Properties

Label 336.4.bj.c
Level 336336
Weight 44
Character orbit 336.bj
Analytic conductor 19.82519.825
Analytic rank 00
Dimension 22
CM discriminant -3
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [336,4,Mod(95,336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(336, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 3, 4])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("336.95"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 336=2437 336 = 2^{4} \cdot 3 \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 336.bj (of order 66, degree 22, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,9,0,0,0,-37] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 19.824641761919.8246417619
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: U(1)[D6]\mathrm{U}(1)[D_{6}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(3ζ6+6)q3+(ζ619)q7+(27ζ6+27)q989q13+(17ζ617)q19+(60ζ6111)q21125ζ6q25+(162ζ6+81)q27++1330q97+O(q100) q + ( - 3 \zeta_{6} + 6) q^{3} + (\zeta_{6} - 19) q^{7} + ( - 27 \zeta_{6} + 27) q^{9} - 89 q^{13} + ( - 17 \zeta_{6} - 17) q^{19} + (60 \zeta_{6} - 111) q^{21} - 125 \zeta_{6} q^{25} + ( - 162 \zeta_{6} + 81) q^{27} + \cdots + 1330 q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+9q337q7+27q9178q1351q19162q21125q25597q31+433q37801q39+683q49306q57182q61459q63753q67919q73++2660q97+O(q100) 2 q + 9 q^{3} - 37 q^{7} + 27 q^{9} - 178 q^{13} - 51 q^{19} - 162 q^{21} - 125 q^{25} - 597 q^{31} + 433 q^{37} - 801 q^{39} + 683 q^{49} - 306 q^{57} - 182 q^{61} - 459 q^{63} - 753 q^{67} - 919 q^{73}+ \cdots + 2660 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/336Z)×\left(\mathbb{Z}/336\mathbb{Z}\right)^\times.

nn 8585 113113 127127 241241
χ(n)\chi(n) 11 1-1 1-1 1+ζ6-1 + \zeta_{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
95.1
0.500000 0.866025i
0.500000 + 0.866025i
0 4.50000 + 2.59808i 0 0 0 −18.5000 0.866025i 0 13.5000 + 23.3827i 0
191.1 0 4.50000 2.59808i 0 0 0 −18.5000 + 0.866025i 0 13.5000 23.3827i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by Q(3)\Q(\sqrt{-3})
28.g odd 6 1 inner
84.n even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 336.4.bj.c yes 2
3.b odd 2 1 CM 336.4.bj.c yes 2
4.b odd 2 1 336.4.bj.b 2
7.c even 3 1 336.4.bj.b 2
12.b even 2 1 336.4.bj.b 2
21.h odd 6 1 336.4.bj.b 2
28.g odd 6 1 inner 336.4.bj.c yes 2
84.n even 6 1 inner 336.4.bj.c yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
336.4.bj.b 2 4.b odd 2 1
336.4.bj.b 2 7.c even 3 1
336.4.bj.b 2 12.b even 2 1
336.4.bj.b 2 21.h odd 6 1
336.4.bj.c yes 2 1.a even 1 1 trivial
336.4.bj.c yes 2 3.b odd 2 1 CM
336.4.bj.c yes 2 28.g odd 6 1 inner
336.4.bj.c yes 2 84.n even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(336,[χ])S_{4}^{\mathrm{new}}(336, [\chi]):

T5 T_{5} Copy content Toggle raw display
T13+89 T_{13} + 89 Copy content Toggle raw display
T192+51T19+867 T_{19}^{2} + 51T_{19} + 867 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T29T+27 T^{2} - 9T + 27 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+37T+343 T^{2} + 37T + 343 Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 (T+89)2 (T + 89)^{2} Copy content Toggle raw display
1717 T2 T^{2} Copy content Toggle raw display
1919 T2+51T+867 T^{2} + 51T + 867 Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 T2 T^{2} Copy content Toggle raw display
3131 T2+597T+118803 T^{2} + 597T + 118803 Copy content Toggle raw display
3737 T2433T+187489 T^{2} - 433T + 187489 Copy content Toggle raw display
4141 T2 T^{2} Copy content Toggle raw display
4343 T2+116427 T^{2} + 116427 Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 T2 T^{2} Copy content Toggle raw display
5959 T2 T^{2} Copy content Toggle raw display
6161 T2+182T+33124 T^{2} + 182T + 33124 Copy content Toggle raw display
6767 T2+753T+189003 T^{2} + 753T + 189003 Copy content Toggle raw display
7171 T2 T^{2} Copy content Toggle raw display
7373 T2+919T+844561 T^{2} + 919T + 844561 Copy content Toggle raw display
7979 T2+2271T+1719147 T^{2} + 2271 T + 1719147 Copy content Toggle raw display
8383 T2 T^{2} Copy content Toggle raw display
8989 T2 T^{2} Copy content Toggle raw display
9797 (T1330)2 (T - 1330)^{2} Copy content Toggle raw display
show more
show less