95.1510 + 14.3977i 0.988745 + 0.149611i
\(22\) 0 0
\(23\) −78.8896 + 136.641i −0.715200 + 1.23876i 0.247682 + 0.968841i \(0.420331\pi\)
−0.962882 + 0.269922i \(0.913002\pi\)
\(24\) 0 0
\(25\) 57.5644 + 99.7044i 0.460515 + 0.797635i
\(26\) 0 0
\(27\) −48.5157 + 131.641i −0.345809 + 0.938305i
\(28\) 0 0
\(29\) 296.354i 1.89764i −0.315817 0.948820i \(-0.602279\pi\)
0.315817 0.948820i \(-0.397721\pi\)
\(30\) 0 0
\(31\) −196.737 + 113.586i −1.13984 + 0.658086i −0.946390 0.323025i \(-0.895300\pi\)
−0.193447 + 0.981111i \(0.561967\pi\)
\(32\) 0 0
\(33\) 258.183 + 192.751i 1.36194 + 1.01678i
\(34\) 0 0
\(35\) 135.350 + 253.070i 0.653668 + 1.22219i
\(36\) 0 0
\(37\) 11.5861 20.0677i 0.0514796 0.0891653i −0.839137 0.543920i \(-0.816940\pi\)
0.890617 + 0.454754i \(0.150273\pi\)
\(38\) 0 0
\(39\) −187.743 + 80.6849i −0.770843 + 0.331280i
\(40\) 0 0
\(41\) 175.780i 0.669565i 0.942295 + 0.334782i \(0.108663\pi\)
−0.942295 + 0.334782i \(0.891337\pi\)
\(42\) 0 0
\(43\) 257.358i 0.912714i 0.889797 + 0.456357i \(0.150846\pi\)
−0.889797 + 0.456357i \(0.849154\pi\)
\(44\) 0 0
\(45\) −401.139 + 118.918i −1.32885 + 0.393940i
\(46\) 0 0
\(47\) 194.065 336.131i 0.602284 1.04319i −0.390190 0.920734i \(-0.627591\pi\)
0.992474 0.122452i \(-0.0390759\pi\)
\(48\) 0 0
\(49\) 151.859 + 307.551i 0.442738 + 0.896651i
\(50\) 0 0
\(51\) 90.9173 121.781i 0.249627 0.334367i
\(52\) 0 0
\(53\) 228.240 131.774i 0.591531 0.341521i −0.174172 0.984715i \(-0.555725\pi\)
0.765703 + 0.643195i \(0.222391\pi\)
\(54\) 0 0
\(55\) 960.866i 2.35569i
\(56\) 0 0
\(57\) 42.7053 + 5.04976i 0.0992360 + 0.0117343i
\(58\) 0 0
\(59\) −95.0928 164.706i −0.209831 0.363438i 0.741830 0.670588i \(-0.233958\pi\)
−0.951661 + 0.307150i \(0.900625\pi\)
\(60\) 0 0
\(61\) −234.249 + 405.732i −0.491681 + 0.851617i −0.999954 0.00957919i \(-0.996951\pi\)
0.508273 + 0.861196i \(0.330284\pi\)
\(62\) 0 0
\(63\) −483.786 + 126.485i −0.967480 + 0.252946i
\(64\) 0 0
\(65\) −527.761 304.703i −1.00709 0.581442i
\(66\) 0 0
\(67\) 280.189 161.767i 0.510904 0.294970i −0.222301 0.974978i \(-0.571357\pi\)
0.733205 + 0.680008i \(0.238024\pi\)
\(68\) 0 0
\(69\) 96.2733 814.172i 0.167970 1.42050i
\(70\) 0 0
\(71\) −490.223 −0.819419 −0.409710 0.912216i \(-0.634370\pi\)
−0.409710 + 0.912216i \(0.634370\pi\)
\(72\) 0 0
\(73\) 461.186 + 798.797i 0.739421 + 1.28071i 0.952756 + 0.303736i \(0.0982339\pi\)
−0.213335 + 0.976979i \(0.568433\pi\)
\(74\) 0 0
\(75\) −479.370 357.881i −0.738039 0.550994i
\(76\) 0 0
\(77\) −37.2867 + 1147.78i −0.0551845 + 1.69872i
\(78\) 0 0
\(79\) 346.282 + 199.926i 0.493162 + 0.284727i 0.725885 0.687816i \(-0.241430\pi\)
−0.232723 + 0.972543i \(0.574764\pi\)
\(80\) 0 0
\(81\) −38.4716 727.984i −0.0527731 0.998607i
\(82\) 0 0
\(83\) 673.416 0.890566 0.445283 0.895390i \(-0.353103\pi\)
0.445283 + 0.895390i \(0.353103\pi\)
\(84\) 0 0
\(85\) 453.225 0.578342
\(86\) 0 0
\(87\) 608.021 + 1414.78i 0.749273 + 1.74345i
\(88\) 0 0
\(89\) 1059.20 + 611.531i 1.26152 + 0.728339i 0.973369 0.229246i \(-0.0736259\pi\)
0.288152 + 0.957585i \(0.406959\pi\)
\(90\) 0 0
\(91\) −618.600 384.456i −0.712604 0.442878i
\(92\) 0 0
\(93\) 706.171 945.894i 0.787382 1.05467i
\(94\) 0 0
\(95\) 64.1220 + 111.063i 0.0692503 + 0.119945i
\(96\) 0 0
\(97\) 805.185 0.842826 0.421413 0.906869i \(-0.361534\pi\)
0.421413 + 0.906869i \(0.361534\pi\)
\(98\) 0 0
\(99\) −1628.02 390.476i −1.65275 0.396407i
\(100\) 0 0
\(101\) 148.405 85.6817i 0.146206 0.0844123i −0.425112 0.905141i \(-0.639765\pi\)
0.571319 + 0.820728i \(0.306432\pi\)
\(102\) 0 0
\(103\) −96.8756 55.9311i −0.0926741 0.0535054i 0.452947 0.891538i \(-0.350373\pi\)
−0.545621 + 0.838032i \(0.683706\pi\)
\(104\) 0 0
\(105\) −1165.37 930.451i −1.08313 0.864788i
\(106\) 0 0
\(107\) −151.076 + 261.672i −0.136496 + 0.236418i −0.926168 0.377111i \(-0.876917\pi\)
0.789672 + 0.613529i \(0.210251\pi\)
\(108\) 0 0
\(109\) −939.689 1627.59i −0.825742 1.43023i −0.901351 0.433089i \(-0.857424\pi\)
0.0756094 0.997138i \(-0.475910\pi\)
\(110\) 0 0
\(111\) −14.1392 + 119.573i −0.0120904 + 0.102247i
\(112\) 0 0
\(113\) 1412.68i 1.17605i −0.808842 0.588026i \(-0.799905\pi\)
0.808842 0.588026i \(-0.200095\pi\)
\(114\) 0 0
\(115\) 2117.40 1222.48i 1.71694 0.991277i
\(116\) 0 0
\(117\) 730.736 770.372i 0.577406 0.608726i
\(118\) 0 0
\(119\) 541.389 + 17.5875i 0.417051 + 0.0135483i
\(120\) 0 0
\(121\) −1256.94 + 2177.08i −0.944355 + 1.63567i
\(122\) 0 0
\(123\) −360.642 839.164i −0.264374 0.615161i
\(124\) 0 0
\(125\) 152.966i 0.109454i
\(126\) 0 0
\(127\) 2585.08i 1.80621i −0.429422 0.903104i \(-0.641283\pi\)
0.429422 0.903104i \(-0.358717\pi\)
\(128\) 0 0
\(129\) −528.014 1228.61i −0.360380 0.838554i
\(130\) 0 0
\(131\) −408.884 + 708.207i −0.272705 + 0.472338i −0.969553 0.244880i \(-0.921252\pi\)
0.696849 + 0.717218i \(0.254585\pi\)
\(132\) 0 0
\(133\) 72.2856 + 135.155i 0.0471275 + 0.0881163i
\(134\) 0 0
\(135\) 1671.04 1390.72i 1.06533 0.886620i
\(136\) 0 0
\(137\) −1915.51 + 1105.92i −1.19455 + 0.689673i −0.959335 0.282271i \(-0.908912\pi\)
−0.235214 + 0.971944i \(0.575579\pi\)
\(138\) 0 0
\(139\) 839.342i 0.512173i 0.966654 + 0.256087i \(0.0824332\pi\)
−0.966654 + 0.256087i \(0.917567\pi\)
\(140\) 0 0
\(141\) −236.829 + 2002.83i −0.141451 + 1.19623i
\(142\) 0 0
\(143\) −1219.26 2111.82i −0.713003 1.23496i
\(144\) 0 0
\(145\) −2296.16 + 3977.07i −1.31508 + 2.27778i
\(146\) 0 0
\(147\) −1355.96 1156.67i −0.760802 0.648984i
\(148\) 0 0
\(149\) 280.208 + 161.778i 0.154064 + 0.0889489i 0.575050 0.818118i \(-0.304983\pi\)
−0.420986 + 0.907067i \(0.638316\pi\)
\(150\) 0 0
\(151\) 2240.23 1293.40i 1.20733 0.697053i 0.245156 0.969484i \(-0.421161\pi\)
0.962175 + 0.272431i \(0.0878275\pi\)
\(152\) 0 0
\(153\) −184.181 + 767.908i −0.0973211 + 0.405763i
\(154\) 0 0
\(155\) 3520.28 1.82423
\(156\) 0 0
\(157\) −17.3800 30.1031i −0.00883490 0.0153025i 0.861574 0.507632i \(-0.169479\pi\)
−0.870409 + 0.492329i \(0.836146\pi\)
\(158\) 0 0
\(159\) −819.249 + 1097.36i −0.408620 + 0.547334i
\(160\) 0 0
\(161\) 2576.73 1378.12i 1.26133 0.674602i
\(162\) 0 0
\(163\) 2420.34 + 1397.38i 1.16304 + 0.671482i 0.952031 0.306002i \(-0.0989915\pi\)
0.211010 + 0.977484i \(0.432325\pi\)
\(164\) 0 0
\(165\) −1971.38 4587.13i −0.930133 2.16429i
\(166\) 0 0
\(167\) −2587.18 −1.19882 −0.599408 0.800444i \(-0.704597\pi\)
−0.599408 + 0.800444i \(0.704597\pi\)
\(168\) 0 0
\(169\) −650.433 −0.296055
\(170\) 0 0
\(171\) −214.233 + 63.5098i −0.0958061 + 0.0284019i
\(172\) 0 0
\(173\) −3197.80 1846.25i −1.40534 0.811376i −0.410410 0.911901i \(-0.634614\pi\)
−0.994935 + 0.100525i \(0.967948\pi\)
\(174\) 0 0
\(175\) 69.2303 2131.09i 0.0299047 0.920544i
\(176\) 0 0
\(177\) 791.891 + 591.198i 0.336283 + 0.251057i
\(178\) 0 0
\(179\) −756.315 1309.98i −0.315808 0.546995i 0.663801 0.747909i \(-0.268942\pi\)
−0.979609 + 0.200914i \(0.935609\pi\)
\(180\) 0 0
\(181\) −2333.92 −0.958447 −0.479223 0.877693i \(-0.659082\pi\)
−0.479223 + 0.877693i \(0.659082\pi\)
\(182\) 0 0
\(183\) 285.867 2417.55i 0.115475 0.976559i
\(184\) 0 0
\(185\) −310.971 + 179.539i −0.123584 + 0.0713513i
\(186\) 0 0
\(187\) 1570.59 + 906.781i 0.614187 + 0.354601i
\(188\) 0 0
\(189\) 2050.07 1596.40i 0.788997 0.614398i
\(190\) 0 0
\(191\) −2056.72 + 3562.34i −0.779156 + 1.34954i 0.153273 + 0.988184i \(0.451019\pi\)
−0.932429 + 0.361354i \(0.882315\pi\)
\(192\) 0 0
\(193\) 151.707 + 262.764i 0.0565807 + 0.0980007i 0.892928 0.450199i \(-0.148647\pi\)
−0.836348 + 0.548199i \(0.815314\pi\)
\(194\) 0 0
\(195\) 3144.66 + 371.846i 1.15484 + 0.136556i
\(196\) 0 0
\(197\) 542.248i 0.196109i 0.995181 + 0.0980547i \(0.0312620\pi\)
−0.995181 + 0.0980547i \(0.968738\pi\)
\(198\) 0 0
\(199\) 1552.74 896.473i 0.553119 0.319343i −0.197260 0.980351i \(-0.563204\pi\)
0.750379 + 0.661008i \(0.229871\pi\)
\(200\) 0 0
\(201\) −1005.72 + 1347.13i −0.352924 + 0.472731i
\(202\) 0 0
\(203\) −2897.16 + 4661.62i −1.00168 + 1.61173i
\(204\) 0 0
\(205\) 1361.95 2358.96i 0.464013 0.803693i
\(206\) 0 0
\(207\) 1210.81 + 4084.34i 0.406556 + 1.37141i
\(208\) 0 0
\(209\) 513.163i 0.169839i
\(210\) 0 0
\(211\) 575.851i 0.187882i 0.995578 + 0.0939412i \(0.0299466\pi\)
−0.995578 + 0.0939412i \(0.970053\pi\)
\(212\) 0 0
\(213\) 2340.30 1005.78i 0.752840 0.323543i
\(214\) 0 0
\(215\) 1994.02 3453.74i 0.632516 1.09555i
\(216\) 0 0
\(217\) 4205.07 + 136.605i 1.31548 + 0.0427344i
\(218\) 0 0
\(219\) −3840.55 2867.22i −1.18502 0.884698i
\(220\) 0 0
\(221\) −996.108 + 575.103i −0.303192 + 0.175048i
\(222\) 0 0
\(223\) 327.662i 0.0983941i 0.998789 + 0.0491971i \(0.0156662\pi\)
−0.998789 + 0.0491971i \(0.984334\pi\)
\(224\) 0 0
\(225\) 3022.75 + 724.998i 0.895629 + 0.214814i
\(226\) 0 0
\(227\) −1692.25 2931.07i −0.494797 0.857013i 0.505185 0.863011i \(-0.331424\pi\)
−0.999982 + 0.00599789i \(0.998091\pi\)
\(228\) 0 0
\(229\) −1641.81 + 2843.70i −0.473773 + 0.820599i −0.999549 0.0300237i \(-0.990442\pi\)
0.525776 + 0.850623i \(0.323775\pi\)
\(230\) 0 0
\(231\) −2176.86 5555.95i −0.620031 1.58249i
\(232\) 0 0
\(233\) 4356.88 + 2515.45i 1.22502 + 0.707263i 0.965983 0.258605i \(-0.0832629\pi\)
0.259033 + 0.965869i \(0.416596\pi\)
\(234\) 0 0
\(235\) −5208.72 + 3007.25i −1.44587 + 0.834773i
\(236\) 0 0
\(237\) −2063.32 243.981i −0.565515 0.0668703i
\(238\) 0 0
\(239\) 3351.80 0.907154 0.453577 0.891217i \(-0.350148\pi\)
0.453577 + 0.891217i \(0.350148\pi\)
\(240\) 0 0
\(241\) 2095.73 + 3629.91i 0.560156 + 0.970219i 0.997482 + 0.0709161i \(0.0225923\pi\)
−0.437326 + 0.899303i \(0.644074\pi\)
\(242\) 0 0
\(243\) 1677.25 + 3396.43i 0.442779 + 0.896631i
\(244\) 0 0
\(245\) 344.971 5303.95i 0.0899567 1.38309i
\(246\) 0 0
\(247\) −281.858 162.731i −0.0726080 0.0419202i
\(248\) 0 0
\(249\) −3214.86 + 1381.63i −0.818206 + 0.351635i
\(250\) 0 0
\(251\) 2525.42 0.635073 0.317536 0.948246i \(-0.397144\pi\)
0.317536 + 0.948246i \(0.397144\pi\)
\(252\) 0 0
\(253\) 9783.41 2.43114
\(254\) 0 0
\(255\) −2163.67 + 929.868i −0.531351 + 0.228355i
\(256\) 0 0
\(257\) −3150.04 1818.67i −0.764567 0.441423i 0.0663659 0.997795i \(-0.478860\pi\)
−0.830933 + 0.556372i \(0.812193\pi\)
\(258\) 0 0
\(259\) −378.431 + 202.397i −0.0907897 + 0.0485574i
\(260\) 0 0
\(261\) −5805.33 5506.64i −1.37679 1.30595i
\(262\) 0 0
\(263\) 1194.13 + 2068.30i 0.279975 + 0.484931i 0.971378 0.237538i \(-0.0763404\pi\)
−0.691403 + 0.722469i \(0.743007\pi\)
\(264\) 0 0
\(265\) −4083.97 −0.946703
\(266\) 0 0
\(267\) −6311.25 746.285i −1.44660 0.171056i
\(268\) 0 0
\(269\) −1100.78 + 635.534i −0.249500 + 0.144049i −0.619535 0.784969i \(-0.712679\pi\)
0.370035 + 0.929018i \(0.379346\pi\)
\(270\) 0 0
\(271\) 1231.53 + 711.026i 0.276053 + 0.159379i 0.631635 0.775266i \(-0.282384\pi\)
−0.355582 + 0.934645i \(0.615717\pi\)
\(272\) 0 0
\(273\) 3741.95 + 566.209i 0.829571 + 0.125526i
\(274\) 0 0
\(275\) 3569.40 6182.37i 0.782700 1.35568i
\(276\) 0 0
\(277\) −3050.94 5284.39i −0.661781 1.14624i −0.980147 0.198271i \(-0.936467\pi\)
0.318366 0.947968i \(-0.396866\pi\)
\(278\) 0 0
\(279\) −1430.57 + 5964.49i −0.306974 + 1.27987i
\(280\) 0 0
\(281\) 4248.25i 0.901883i 0.892553 + 0.450942i \(0.148912\pi\)
−0.892553 + 0.450942i \(0.851088\pi\)
\(282\) 0 0
\(283\) −2058.65 + 1188.56i −0.432418 + 0.249657i −0.700376 0.713774i \(-0.746984\pi\)
0.267958 + 0.963431i \(0.413651\pi\)
\(284\) 0 0
\(285\) −533.979 398.650i −0.110983 0.0828561i
\(286\) 0 0
\(287\) 1718.42 2764.99i 0.353433 0.568685i
\(288\) 0 0
\(289\) −2028.79 + 3513.96i −0.412943 + 0.715237i
\(290\) 0 0
\(291\) −3843.92 + 1651.98i −0.774345 + 0.332785i
\(292\) 0 0
\(293\) 4830.23i 0.963089i 0.876422 + 0.481544i \(0.159924\pi\)
−0.876422 + 0.481544i \(0.840076\pi\)
\(294\) 0 0
\(295\) 2947.13i 0.581657i
\(296\) 0 0
\(297\) 8573.21 1476.04i 1.67498 0.288380i
\(298\) 0 0
\(299\) −3102.44 + 5373.59i −0.600063 + 1.03934i
\(300\) 0 0
\(301\) 2515.93 4048.21i 0.481781 0.775199i
\(302\) 0 0
\(303\) −532.688 + 713.519i −0.100997 + 0.135282i
\(304\) 0 0
\(305\) 6287.25 3629.95i 1.18035 0.681476i
\(306\) 0 0
\(307\) 1168.04i 0.217144i 0.994089 + 0.108572i \(0.0346279\pi\)
−0.994089 + 0.108572i \(0.965372\pi\)
\(308\) 0 0
\(309\) 577.232 + 68.2558i 0.106270 + 0.0125661i
\(310\) 0 0
\(311\) 3912.59 + 6776.80i 0.713384 + 1.23562i 0.963580 + 0.267422i \(0.0861717\pi\)
−0.250196 + 0.968195i \(0.580495\pi\)
\(312\) 0 0
\(313\) −4530.57 + 7847.18i −0.818157 + 1.41709i 0.0888820 + 0.996042i \(0.471671\pi\)
−0.907039 + 0.421047i \(0.861663\pi\)
\(314\) 0 0
\(315\) 7472.42 + 2050.97i 1.33658 + 0.366854i
\(316\) 0 0
\(317\) 3912.35 + 2258.80i 0.693185 + 0.400211i 0.804804 0.593540i \(-0.202270\pi\)
−0.111619 + 0.993751i \(0.535604\pi\)
\(318\) 0 0
\(319\) −15914.1 + 9188.02i −2.79316 + 1.61263i
\(320\) 0 0
\(321\) 184.367 1559.17i 0.0320571 0.271104i
\(322\) 0 0
\(323\) 242.051 0.0416968
\(324\) 0 0
\(325\) 2263.80 + 3921.02i 0.386379 + 0.669227i
\(326\) 0 0
\(327\) 7825.31 + 5842.10i 1.32337 + 0.987978i
\(328\) 0 0
\(329\) −6338.65 + 3390.12i −1.06219 + 0.568096i
\(330\) 0 0
\(331\) 1880.65 + 1085.79i 0.312296 + 0.180304i 0.647953 0.761680i \(-0.275625\pi\)
−0.335657 + 0.941984i \(0.608958\pi\)
\(332\) 0 0
\(333\) −177.826 599.847i −0.0292636 0.0987129i
\(334\) 0 0
\(335\) −5013.52 −0.817665
\(336\) 0 0
\(337\) 6020.96 0.973242 0.486621 0.873613i \(-0.338229\pi\)
0.486621 + 0.873613i \(0.338229\pi\)
\(338\) 0 0
\(339\) 2898.36 + 6744.08i 0.464358 + 1.08050i
\(340\) 0 0
\(341\) 12199.1 + 7043.13i 1.93729 + 1.11850i
\(342\) 0 0
\(343\) 617.898 6322.33i 0.0972693 0.995258i
\(344\) 0 0
\(345\) −7600.23 + 10180.3i −1.18604 + 1.58866i
\(346\) 0 0
\(347\) −1320.11 2286.51i −0.204229 0.353735i 0.745658 0.666329i \(-0.232135\pi\)
−0.949887 + 0.312594i \(0.898802\pi\)
\(348\) 0 0
\(349\) −6443.17 −0.988237 −0.494119 0.869395i \(-0.664509\pi\)
−0.494119 + 0.869395i \(0.664509\pi\)
\(350\) 0 0
\(351\) −1907.95 + 5176.95i −0.290139 + 0.787251i
\(352\) 0 0
\(353\) −7227.90 + 4173.03i −1.08981 + 0.629201i −0.933525 0.358511i \(-0.883285\pi\)
−0.156283 + 0.987712i \(0.549951\pi\)
\(354\) 0 0
\(355\) 6578.80 + 3798.27i 0.983567 + 0.567863i
\(356\) 0 0
\(357\) −2620.65 + 1026.79i −0.388514 + 0.152223i
\(358\) 0 0
\(359\) −2028.99 + 3514.31i −0.298289 + 0.516652i −0.975745 0.218912i \(-0.929749\pi\)
0.677455 + 0.735564i \(0.263083\pi\)
\(360\) 0 0
\(361\) −3395.25 5880.75i −0.495007 0.857378i
\(362\) 0 0
\(363\) 1533.91 12972.1i 0.221789 1.87564i
\(364\) 0 0
\(365\) 14293.2i 2.04969i
\(366\) 0 0
\(367\) 1528.67 882.577i 0.217427 0.125532i −0.387331 0.921941i \(-0.626603\pi\)
0.604759 + 0.796409i \(0.293270\pi\)
\(368\) 0 0
\(369\) 3443.38 + 3266.21i 0.485786 + 0.460792i
\(370\) 0 0
\(371\) −4878.41 158.480i −0.682681 0.0221775i
\(372\) 0 0
\(373\) −720.649 + 1248.20i −0.100037 + 0.173269i −0.911700 0.410857i \(-0.865229\pi\)
0.811663 + 0.584126i \(0.198563\pi\)
\(374\) 0 0
\(375\) −313.836 730.253i −0.0432172 0.100560i
\(376\) 0 0
\(377\) 11654.5i 1.59215i
\(378\) 0 0
\(379\) 730.381i 0.0989899i 0.998774 + 0.0494949i \(0.0157612\pi\)
−0.998774 + 0.0494949i \(0.984239\pi\)
\(380\) 0 0
\(381\) 5303.73 + 12341.0i 0.713171 + 1.65945i
\(382\) 0 0
\(383\) 6685.33 11579.3i 0.891918 1.54485i 0.0543443 0.998522i \(-0.482693\pi\)
0.837573 0.546325i \(-0.183974\pi\)
\(384\) 0 0
\(385\) 9393.44 15114.3i 1.24347 2.00077i
\(386\) 0 0
\(387\) 5041.43 + 4782.04i 0.662197 + 0.628126i
\(388\) 0 0
\(389\) −9056.03 + 5228.50i −1.18036 + 0.681480i −0.956097 0.293049i \(-0.905330\pi\)
−0.224260 + 0.974529i \(0.571997\pi\)
\(390\) 0 0
\(391\) 4614.67i 0.596865i
\(392\) 0 0
\(393\) 498.983 4219.84i 0.0640467 0.541636i
\(394\) 0 0
\(395\) −3098.07 5366.02i −0.394635 0.683528i
\(396\) 0 0
\(397\) 1987.76 3442.91i 0.251292 0.435251i −0.712590 0.701581i \(-0.752478\pi\)
0.963882 + 0.266330i \(0.0858112\pi\)
\(398\) 0 0
\(399\) −622.383 496.920i −0.0780905 0.0623486i
\(400\) 0 0
\(401\) −5977.63 3451.18i −0.744410 0.429785i 0.0792605 0.996854i \(-0.474744\pi\)
−0.823671 + 0.567069i \(0.808077\pi\)
\(402\) 0 0
\(403\) −7736.96 + 4466.93i −0.956340 + 0.552143i
\(404\) 0 0
\(405\) −5124.16 + 10067.6i −0.628696 + 1.23522i
\(406\) 0 0
\(407\) −1436.84 −0.174992
\(408\) 0 0
\(409\) −7287.10 12621.6i −0.880987 1.52591i −0.850245 0.526387i \(-0.823546\pi\)
−0.0307418 0.999527i \(-0.509787\pi\)
\(410\) 0 0
\(411\) 6875.58 9209.61i 0.825176 1.10530i
\(412\) 0 0
\(413\) −114.364 + 3520.43i −0.0136259 + 0.419441i
\(414\) 0 0
\(415\) −9037.24 5217.65i −1.06897 0.617168i
\(416\) 0 0
\(417\) −1722.05 4006.98i −0.202229 0.470558i
\(418\) 0 0
\(419\) −1316.11 −0.153452 −0.0767258 0.997052i \(-0.524447\pi\)
−0.0767258 + 0.997052i \(0.524447\pi\)
\(420\) 0 0
\(421\) 8931.39 1.03394 0.516971 0.856003i \(-0.327060\pi\)
0.516971 + 0.856003i \(0.327060\pi\)
\(422\) 0 0
\(423\) −2978.55 10047.3i −0.342369 1.15489i
\(424\) 0 0
\(425\) −2916.12 1683.62i −0.332830 0.192159i
\(426\) 0 0
\(427\) 7651.16 4092.09i 0.867132 0.463771i
\(428\) 0 0
\(429\) 10153.4 + 7580.20i 1.14269 + 0.853089i
\(430\) 0 0
\(431\) 3480.15 + 6027.79i 0.388939 + 0.673662i 0.992307 0.123801i \(-0.0395083\pi\)
−0.603368 + 0.797463i \(0.706175\pi\)
\(432\) 0 0
\(433\) 6336.46 0.703258 0.351629 0.936139i \(-0.385628\pi\)
0.351629 + 0.936139i \(0.385628\pi\)
\(434\) 0 0
\(435\) 2802.14 23697.3i 0.308855 2.61196i
\(436\) 0 0
\(437\) 1130.82 652.881i 0.123786 0.0714681i
\(438\) 0 0
\(439\) −8769.31 5062.96i −0.953385 0.550437i −0.0592543 0.998243i \(-0.518872\pi\)
−0.894131 + 0.447806i \(0.852206\pi\)
\(440\) 0 0
\(441\) 8846.41 + 2739.90i 0.955233 + 0.295854i
\(442\) 0 0
\(443\) −4446.49 + 7701.54i −0.476883 + 0.825985i −0.999649 0.0264911i \(-0.991567\pi\)
0.522766 + 0.852476i \(0.324900\pi\)
\(444\) 0 0
\(445\) −9476.34 16413.5i −1.00949 1.74848i
\(446\) 0 0
\(447\) −1669.62 197.427i −0.176667 0.0208903i
\(448\) 0 0
\(449\) 543.759i 0.0571527i −0.999592 0.0285764i \(-0.990903\pi\)
0.999592 0.0285764i \(-0.00909737\pi\)
\(450\) 0 0
\(451\) 9439.31 5449.79i 0.985542 0.569003i
\(452\) 0 0
\(453\) −8041.12 + 10770.8i −0.834006 + 1.11712i
\(454\) 0 0
\(455\) 5322.84 + 9952.34i 0.548437 + 1.02543i
\(456\) 0 0
\(457\) 809.155 1401.50i 0.0828242 0.143456i −0.821638 0.570010i \(-0.806939\pi\)
0.904462 + 0.426554i \(0.140273\pi\)
\(458\) 0 0
\(459\) −696.225 4043.84i −0.0707996 0.411221i
\(460\) 0 0
\(461\) 3628.16i 0.366551i −0.983062 0.183276i \(-0.941330\pi\)
0.983062 0.183276i \(-0.0586701\pi\)
\(462\) 0 0
\(463\) 5409.74i 0.543007i −0.962438 0.271503i \(-0.912479\pi\)
0.962438 0.271503i \(-0.0875208\pi\)
\(464\) 0 0
\(465\) −16805.7 + 7222.46i −1.67601 + 0.720287i
\(466\) 0 0
\(467\) 1404.77 2433.14i 0.139197 0.241097i −0.787996 0.615681i \(-0.788881\pi\)
0.927193 + 0.374584i \(0.122214\pi\)
\(468\) 0 0
\(469\) −5988.78 194.551i −0.589630 0.0191546i
\(470\) 0 0
\(471\) 144.733 + 108.053i 0.0141591 + 0.0105707i
\(472\) 0 0
\(473\) 13820.0 7978.99i 1.34344 0.775633i
\(474\) 0 0
\(475\) 952.793i 0.0920361i
\(476\) 0 0
\(477\) 1659.64 6919.56i 0.159307 0.664203i
\(478\) 0 0
\(479\) 1430.72 + 2478.08i 0.136474 + 0.236380i 0.926160 0.377132i \(-0.123090\pi\)
−0.789685 + 0.613512i \(0.789756\pi\)
\(480\) 0 0
\(481\) 455.640 789.192i 0.0431921 0.0748109i
\(482\) 0 0
\(483\) −9473.73 + 11865.7i −0.892483 + 1.11782i
\(484\) 0 0
\(485\) −10805.6 6238.61i −1.01166 0.584084i
\(486\) 0 0
\(487\) 9266.75 5350.16i 0.862251 0.497821i −0.00251428 0.999997i \(-0.500800\pi\)
0.864766 + 0.502176i \(0.167467\pi\)
\(488\) 0 0
\(489\) −14421.6 1705.30i −1.33367 0.157702i
\(490\) 0 0
\(491\) −12123.5 −1.11431 −0.557154 0.830409i \(-0.688107\pi\)
−0.557154 + 0.830409i \(0.688107\pi\)
\(492\) 0 0
\(493\) 4333.83 + 7506.42i 0.395915 + 0.685745i
\(494\) 0 0
\(495\) 18822.6 + 17854.1i 1.70912 + 1.62118i
\(496\) 0 0
\(497\) 7711.16 + 4792.43i 0.695961 + 0.432535i
\(498\) 0 0
\(499\) 7073.78 + 4084.05i 0.634601 + 0.366387i 0.782532 0.622611i \(-0.213928\pi\)
−0.147931 + 0.988998i \(0.547261\pi\)
\(500\) 0 0
\(501\) 12351.1 5308.05i 1.10141 0.473346i
\(502\) 0 0
\(503\) −4506.57 −0.399479 −0.199740 0.979849i \(-0.564010\pi\)
−0.199740 + 0.979849i \(0.564010\pi\)
\(504\) 0 0
\(505\) −2655.46 −0.233993
\(506\) 0 0
\(507\) 3105.14 1334.47i 0.272000 0.116896i
\(508\) 0 0
\(509\) 4939.09 + 2851.58i 0.430100 + 0.248319i 0.699389 0.714741i \(-0.253455\pi\)
−0.269289 + 0.963059i \(0.586789\pi\)
\(510\) 0 0
\(511\) 554.649 17073.6i 0.0480161 1.47806i
\(512\) 0 0
\(513\) 892.440 742.730i 0.0768073 0.0639227i
\(514\) 0 0
\(515\) 866.714 + 1501.19i 0.0741592 + 0.128447i
\(516\) 0 0
\(517\) −24066.8 −2.04731
\(518\) 0 0
\(519\) 19054.1 + 2253.08i 1.61152 + 0.190558i
\(520\) 0 0
\(521\) 4714.84 2722.12i 0.396470 0.228902i −0.288490 0.957483i \(-0.593153\pi\)
0.684960 + 0.728581i \(0.259820\pi\)
\(522\) 0 0
\(523\) −7075.47 4085.02i −0.591565 0.341540i 0.174151 0.984719i \(-0.444282\pi\)
−0.765716 + 0.643179i \(0.777615\pi\)
\(524\) 0 0
\(525\) 4041.79 + 10315.8i 0.335997 + 0.857556i
\(526\) 0 0
\(527\) 3322.13 5754.10i 0.274600 0.475621i
\(528\) 0 0
\(529\) −6363.62 11022.1i −0.523023 0.905903i
\(530\) 0 0
\(531\) −4993.39 1197.65i −0.408088 0.0978789i
\(532\) 0 0
\(533\) 6912.78i 0.561775i
\(534\) 0 0
\(535\) 4054.89 2341.09i 0.327679 0.189185i
\(536\) 0 0
\(537\) 6298.25 + 4702.05i 0.506126 + 0.377856i
\(538\) 0 0
\(539\) 11807.2 17690.0i 0.943550 1.41366i
\(540\) 0 0
\(541\) 7110.39 12315.5i 0.565063 0.978719i −0.431980 0.901883i \(-0.642185\pi\)
0.997044 0.0768356i \(-0.0244817\pi\)
\(542\) 0 0
\(543\) 11142.0 4788.44i 0.880571 0.378437i
\(544\) 0 0
\(545\) 29123.0i 2.28898i
\(546\) 0 0
\(547\) 5348.61i 0.418080i 0.977907 + 0.209040i \(0.0670340\pi\)
−0.977907 + 0.209040i \(0.932966\pi\)
\(548\) 0 0
\(549\) 3595.30 + 12127.8i 0.279496 + 0.942806i
\(550\) 0 0
\(551\) −1226.30 + 2124.01i −0.0948131 + 0.164221i
\(552\) 0 0
\(553\) −3492.50 6530.08i −0.268565 0.502147i
\(554\) 0 0
\(555\) 1116.21 1495.12i 0.0853700 0.114350i
\(556\) 0 0
\(557\) −19532.6 + 11277.1i −1.48586 + 0.857859i −0.999870 0.0161074i \(-0.994873\pi\)
−0.485986 + 0.873967i \(0.661539\pi\)
\(558\) 0 0
\(559\) 10121.0i 0.765780i
\(560\) 0 0
\(561\) −9358.34 1106.59i −0.704295 0.0832807i
\(562\) 0 0
\(563\) 2388.36 + 4136.75i 0.178787 + 0.309668i 0.941465 0.337110i \(-0.109449\pi\)
−0.762678 + 0.646778i \(0.776116\pi\)
\(564\) 0 0
\(565\) −10945.5 + 18958.2i −0.815011 + 1.41164i
\(566\) 0 0
\(567\) −6511.63 + 11827.2i −0.482298 + 0.876007i
\(568\) 0 0
\(569\) 2195.46 + 1267.55i 0.161755 + 0.0933892i 0.578692 0.815546i \(-0.303563\pi\)
−0.416937 + 0.908935i \(0.636897\pi\)
\(570\) 0 0
\(571\) −12195.9 + 7041.30i −0.893838 + 0.516058i −0.875196 0.483768i \(-0.839268\pi\)
−0.0186424 + 0.999826i \(0.505934\pi\)
\(572\) 0 0
\(573\) 2509.92 21226.1i 0.182991 1.54753i
\(574\) 0 0
\(575\) −18164.9 −1.31744
\(576\) 0 0
\(577\) −9575.43 16585.1i −0.690867 1.19662i −0.971554 0.236818i \(-0.923896\pi\)
0.280687 0.959799i \(-0.409438\pi\)
\(578\) 0 0
\(579\) −1263.35 943.169i −0.0906785 0.0676974i
\(580\) 0 0
\(581\) −10592.8 6583.32i −0.756388 0.470090i
\(582\) 0 0
\(583\) −14152.5 8170.93i −1.00538 0.580455i
\(584\) 0 0
\(585\) −15775.4 + 4676.63i −1.11492 + 0.330521i
\(586\) 0 0
\(587\) 25335.1 1.78141 0.890707 0.454578i \(-0.150210\pi\)
0.890707 + 0.454578i \(0.150210\pi\)
\(588\) 0 0
\(589\) 1880.05 0.131522
\(590\) 0 0
\(591\) −1112.51 2588.67i −0.0774327 0.180175i
\(592\) 0 0
\(593\) −2842.14 1640.91i −0.196818 0.113633i 0.398353 0.917232i \(-0.369582\pi\)
−0.595170 + 0.803600i \(0.702915\pi\)
\(594\) 0 0
\(595\) −7129.17 4430.73i −0.491206 0.305281i
\(596\) 0 0
\(597\) −5573.43 + 7465.43i −0.382086 + 0.511792i
\(598\) 0 0
\(599\) −10423.7 18054.4i −0.711022 1.23153i −0.964474 0.264178i \(-0.914899\pi\)
0.253452 0.967348i \(-0.418434\pi\)
\(600\) 0 0
\(601\) 12158.9 0.825245 0.412623 0.910902i \(-0.364613\pi\)
0.412623 + 0.910902i \(0.364613\pi\)
\(602\) 0 0
\(603\) 2037.39 8494.52i 0.137593 0.573671i
\(604\) 0 0
\(605\) 33736.2 19477.6i 2.26706 1.30889i
\(606\) 0 0
\(607\) −4543.08 2622.95i −0.303786 0.175391i 0.340356 0.940297i \(-0.389452\pi\)
−0.644142 + 0.764906i \(0.722786\pi\)
\(608\) 0 0
\(609\) 4266.81 28198.4i 0.283908 1.87628i
\(610\) 0 0
\(611\) 7631.90 13218.8i 0.505325 0.875249i
\(612\) 0 0
\(613\) 9580.88 + 16594.6i 0.631269 + 1.09339i 0.987293 + 0.158913i \(0.0507990\pi\)
−0.356023 + 0.934477i \(0.615868\pi\)
\(614\) 0 0
\(615\) −1662.06 + 14055.9i −0.108977 + 0.921605i
\(616\) 0 0
\(617\) 14709.4i 0.959768i 0.877332 + 0.479884i \(0.159321\pi\)
−0.877332 + 0.479884i \(0.840679\pi\)
\(618\) 0 0
\(619\) −2283.91 + 1318.62i −0.148301 + 0.0856215i −0.572314 0.820034i \(-0.693954\pi\)
0.424013 + 0.905656i \(0.360621\pi\)
\(620\) 0 0
\(621\) −14160.1 17014.3i −0.915015 1.09945i
\(622\) 0 0
\(623\) −10682.8 19974.1i −0.686995 1.28450i
\(624\) 0 0
\(625\) 8380.73 14515.9i 0.536367 0.929015i
\(626\) 0 0
\(627\) −1052.84 2449.82i −0.0670598 0.156039i
\(628\) 0 0
\(629\) 677.734i 0.0429619i
\(630\) 0 0
\(631\) 2852.17i 0.179941i 0.995944 + 0.0899707i \(0.0286773\pi\)
−0.995944 + 0.0899707i \(0.971323\pi\)
\(632\) 0 0
\(633\) −1181.46 2749.08i −0.0741843 0.172617i
\(634\) 0 0
\(635\) −20029.3 + 34691.7i −1.25171 + 2.16803i
\(636\) 0 0
\(637\) 5972.08 + 12094.9i 0.371463 + 0.752303i
\(638\) 0 0
\(639\) −9108.98 + 9603.07i −0.563921 + 0.594509i
\(640\) 0 0
\(641\) −7055.43 + 4073.46i −0.434747 + 0.251001i −0.701367 0.712800i \(-0.747427\pi\)
0.266620 + 0.963802i \(0.414093\pi\)
\(642\) 0 0
\(643\) 28066.9i 1.72139i 0.509123 + 0.860694i \(0.329970\pi\)
−0.509123 + 0.860694i \(0.670030\pi\)
\(644\) 0 0
\(645\) −2433.41 + 20579.1i −0.148551 + 1.25628i
\(646\) 0 0
\(647\) 7957.81 + 13783.3i 0.483545 + 0.837525i 0.999821 0.0188974i \(-0.00601560\pi\)
−0.516276 + 0.856422i \(0.672682\pi\)
\(648\) 0 0
\(649\) −5896.42 + 10212.9i −0.356633 + 0.617707i
\(650\) 0 0
\(651\) −20355.1 + 7975.27i −1.22547 + 0.480147i
\(652\) 0 0
\(653\) 1678.98 + 969.357i 0.100618 + 0.0580917i 0.549465 0.835517i \(-0.314832\pi\)
−0.448847 + 0.893609i \(0.648165\pi\)
\(654\) 0 0
\(655\) 10974.4 6336.10i 0.654667 0.377972i
\(656\) 0 0
\(657\) 24217.2 + 5808.43i 1.43806 + 0.344914i
\(658\) 0 0
\(659\) 10131.9 0.598909 0.299454 0.954111i \(-0.403195\pi\)
0.299454 + 0.954111i \(0.403195\pi\)
\(660\) 0 0
\(661\) 2055.02 + 3559.40i 0.120924 + 0.209447i 0.920132 0.391607i \(-0.128081\pi\)
−0.799208 + 0.601054i \(0.794748\pi\)
\(662\) 0 0
\(663\) 3575.45 4789.20i 0.209440 0.280539i
\(664\) 0 0
\(665\) 77.1169 2373.86i 0.00449694 0.138427i
\(666\) 0 0
\(667\) 40494.0 + 23379.2i 2.35073 + 1.35719i
\(668\) 0 0
\(669\) −672.255 1564.24i −0.0388504 0.0903994i
\(670\) 0 0
\(671\) 29050.2 1.67134
\(672\) 0 0
\(673\) 28029.2 1.60542 0.802709 0.596371i \(-0.203391\pi\)
0.802709 + 0.596371i \(0.203391\pi\)
\(674\) 0 0
\(675\) −15917.9 + 2740.58i −0.907675 + 0.156274i
\(676\) 0 0
\(677\) −8700.06 5022.98i −0.493900 0.285154i 0.232291 0.972646i \(-0.425378\pi\)
−0.726191 + 0.687493i \(0.758711\pi\)
\(678\) 0 0
\(679\) −12665.5 7871.50i −0.715842 0.444890i
\(680\) 0 0
\(681\) 14092.3 + 10520.8i 0.792980 + 0.592011i
\(682\) 0 0
\(683\) 17116.8 + 29647.1i 0.958938 + 1.66093i 0.725088 + 0.688656i \(0.241799\pi\)
0.233850 + 0.972273i \(0.424868\pi\)
\(684\) 0 0
\(685\) 34274.9 1.91179
\(686\) 0 0
\(687\) 2003.60 16944.2i 0.111269 0.940991i
\(688\) 0 0
\(689\) 8975.85 5182.21i 0.496303 0.286541i
\(690\) 0 0
\(691\) −27128.7 15662.8i −1.49353 0.862287i −0.493553 0.869716i \(-0.664302\pi\)
−0.999972 + 0.00742839i \(0.997635\pi\)
\(692\) 0 0
\(693\) 21791.2 + 22057.7i 1.19449 + 1.20909i
\(694\) 0 0
\(695\) 6503.26 11264.0i 0.354939 0.614773i
\(696\) 0 0
\(697\) −2570.57 4452.36i −0.139695 0.241959i
\(698\) 0 0
\(699\) −25960.4 3069.74i −1.40474 0.166106i
\(700\) 0 0
\(701\) 16642.7i 0.896699i 0.893858 + 0.448350i \(0.147988\pi\)
−0.893858 + 0.448350i \(0.852012\pi\)
\(702\) 0 0
\(703\) −166.078 + 95.8854i −0.00891005 + 0.00514422i
\(704\) 0 0
\(705\) 18696.3 25043.1i 0.998784 1.33784i
\(706\) 0 0
\(707\) −3172.02 103.046i −0.168736 0.00548152i
\(708\) 0 0
\(709\) −9588.94 + 16608.5i −0.507927 + 0.879756i 0.492031 + 0.870578i \(0.336255\pi\)
−0.999958 + 0.00917780i \(0.997079\pi\)
\(710\) 0 0
\(711\) 10350.8 3068.50i 0.545969 0.161853i
\(712\) 0 0
\(713\) 35843.0i 1.88265i
\(714\) 0 0
\(715\) 37787.4i 1.97646i
\(716\) 0 0
\(717\) −16001.3 + 6876.79i −0.833446 + 0.358185i
\(718\) 0 0
\(719\) −14270.7 + 24717.6i −0.740205 + 1.28207i 0.212197 + 0.977227i \(0.431938\pi\)
−0.952402 + 0.304845i \(0.901395\pi\)
\(720\) 0 0
\(721\) 977.059 + 1826.85i 0.0504682 + 0.0943625i
\(722\) 0 0
\(723\) −17452.3 13029.3i −0.897728 0.670212i
\(724\) 0 0
\(725\) 29547.8 17059.4i 1.51362 0.873892i
\(726\) 0 0
\(727\) 11364.8i 0.579777i 0.957060 + 0.289889i \(0.0936183\pi\)
−0.957060 + 0.289889i \(0.906382\pi\)
\(728\) 0 0
\(729\) −14975.5 12773.3i −0.760832 0.648949i
\(730\) 0 0
\(731\) −3763.56 6518.67i −0.190424 0.329825i
\(732\) 0 0
\(733\) −4427.68 + 7668.97i −0.223111 + 0.386439i −0.955751 0.294177i \(-0.904955\pi\)
0.732640 + 0.680616i \(0.238288\pi\)
\(734\) 0 0
\(735\) 9235.09 + 26028.6i 0.463458 + 1.30623i
\(736\) 0 0
\(737\) −17373.7 10030.7i −0.868342 0.501338i
\(738\) 0 0
\(739\) −15051.7 + 8690.10i −0.749236 + 0.432572i −0.825418 0.564522i \(-0.809060\pi\)
0.0761816 + 0.997094i \(0.475727\pi\)
\(740\) 0 0
\(741\) 1679.45 + 198.589i 0.0832604 + 0.00984528i
\(742\) 0 0
\(743\) −8996.83 −0.444228 −0.222114 0.975021i \(-0.571296\pi\)
−0.222114 + 0.975021i \(0.571296\pi\)
\(744\) 0 0
\(745\) −2506.93 4342.13i −0.123284 0.213534i
\(746\) 0 0
\(747\) 12512.9 13191.7i 0.612884 0.646128i
\(748\) 0 0
\(749\) 4934.52 2639.15i 0.240726 0.128748i
\(750\) 0 0
\(751\) 1271.67 + 734.198i 0.0617894 + 0.0356741i 0.530576 0.847637i \(-0.321975\pi\)
−0.468787 + 0.883311i \(0.655309\pi\)
\(752\) 0 0
\(753\) −12056.3 + 5181.34i −0.583472 + 0.250755i
\(754\) 0 0
\(755\) −40085.1 −1.93225
\(756\) 0 0
\(757\) 6471.73 0.310725 0.155363 0.987858i \(-0.450345\pi\)
0.155363 + 0.987858i \(0.450345\pi\)
\(758\) 0 0
\(759\) −46705.6 + 20072.4i −2.23360 + 0.959921i
\(760\) 0 0
\(761\) −19589.4 11310.0i −0.933135 0.538746i −0.0453332 0.998972i \(-0.514435\pi\)
−0.887802 + 0.460226i \(0.847768\pi\)
\(762\) 0 0
\(763\) −1130.12 + 34788.2i −0.0536216 + 1.65061i
\(764\) 0 0
\(765\) 8421.50 8878.30i 0.398013 0.419602i
\(766\) 0 0
\(767\) −3739.66 6477.28i −0.176051 0.304930i
\(768\) 0 0
\(769\) 15161.7 0.710981 0.355491 0.934680i \(-0.384314\pi\)
0.355491 + 0.934680i \(0.384314\pi\)
\(770\) 0 0
\(771\) 18769.4 + 2219.43i 0.876738 + 0.103672i
\(772\) 0 0
\(773\) −20583.0 + 11883.6i −0.957722 + 0.552941i −0.895471 0.445120i \(-0.853161\pi\)
−0.0622506 + 0.998061i \(0.519828\pi\)
\(774\) 0 0
\(775\) −22650.1 13077.0i −1.04982 0.606117i
\(776\) 0 0
\(777\) 1391.36 1742.65i 0.0642403 0.0804598i
\(778\) 0 0
\(779\) 727.366 1259.84i 0.0334539 0.0579439i
\(780\) 0 0
\(781\) 15198.6 + 26324.8i 0.696351 + 1.20612i
\(782\) 0 0
\(783\) 39012.2 + 14377.8i 1.78057 + 0.656221i
\(784\) 0 0
\(785\) 538.645i 0.0244905i
\(786\) 0 0
\(787\) 26847.9 15500.6i 1.21604 0.702082i 0.251972 0.967734i \(-0.418921\pi\)
0.964069 + 0.265653i \(0.0855875\pi\)
\(788\) 0 0
\(789\) −9944.22 7424.01i −0.448699 0.334983i
\(790\) 0 0
\(791\) −13810.4 + 22221.3i −0.620785 + 0.998862i
\(792\) 0 0
\(793\) −9212.19 + 15956.0i −0.412528 + 0.714519i
\(794\) 0 0
\(795\) 19496.7 8378.97i 0.869782 0.373800i
\(796\) 0 0
\(797\) 24322.0i 1.08097i 0.841355 + 0.540483i \(0.181759\pi\)
−0.841355 + 0.540483i \(0.818241\pi\)
\(798\) 0 0
\(799\) 11351.9i 0.502631i
\(800\) 0 0
\(801\) 31660.8 9385.88i 1.39660 0.414025i
\(802\) 0 0
\(803\) 28596.8 49531.1i 1.25673 2.17673i
\(804\) 0 0
\(805\) −45257.4 1470.23i −1.98151 0.0643710i
\(806\) 0 0
\(807\) 3951.15 5292.44i 0.172351 0.230859i
\(808\) 0 0
\(809\) −21704.1 + 12530.9i −0.943233 + 0.544576i −0.890972 0.454058i \(-0.849976\pi\)
−0.0522604 + 0.998633i \(0.516643\pi\)
\(810\) 0 0
\(811\) 19821.0i 0.858213i −0.903254 0.429106i \(-0.858829\pi\)
0.903254 0.429106i \(-0.141171\pi\)
\(812\) 0 0
\(813\) −7338.08 867.705i −0.316553 0.0374314i
\(814\) 0 0
\(815\) −21654.0 37505.8i −0.930682 1.61199i
\(816\) 0 0
\(817\) 1064.93 1844.52i 0.0456025 0.0789859i
\(818\) 0 0
\(819\) −19025.6 + 4974.19i −0.811730 + 0.212225i
\(820\) 0 0
\(821\) 17330.1 + 10005.6i 0.736694 + 0.425331i 0.820866 0.571121i \(-0.193491\pi\)
−0.0841719 + 0.996451i \(0.526824\pi\)
\(822\) 0 0
\(823\) 4394.33 2537.07i 0.186120 0.107457i −0.404045 0.914739i \(-0.632396\pi\)
0.590165 + 0.807283i \(0.299063\pi\)
\(824\) 0 0
\(825\) −4355.93 + 36837.6i −0.183823 + 1.55457i
\(826\) 0 0
\(827\) 9791.10 0.411693 0.205846 0.978584i \(-0.434005\pi\)
0.205846 + 0.978584i \(0.434005\pi\)
\(828\) 0 0
\(829\) 12903.0 + 22348.6i 0.540578 + 0.936308i 0.998871 + 0.0475068i \(0.0151276\pi\)
−0.458293 + 0.888801i \(0.651539\pi\)
\(830\) 0 0
\(831\) 25406.9 + 18967.9i 1.06060 + 0.791804i
\(832\) 0 0
\(833\) −8344.06 5569.28i −0.347064 0.231649i
\(834\) 0 0
\(835\) 34720.0 + 20045.6i 1.43896 + 0.830786i
\(836\) 0 0
\(837\) −5407.71 31409.2i −0.223319 1.29709i
\(838\) 0 0
\(839\) 8846.19 0.364010 0.182005 0.983298i \(-0.441741\pi\)
0.182005 + 0.983298i \(0.441741\pi\)
\(840\) 0 0
\(841\) −63436.7 −2.60104
\(842\) 0 0
\(843\) −8716.01 20280.9i −0.356103 0.828603i
\(844\) 0 0
\(845\) 8728.81 + 5039.58i 0.355361 + 0.205168i
\(846\) 0 0
\(847\) 41054.6 21957.4i 1.66547 0.890749i
\(848\) 0 0
\(849\) 7389.38 9897.84i 0.298708 0.400109i
\(850\) 0 0
\(851\) 1828.05 + 3166.27i 0.0736365 + 0.127542i
\(852\) 0 0
\(853\) 1298.87 0.0521367 0.0260684 0.999660i \(-0.491701\pi\)
0.0260684 + 0.999660i \(0.491701\pi\)
\(854\) 0 0
\(855\) 3367.09 + 807.588i 0.134681 + 0.0323028i
\(856\) 0 0
\(857\) −19606.6 + 11319.9i −0.781506 + 0.451202i −0.836964 0.547259i \(-0.815671\pi\)
0.0554580 + 0.998461i \(0.482338\pi\)
\(858\) 0 0
\(859\) −25436.0 14685.5i −1.01032 0.583310i −0.0990361 0.995084i \(-0.531576\pi\)
−0.911286 + 0.411774i \(0.864909\pi\)
\(860\) 0 0
\(861\) −2530.82 + 16725.6i −0.100174 + 0.662029i
\(862\) 0 0
\(863\) −2314.52 + 4008.87i −0.0912946 + 0.158127i −0.908056 0.418849i \(-0.862434\pi\)
0.816762 + 0.576975i \(0.195767\pi\)
\(864\) 0 0
\(865\) 28609.7 + 49553.5i 1.12458 + 1.94782i
\(866\) 0 0
\(867\) 2475.84 20937.9i 0.0969826 0.820171i
\(868\) 0 0
\(869\) 24793.7i 0.967856i
\(870\) 0 0
\(871\) 11018.8 6361.73i 0.428656 0.247484i
\(872\) 0 0
\(873\) 14961.4 15772.9i 0.580030 0.611492i
\(874\) 0 0
\(875\) 1495.40 2406.14i 0.0577757 0.0929628i
\(876\) 0 0
\(877\) 9245.62 16013.9i 0.355989 0.616591i −0.631298 0.775541i \(-0.717477\pi\)
0.987287 + 0.158949i \(0.0508106\pi\)
\(878\) 0 0
\(879\) −9910.04 23059.3i −0.380270 0.884836i
\(880\) 0 0
\(881\) 45563.2i 1.74241i −0.490920 0.871205i \(-0.663339\pi\)
0.490920 0.871205i \(-0.336661\pi\)
\(882\) 0 0
\(883\) 9315.02i 0.355012i −0.984120 0.177506i \(-0.943197\pi\)
0.984120 0.177506i \(-0.0568029\pi\)
\(884\) 0 0
\(885\) −6046.55 14069.5i −0.229664 0.534396i
\(886\) 0 0
\(887\) −7972.79 + 13809.3i −0.301804 + 0.522740i −0.976545 0.215315i \(-0.930922\pi\)
0.674741 + 0.738055i \(0.264255\pi\)
\(888\) 0 0
\(889\) −25271.7 + 40663.0i −0.953416 + 1.53407i
\(890\) 0 0
\(891\) −37899.8 + 24636.0i −1.42502 + 0.926303i
\(892\) 0 0
\(893\) −2781.79 + 1606.06i −0.104243 + 0.0601847i
\(894\) 0 0
\(895\) 23439.8i 0.875427i
\(896\) 0 0
\(897\) 3786.08 32018.5i 0.140929 1.19182i
\(898\) 0 0
\(899\) 33661.7 + 58303.8i 1.24881 + 2.16300i
\(900\) 0 0
\(901\) −3854.09 + 6675.48i −0.142507 + 0.246829i
\(902\) 0 0
\(903\) −3705.35 + 24487.8i −0.136552 + 0.902441i
\(904\) 0 0
\(905\) 31321.2 + 18083.3i 1.15044 + 0.664209i
\(906\) 0 0
\(907\) 37061.9 21397.7i 1.35680 0.783351i 0.367613 0.929979i \(-0.380175\pi\)
0.989192 + 0.146628i \(0.0468419\pi\)
\(908\) 0 0
\(909\) 1079.12 4499.21i 0.0393754 0.164169i
\(910\) 0 0
\(911\) 2779.49 0.101085 0.0505425 0.998722i \(-0.483905\pi\)
0.0505425 + 0.998722i \(0.483905\pi\)
\(912\) 0 0
\(913\) −20878.3 36162.2i −0.756812 1.31084i
\(914\) 0 0
\(915\) −22567.6 + 30228.6i −0.815368 + 1.09216i
\(916\) 0 0
\(917\) 13355.1 7142.77i 0.480944 0.257225i
\(918\) 0 0
\(919\) −37158.9 21453.7i −1.33380 0.770068i −0.347917 0.937525i \(-0.613111\pi\)
−0.985879 + 0.167457i \(0.946444\pi\)
\(920\) 0 0
\(921\) −2396.43 5576.15i −0.0857383 0.199501i
\(922\) 0 0
\(923\) −19278.7 −0.687505
\(924\) 0 0
\(925\) 2667.79 0.0948285
\(926\) 0 0
\(927\) −2895.72 + 858.440i −0.102597 + 0.0304152i
\(928\) 0 0
\(929\) 42949.8 + 24797.1i 1.51683 + 0.875744i 0.999804 + 0.0197758i \(0.00629526\pi\)
0.517029 + 0.855968i \(0.327038\pi\)
\(930\) 0 0
\(931\) 184.236 2832.65i 0.00648561 0.0997167i
\(932\) 0 0
\(933\) −32582.3 24324.8i −1.14330 0.853545i
\(934\) 0 0
\(935\) −14051.6 24338.0i −0.491481 0.851271i
\(936\) 0 0
\(937\) −12548.9 −0.437519 −0.218759 0.975779i \(-0.570201\pi\)
−0.218759 + 0.975779i \(0.570201\pi\)
\(938\) 0 0
\(939\) 5528.91 46757.3i 0.192150 1.62499i
\(940\) 0 0
\(941\) −27024.9 + 15602.9i −0.936225 + 0.540530i −0.888775 0.458344i \(-0.848443\pi\)
−0.0474499 + 0.998874i \(0.515109\pi\)
\(942\) 0 0
\(943\) −24018.7 13867.2i −0.829433 0.478873i
\(944\) 0 0
\(945\) −39880.9 + 5539.72i −1.37283 + 0.190695i
\(946\) 0 0
\(947\) −16747.1 + 29006.8i −0.574664 + 0.995348i 0.421413 + 0.906869i \(0.361534\pi\)
−0.996078 + 0.0884795i \(0.971799\pi\)
\(948\) 0 0
\(949\) 18136.8 + 31413.8i 0.620385 + 1.07454i
\(950\) 0 0
\(951\) −23311.7 2756.54i −0.794883 0.0939924i
\(952\) 0 0
\(953\) 26762.2i 0.909667i 0.890576 + 0.454834i \(0.150301\pi\)
−0.890576 + 0.454834i \(0.849699\pi\)
\(954\) 0 0
\(955\) 55202.3 31871.1i 1.87048 1.07992i
\(956\) 0 0
\(957\) 57122.5 76513.7i 1.92947 2.58447i
\(958\) 0 0
\(959\) 40942.3 + 1330.05i 1.37862 + 0.0447856i
\(960\) 0 0
\(961\) 10908.1 18893.4i 0.366154 0.634197i
\(962\) 0 0
\(963\) 2318.74 + 7821.66i 0.0775913 + 0.261734i
\(964\) 0 0
\(965\) 4701.72i 0.156843i
\(966\) 0 0
\(967\) 32470.8i 1.07982i 0.841721 + 0.539912i \(0.181543\pi\)
−0.841721 + 0.539912i \(0.818457\pi\)
\(968\) 0 0
\(969\) −1155.54 + 496.608i −0.0383088 + 0.0164637i
\(970\) 0 0
\(971\) 21906.6 37943.4i 0.724013 1.25403i −0.235366 0.971907i \(-0.575629\pi\)
0.959379 0.282121i \(-0.0910378\pi\)
\(972\) 0 0
\(973\) 8205.42 13202.8i 0.270353 0.435006i
\(974\) 0 0
\(975\) −18851.9 14074.2i −0.619225 0.462292i
\(976\) 0 0
\(977\) 49257.0 28438.6i 1.61297 0.931249i 0.624294 0.781190i \(-0.285387\pi\)
0.988677 0.150059i \(-0.0479465\pi\)
\(978\) 0 0
\(979\) 75838.5i 2.47580i
\(980\) 0 0
\(981\) −49343.7 11835.0i −1.60594 0.385180i
\(982\) 0 0
\(983\) 28731.5 + 49764.4i 0.932241 + 1.61469i 0.779482 + 0.626425i \(0.215482\pi\)
0.152759 + 0.988264i \(0.451184\pi\)
\(984\) 0 0
\(985\) 4201.36 7276.97i 0.135905 0.235394i
\(986\) 0 0
\(987\) 23305.0 29189.1i 0.751577 0.941337i
\(988\) 0 0
\(989\) −35165.5 20302.8i −1.13064 0.652773i
\(990\) 0 0
\(991\) 26263.7 15163.4i 0.841871 0.486055i −0.0160287 0.999872i \(-0.505102\pi\)
0.857900 + 0.513817i \(0.171769\pi\)
\(992\) 0 0
\(993\) −11205.8 1325.05i −0.358113 0.0423458i
\(994\) 0 0
\(995\) −27783.7 −0.885227
\(996\) 0 0
\(997\) −26930.2 46644.5i −0.855454 1.48169i −0.876223 0.481905i \(-0.839945\pi\)
0.0207692 0.999784i \(-0.493388\pi\)
\(998\) 0 0
\(999\) 2079.62 + 2498.80i 0.0658621 + 0.0791377i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 336.4.bj.e.191.1 yes 28
3.2 odd 2 inner 336.4.bj.e.191.3 yes 28
4.3 odd 2 336.4.bj.f.191.14 yes 28
7.4 even 3 336.4.bj.f.95.12 yes 28
12.11 even 2 336.4.bj.f.191.12 yes 28
21.11 odd 6 336.4.bj.f.95.14 yes 28
28.11 odd 6 inner 336.4.bj.e.95.3 yes 28
84.11 even 6 inner 336.4.bj.e.95.1 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
336.4.bj.e.95.1 28 84.11 even 6 inner
336.4.bj.e.95.3 yes 28 28.11 odd 6 inner
336.4.bj.e.191.1 yes 28 1.1 even 1 trivial
336.4.bj.e.191.3 yes 28 3.2 odd 2 inner
336.4.bj.f.95.12 yes 28 7.4 even 3
336.4.bj.f.95.14 yes 28 21.11 odd 6
336.4.bj.f.191.12 yes 28 12.11 even 2
336.4.bj.f.191.14 yes 28 4.3 odd 2