Properties

Label 336.2.bc.f.257.7
Level $336$
Weight $2$
Character 336.257
Analytic conductor $2.683$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [336,2,Mod(17,336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(336, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 3, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("336.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 336 = 2^{4} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 336.bc (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.68297350792\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 6 x^{15} + 19 x^{14} - 42 x^{13} + 65 x^{12} - 48 x^{11} - 94 x^{10} + 444 x^{9} - 962 x^{8} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 257.7
Root \(0.934861 - 1.45809i\) of defining polynomial
Character \(\chi\) \(=\) 336.257
Dual form 336.2.bc.f.17.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.45809 + 0.934861i) q^{3} +(-1.90017 + 3.29119i) q^{5} +(-2.23495 - 1.41598i) q^{7} +(1.25207 + 2.72623i) q^{9} +(0.309539 - 0.178712i) q^{11} +4.04570i q^{13} +(-5.84742 + 3.02246i) q^{15} +(-0.0519689 - 0.0900129i) q^{17} +(2.12615 + 1.22753i) q^{19} +(-1.93502 - 4.15400i) q^{21} +(-1.15188 - 0.665037i) q^{23} +(-4.72127 - 8.17749i) q^{25} +(-0.723015 + 5.14560i) q^{27} +4.97265i q^{29} +(6.83007 - 3.94335i) q^{31} +(0.618407 + 0.0287968i) q^{33} +(8.90704 - 4.66504i) q^{35} +(5.45622 - 9.45046i) q^{37} +(-3.78216 + 5.89900i) q^{39} +6.15464 q^{41} -0.502751 q^{43} +(-11.3517 - 1.05950i) q^{45} +(-5.72578 + 9.91734i) q^{47} +(2.99000 + 6.32929i) q^{49} +(0.00837401 - 0.179831i) q^{51} +(5.08143 - 2.93376i) q^{53} +1.35833i q^{55} +(1.95255 + 3.77751i) q^{57} +(-3.77364 - 6.53614i) q^{59} +(8.20485 + 4.73707i) q^{61} +(1.06198 - 7.86589i) q^{63} +(-13.3151 - 7.68750i) q^{65} +(1.34375 + 2.32744i) q^{67} +(-1.05783 - 2.04653i) q^{69} -5.78975i q^{71} +(-0.203925 + 0.117736i) q^{73} +(0.760762 - 16.3373i) q^{75} +(-0.944856 - 0.0388878i) q^{77} +(1.61247 - 2.79289i) q^{79} +(-5.86465 + 6.82685i) q^{81} +9.07747 q^{83} +0.394999 q^{85} +(-4.64874 + 7.25058i) q^{87} +(3.41213 - 5.90999i) q^{89} +(5.72862 - 9.04192i) q^{91} +(13.6454 + 0.635411i) q^{93} +(-8.08008 + 4.66504i) q^{95} -5.14243i q^{97} +(0.874774 + 0.620114i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{7} + 2 q^{9} - 8 q^{15} + 6 q^{19} + 14 q^{21} - 18 q^{25} + 48 q^{31} - 12 q^{33} - 2 q^{37} + 22 q^{39} - 20 q^{43} - 42 q^{45} - 28 q^{49} - 6 q^{51} - 8 q^{57} + 36 q^{61} + 32 q^{63} - 14 q^{67}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/336\mathbb{Z}\right)^\times\).

\(n\) \(85\) \(113\) \(127\) \(241\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.45809 + 0.934861i 0.841830 + 0.539743i
\(4\) 0 0
\(5\) −1.90017 + 3.29119i −0.849781 + 1.47186i 0.0316229 + 0.999500i \(0.489932\pi\)
−0.881404 + 0.472364i \(0.843401\pi\)
\(6\) 0 0
\(7\) −2.23495 1.41598i −0.844732 0.535190i
\(8\) 0 0
\(9\) 1.25207 + 2.72623i 0.417356 + 0.908743i
\(10\) 0 0
\(11\) 0.309539 0.178712i 0.0933294 0.0538838i −0.452609 0.891709i \(-0.649507\pi\)
0.545938 + 0.837825i \(0.316173\pi\)
\(12\) 0 0
\(13\) 4.04570i 1.12207i 0.827791 + 0.561037i \(0.189597\pi\)
−0.827791 + 0.561037i \(0.810403\pi\)
\(14\) 0 0
\(15\) −5.84742 + 3.02246i −1.50980 + 0.780396i
\(16\) 0 0
\(17\) −0.0519689 0.0900129i −0.0126043 0.0218313i 0.859654 0.510876i \(-0.170679\pi\)
−0.872259 + 0.489045i \(0.837346\pi\)
\(18\) 0 0
\(19\) 2.12615 + 1.22753i 0.487772 + 0.281615i 0.723650 0.690167i \(-0.242463\pi\)
−0.235878 + 0.971783i \(0.575796\pi\)
\(20\) 0 0
\(21\) −1.93502 4.15400i −0.422256 0.906477i
\(22\) 0 0
\(23\) −1.15188 0.665037i −0.240183 0.138670i 0.375078 0.926993i \(-0.377616\pi\)
−0.615261 + 0.788323i \(0.710949\pi\)
\(24\) 0 0
\(25\) −4.72127 8.17749i −0.944255 1.63550i
\(26\) 0 0
\(27\) −0.723015 + 5.14560i −0.139144 + 0.990272i
\(28\) 0 0
\(29\) 4.97265i 0.923398i 0.887037 + 0.461699i \(0.152760\pi\)
−0.887037 + 0.461699i \(0.847240\pi\)
\(30\) 0 0
\(31\) 6.83007 3.94335i 1.22672 0.708246i 0.260376 0.965507i \(-0.416154\pi\)
0.966342 + 0.257262i \(0.0828202\pi\)
\(32\) 0 0
\(33\) 0.618407 + 0.0287968i 0.107651 + 0.00501288i
\(34\) 0 0
\(35\) 8.90704 4.66504i 1.50556 0.788535i
\(36\) 0 0
\(37\) 5.45622 9.45046i 0.896998 1.55365i 0.0656853 0.997840i \(-0.479077\pi\)
0.831312 0.555805i \(-0.187590\pi\)
\(38\) 0 0
\(39\) −3.78216 + 5.89900i −0.605631 + 0.944596i
\(40\) 0 0
\(41\) 6.15464 0.961193 0.480597 0.876942i \(-0.340420\pi\)
0.480597 + 0.876942i \(0.340420\pi\)
\(42\) 0 0
\(43\) −0.502751 −0.0766688 −0.0383344 0.999265i \(-0.512205\pi\)
−0.0383344 + 0.999265i \(0.512205\pi\)
\(44\) 0 0
\(45\) −11.3517 1.05950i −1.69221 0.157941i
\(46\) 0 0
\(47\) −5.72578 + 9.91734i −0.835190 + 1.44659i 0.0586849 + 0.998277i \(0.481309\pi\)
−0.893875 + 0.448316i \(0.852024\pi\)
\(48\) 0 0
\(49\) 2.99000 + 6.32929i 0.427143 + 0.904184i
\(50\) 0 0
\(51\) 0.00837401 0.179831i 0.00117260 0.0251814i
\(52\) 0 0
\(53\) 5.08143 2.93376i 0.697988 0.402983i −0.108610 0.994084i \(-0.534640\pi\)
0.806597 + 0.591101i \(0.201307\pi\)
\(54\) 0 0
\(55\) 1.35833i 0.183158i
\(56\) 0 0
\(57\) 1.95255 + 3.77751i 0.258622 + 0.500344i
\(58\) 0 0
\(59\) −3.77364 6.53614i −0.491286 0.850933i 0.508664 0.860965i \(-0.330140\pi\)
−0.999950 + 0.0100329i \(0.996806\pi\)
\(60\) 0 0
\(61\) 8.20485 + 4.73707i 1.05052 + 0.606520i 0.922796 0.385289i \(-0.125898\pi\)
0.127727 + 0.991809i \(0.459232\pi\)
\(62\) 0 0
\(63\) 1.06198 7.86589i 0.133797 0.991009i
\(64\) 0 0
\(65\) −13.3151 7.68750i −1.65154 0.953517i
\(66\) 0 0
\(67\) 1.34375 + 2.32744i 0.164165 + 0.284342i 0.936358 0.351045i \(-0.114174\pi\)
−0.772193 + 0.635388i \(0.780840\pi\)
\(68\) 0 0
\(69\) −1.05783 2.04653i −0.127348 0.246374i
\(70\) 0 0
\(71\) 5.78975i 0.687117i −0.939131 0.343558i \(-0.888368\pi\)
0.939131 0.343558i \(-0.111632\pi\)
\(72\) 0 0
\(73\) −0.203925 + 0.117736i −0.0238676 + 0.0137800i −0.511886 0.859053i \(-0.671053\pi\)
0.488019 + 0.872833i \(0.337720\pi\)
\(74\) 0 0
\(75\) 0.760762 16.3373i 0.0878453 1.88647i
\(76\) 0 0
\(77\) −0.944856 0.0388878i −0.107676 0.00443168i
\(78\) 0 0
\(79\) 1.61247 2.79289i 0.181418 0.314224i −0.760946 0.648815i \(-0.775265\pi\)
0.942364 + 0.334591i \(0.108598\pi\)
\(80\) 0 0
\(81\) −5.86465 + 6.82685i −0.651628 + 0.758539i
\(82\) 0 0
\(83\) 9.07747 0.996382 0.498191 0.867067i \(-0.333998\pi\)
0.498191 + 0.867067i \(0.333998\pi\)
\(84\) 0 0
\(85\) 0.394999 0.0428436
\(86\) 0 0
\(87\) −4.64874 + 7.25058i −0.498397 + 0.777344i
\(88\) 0 0
\(89\) 3.41213 5.90999i 0.361685 0.626457i −0.626553 0.779379i \(-0.715535\pi\)
0.988238 + 0.152921i \(0.0488681\pi\)
\(90\) 0 0
\(91\) 5.72862 9.04192i 0.600523 0.947851i
\(92\) 0 0
\(93\) 13.6454 + 0.635411i 1.41496 + 0.0658890i
\(94\) 0 0
\(95\) −8.08008 + 4.66504i −0.828999 + 0.478623i
\(96\) 0 0
\(97\) 5.14243i 0.522134i −0.965321 0.261067i \(-0.915926\pi\)
0.965321 0.261067i \(-0.0840744\pi\)
\(98\) 0 0
\(99\) 0.874774 + 0.620114i 0.0879181 + 0.0623238i
\(100\) 0 0
\(101\) −6.43891 11.1525i −0.640695 1.10972i −0.985278 0.170960i \(-0.945313\pi\)
0.344583 0.938756i \(-0.388020\pi\)
\(102\) 0 0
\(103\) −4.88120 2.81816i −0.480959 0.277682i 0.239857 0.970808i \(-0.422899\pi\)
−0.720816 + 0.693126i \(0.756233\pi\)
\(104\) 0 0
\(105\) 17.3484 + 1.52479i 1.69303 + 0.148804i
\(106\) 0 0
\(107\) −7.62737 4.40366i −0.737365 0.425718i 0.0837453 0.996487i \(-0.473312\pi\)
−0.821111 + 0.570769i \(0.806645\pi\)
\(108\) 0 0
\(109\) 2.23862 + 3.87741i 0.214421 + 0.371389i 0.953093 0.302676i \(-0.0978801\pi\)
−0.738672 + 0.674065i \(0.764547\pi\)
\(110\) 0 0
\(111\) 16.7905 8.67883i 1.59369 0.823758i
\(112\) 0 0
\(113\) 4.00000i 0.376288i 0.982141 + 0.188144i \(0.0602472\pi\)
−0.982141 + 0.188144i \(0.939753\pi\)
\(114\) 0 0
\(115\) 4.37753 2.52737i 0.408206 0.235678i
\(116\) 0 0
\(117\) −11.0295 + 5.06549i −1.01968 + 0.468304i
\(118\) 0 0
\(119\) −0.0113084 + 0.274761i −0.00103664 + 0.0251873i
\(120\) 0 0
\(121\) −5.43612 + 9.41564i −0.494193 + 0.855968i
\(122\) 0 0
\(123\) 8.97404 + 5.75374i 0.809162 + 0.518797i
\(124\) 0 0
\(125\) 16.8832 1.51008
\(126\) 0 0
\(127\) −12.9198 −1.14645 −0.573223 0.819399i \(-0.694307\pi\)
−0.573223 + 0.819399i \(0.694307\pi\)
\(128\) 0 0
\(129\) −0.733058 0.470003i −0.0645421 0.0413814i
\(130\) 0 0
\(131\) −2.66384 + 4.61391i −0.232741 + 0.403119i −0.958614 0.284710i \(-0.908103\pi\)
0.725873 + 0.687829i \(0.241436\pi\)
\(132\) 0 0
\(133\) −3.01367 5.75406i −0.261319 0.498940i
\(134\) 0 0
\(135\) −15.5613 12.1571i −1.33930 1.04632i
\(136\) 0 0
\(137\) −4.37380 + 2.52521i −0.373679 + 0.215744i −0.675064 0.737759i \(-0.735884\pi\)
0.301386 + 0.953502i \(0.402551\pi\)
\(138\) 0 0
\(139\) 21.2651i 1.80368i 0.432067 + 0.901841i \(0.357784\pi\)
−0.432067 + 0.901841i \(0.642216\pi\)
\(140\) 0 0
\(141\) −17.6200 + 9.10759i −1.48388 + 0.766997i
\(142\) 0 0
\(143\) 0.723015 + 1.25230i 0.0604616 + 0.104723i
\(144\) 0 0
\(145\) −16.3659 9.44887i −1.35912 0.784686i
\(146\) 0 0
\(147\) −1.55731 + 12.0239i −0.128445 + 0.991717i
\(148\) 0 0
\(149\) −10.5482 6.09001i −0.864143 0.498913i 0.00125437 0.999999i \(-0.499601\pi\)
−0.865398 + 0.501086i \(0.832934\pi\)
\(150\) 0 0
\(151\) −4.10880 7.11665i −0.334369 0.579145i 0.648994 0.760793i \(-0.275190\pi\)
−0.983363 + 0.181649i \(0.941857\pi\)
\(152\) 0 0
\(153\) 0.180327 0.254381i 0.0145786 0.0205655i
\(154\) 0 0
\(155\) 29.9721i 2.40741i
\(156\) 0 0
\(157\) 11.2104 6.47230i 0.894683 0.516546i 0.0192119 0.999815i \(-0.493884\pi\)
0.875472 + 0.483270i \(0.160551\pi\)
\(158\) 0 0
\(159\) 10.1519 + 0.472732i 0.805094 + 0.0374901i
\(160\) 0 0
\(161\) 1.63271 + 3.11736i 0.128676 + 0.245683i
\(162\) 0 0
\(163\) −1.09237 + 1.89205i −0.0855613 + 0.148197i −0.905630 0.424068i \(-0.860602\pi\)
0.820069 + 0.572265i \(0.193935\pi\)
\(164\) 0 0
\(165\) −1.26985 + 1.98058i −0.0988579 + 0.154188i
\(166\) 0 0
\(167\) −0.464592 −0.0359512 −0.0179756 0.999838i \(-0.505722\pi\)
−0.0179756 + 0.999838i \(0.505722\pi\)
\(168\) 0 0
\(169\) −3.36765 −0.259050
\(170\) 0 0
\(171\) −0.684452 + 7.33333i −0.0523414 + 0.560793i
\(172\) 0 0
\(173\) 4.62587 8.01224i 0.351698 0.609159i −0.634849 0.772636i \(-0.718938\pi\)
0.986547 + 0.163477i \(0.0522710\pi\)
\(174\) 0 0
\(175\) −1.02735 + 24.9615i −0.0776603 + 1.88691i
\(176\) 0 0
\(177\) 0.608065 13.0581i 0.0457050 0.981509i
\(178\) 0 0
\(179\) −1.77096 + 1.02246i −0.132367 + 0.0764224i −0.564722 0.825282i \(-0.691016\pi\)
0.432354 + 0.901704i \(0.357683\pi\)
\(180\) 0 0
\(181\) 17.6193i 1.30963i 0.755790 + 0.654815i \(0.227253\pi\)
−0.755790 + 0.654815i \(0.772747\pi\)
\(182\) 0 0
\(183\) 7.53492 + 14.5775i 0.556998 + 1.07760i
\(184\) 0 0
\(185\) 20.7355 + 35.9149i 1.52450 + 2.64052i
\(186\) 0 0
\(187\) −0.0321728 0.0185750i −0.00235271 0.00135834i
\(188\) 0 0
\(189\) 8.90198 10.4764i 0.647524 0.762045i
\(190\) 0 0
\(191\) 19.4811 + 11.2474i 1.40960 + 0.813834i 0.995350 0.0963279i \(-0.0307097\pi\)
0.414252 + 0.910162i \(0.364043\pi\)
\(192\) 0 0
\(193\) −4.81985 8.34823i −0.346940 0.600918i 0.638764 0.769403i \(-0.279446\pi\)
−0.985704 + 0.168484i \(0.946113\pi\)
\(194\) 0 0
\(195\) −12.2280 23.6569i −0.875662 1.69411i
\(196\) 0 0
\(197\) 15.3750i 1.09542i 0.836667 + 0.547712i \(0.184501\pi\)
−0.836667 + 0.547712i \(0.815499\pi\)
\(198\) 0 0
\(199\) 3.96967 2.29189i 0.281403 0.162468i −0.352656 0.935753i \(-0.614721\pi\)
0.634058 + 0.773285i \(0.281388\pi\)
\(200\) 0 0
\(201\) −0.216525 + 4.64985i −0.0152725 + 0.327975i
\(202\) 0 0
\(203\) 7.04117 11.1136i 0.494194 0.780023i
\(204\) 0 0
\(205\) −11.6948 + 20.2561i −0.816804 + 1.41475i
\(206\) 0 0
\(207\) 0.370814 3.97296i 0.0257734 0.276140i
\(208\) 0 0
\(209\) 0.877501 0.0606980
\(210\) 0 0
\(211\) 0.870400 0.0599208 0.0299604 0.999551i \(-0.490462\pi\)
0.0299604 + 0.999551i \(0.490462\pi\)
\(212\) 0 0
\(213\) 5.41261 8.44199i 0.370866 0.578436i
\(214\) 0 0
\(215\) 0.955311 1.65465i 0.0651517 0.112846i
\(216\) 0 0
\(217\) −20.8486 0.858072i −1.41529 0.0582497i
\(218\) 0 0
\(219\) −0.407409 0.0189714i −0.0275301 0.00128197i
\(220\) 0 0
\(221\) 0.364165 0.210251i 0.0244964 0.0141430i
\(222\) 0 0
\(223\) 1.21373i 0.0812777i −0.999174 0.0406388i \(-0.987061\pi\)
0.999174 0.0406388i \(-0.0129393\pi\)
\(224\) 0 0
\(225\) 16.3823 23.1100i 1.09216 1.54067i
\(226\) 0 0
\(227\) −6.67205 11.5563i −0.442840 0.767021i 0.555059 0.831811i \(-0.312696\pi\)
−0.997899 + 0.0647898i \(0.979362\pi\)
\(228\) 0 0
\(229\) 9.60627 + 5.54618i 0.634800 + 0.366502i 0.782609 0.622514i \(-0.213889\pi\)
−0.147808 + 0.989016i \(0.547222\pi\)
\(230\) 0 0
\(231\) −1.34133 0.940012i −0.0882533 0.0618482i
\(232\) 0 0
\(233\) −7.08411 4.09001i −0.464095 0.267946i 0.249669 0.968331i \(-0.419678\pi\)
−0.713765 + 0.700386i \(0.753011\pi\)
\(234\) 0 0
\(235\) −21.7599 37.6892i −1.41946 2.45857i
\(236\) 0 0
\(237\) 4.96210 2.56485i 0.322323 0.166605i
\(238\) 0 0
\(239\) 22.5944i 1.46151i −0.682638 0.730757i \(-0.739167\pi\)
0.682638 0.730757i \(-0.260833\pi\)
\(240\) 0 0
\(241\) 4.24127 2.44870i 0.273205 0.157735i −0.357138 0.934051i \(-0.616248\pi\)
0.630343 + 0.776317i \(0.282914\pi\)
\(242\) 0 0
\(243\) −14.9334 + 4.47154i −0.957976 + 0.286850i
\(244\) 0 0
\(245\) −26.5124 2.18606i −1.69381 0.139662i
\(246\) 0 0
\(247\) −4.96622 + 8.60175i −0.315993 + 0.547316i
\(248\) 0 0
\(249\) 13.2358 + 8.48618i 0.838785 + 0.537790i
\(250\) 0 0
\(251\) −9.17857 −0.579346 −0.289673 0.957126i \(-0.593547\pi\)
−0.289673 + 0.957126i \(0.593547\pi\)
\(252\) 0 0
\(253\) −0.475401 −0.0298882
\(254\) 0 0
\(255\) 0.575945 + 0.369269i 0.0360671 + 0.0231245i
\(256\) 0 0
\(257\) 6.31055 10.9302i 0.393641 0.681806i −0.599286 0.800535i \(-0.704549\pi\)
0.992927 + 0.118729i \(0.0378819\pi\)
\(258\) 0 0
\(259\) −25.5760 + 13.3954i −1.58922 + 0.832349i
\(260\) 0 0
\(261\) −13.5566 + 6.22610i −0.839132 + 0.385386i
\(262\) 0 0
\(263\) 25.2489 14.5775i 1.55692 0.898886i 0.559367 0.828920i \(-0.311044\pi\)
0.997549 0.0699665i \(-0.0222892\pi\)
\(264\) 0 0
\(265\) 22.2986i 1.36979i
\(266\) 0 0
\(267\) 10.5002 5.42744i 0.642603 0.332154i
\(268\) 0 0
\(269\) 2.23640 + 3.87356i 0.136356 + 0.236175i 0.926115 0.377242i \(-0.123128\pi\)
−0.789759 + 0.613418i \(0.789794\pi\)
\(270\) 0 0
\(271\) 14.4985 + 8.37071i 0.880721 + 0.508485i 0.870896 0.491467i \(-0.163539\pi\)
0.00982495 + 0.999952i \(0.496873\pi\)
\(272\) 0 0
\(273\) 16.8058 7.82849i 1.01713 0.473802i
\(274\) 0 0
\(275\) −2.92283 1.68750i −0.176254 0.101760i
\(276\) 0 0
\(277\) −0.510924 0.884946i −0.0306984 0.0531713i 0.850268 0.526350i \(-0.176440\pi\)
−0.880966 + 0.473179i \(0.843106\pi\)
\(278\) 0 0
\(279\) 19.3022 + 13.6830i 1.15559 + 0.819181i
\(280\) 0 0
\(281\) 13.9453i 0.831907i −0.909386 0.415953i \(-0.863448\pi\)
0.909386 0.415953i \(-0.136552\pi\)
\(282\) 0 0
\(283\) −14.0386 + 8.10519i −0.834508 + 0.481803i −0.855394 0.517978i \(-0.826685\pi\)
0.0208856 + 0.999782i \(0.493351\pi\)
\(284\) 0 0
\(285\) −16.1427 0.751701i −0.956209 0.0445269i
\(286\) 0 0
\(287\) −13.7553 8.71485i −0.811950 0.514421i
\(288\) 0 0
\(289\) 8.49460 14.7131i 0.499682 0.865475i
\(290\) 0 0
\(291\) 4.80746 7.49814i 0.281818 0.439549i
\(292\) 0 0
\(293\) −19.2067 −1.12207 −0.561034 0.827793i \(-0.689596\pi\)
−0.561034 + 0.827793i \(0.689596\pi\)
\(294\) 0 0
\(295\) 28.6822 1.66994
\(296\) 0 0
\(297\) 0.695781 + 1.72198i 0.0403733 + 0.0999192i
\(298\) 0 0
\(299\) 2.69054 4.66015i 0.155598 0.269503i
\(300\) 0 0
\(301\) 1.12362 + 0.711886i 0.0647646 + 0.0410324i
\(302\) 0 0
\(303\) 1.03753 22.2809i 0.0596047 1.28000i
\(304\) 0 0
\(305\) −31.1812 + 18.0025i −1.78543 + 1.03082i
\(306\) 0 0
\(307\) 0.480498i 0.0274235i −0.999906 0.0137117i \(-0.995635\pi\)
0.999906 0.0137117i \(-0.00436472\pi\)
\(308\) 0 0
\(309\) −4.48265 8.67239i −0.255009 0.493355i
\(310\) 0 0
\(311\) −4.66653 8.08266i −0.264615 0.458326i 0.702848 0.711340i \(-0.251911\pi\)
−0.967463 + 0.253014i \(0.918578\pi\)
\(312\) 0 0
\(313\) 15.5147 + 8.95742i 0.876943 + 0.506303i 0.869649 0.493670i \(-0.164345\pi\)
0.00729351 + 0.999973i \(0.497678\pi\)
\(314\) 0 0
\(315\) 23.8702 + 18.4417i 1.34493 + 1.03907i
\(316\) 0 0
\(317\) 19.3275 + 11.1587i 1.08554 + 0.626736i 0.932385 0.361467i \(-0.117724\pi\)
0.153153 + 0.988202i \(0.451057\pi\)
\(318\) 0 0
\(319\) 0.888674 + 1.53923i 0.0497562 + 0.0861802i
\(320\) 0 0
\(321\) −7.00459 13.5515i −0.390958 0.756370i
\(322\) 0 0
\(323\) 0.255174i 0.0141983i
\(324\) 0 0
\(325\) 33.0836 19.1008i 1.83515 1.05952i
\(326\) 0 0
\(327\) −0.360721 + 7.74643i −0.0199479 + 0.428378i
\(328\) 0 0
\(329\) 26.8396 14.0572i 1.47971 0.774996i
\(330\) 0 0
\(331\) 7.05860 12.2259i 0.387976 0.671994i −0.604201 0.796832i \(-0.706508\pi\)
0.992177 + 0.124838i \(0.0398411\pi\)
\(332\) 0 0
\(333\) 32.5957 + 3.04230i 1.78623 + 0.166717i
\(334\) 0 0
\(335\) −10.2134 −0.558018
\(336\) 0 0
\(337\) −18.4042 −1.00254 −0.501270 0.865291i \(-0.667134\pi\)
−0.501270 + 0.865291i \(0.667134\pi\)
\(338\) 0 0
\(339\) −3.73945 + 5.83237i −0.203099 + 0.316771i
\(340\) 0 0
\(341\) 1.40945 2.44124i 0.0763259 0.132200i
\(342\) 0 0
\(343\) 2.27965 18.3794i 0.123089 0.992396i
\(344\) 0 0
\(345\) 8.74557 + 0.407247i 0.470846 + 0.0219254i
\(346\) 0 0
\(347\) −27.6474 + 15.9623i −1.48419 + 0.856899i −0.999838 0.0179729i \(-0.994279\pi\)
−0.484354 + 0.874872i \(0.660945\pi\)
\(348\) 0 0
\(349\) 14.7367i 0.788840i −0.918930 0.394420i \(-0.870945\pi\)
0.918930 0.394420i \(-0.129055\pi\)
\(350\) 0 0
\(351\) −20.8175 2.92510i −1.11116 0.156130i
\(352\) 0 0
\(353\) −13.5686 23.5016i −0.722185 1.25086i −0.960122 0.279581i \(-0.909804\pi\)
0.237937 0.971281i \(-0.423529\pi\)
\(354\) 0 0
\(355\) 19.0551 + 11.0015i 1.01134 + 0.583899i
\(356\) 0 0
\(357\) −0.273352 + 0.390055i −0.0144673 + 0.0206439i
\(358\) 0 0
\(359\) 16.9479 + 9.78486i 0.894475 + 0.516425i 0.875404 0.483393i \(-0.160596\pi\)
0.0190713 + 0.999818i \(0.493929\pi\)
\(360\) 0 0
\(361\) −6.48633 11.2346i −0.341386 0.591297i
\(362\) 0 0
\(363\) −16.7287 + 8.64686i −0.878029 + 0.453842i
\(364\) 0 0
\(365\) 0.894875i 0.0468399i
\(366\) 0 0
\(367\) 1.16258 0.671213i 0.0606860 0.0350371i −0.469350 0.883012i \(-0.655512\pi\)
0.530036 + 0.847975i \(0.322178\pi\)
\(368\) 0 0
\(369\) 7.70603 + 16.7790i 0.401160 + 0.873478i
\(370\) 0 0
\(371\) −15.5109 0.638387i −0.805285 0.0331434i
\(372\) 0 0
\(373\) −6.52378 + 11.2995i −0.337788 + 0.585066i −0.984016 0.178078i \(-0.943012\pi\)
0.646228 + 0.763144i \(0.276345\pi\)
\(374\) 0 0
\(375\) 24.6172 + 15.7834i 1.27123 + 0.815053i
\(376\) 0 0
\(377\) −20.1178 −1.03612
\(378\) 0 0
\(379\) 20.0822 1.03156 0.515778 0.856722i \(-0.327503\pi\)
0.515778 + 0.856722i \(0.327503\pi\)
\(380\) 0 0
\(381\) −18.8383 12.0782i −0.965113 0.618786i
\(382\) 0 0
\(383\) 11.2613 19.5052i 0.575428 0.996670i −0.420567 0.907261i \(-0.638169\pi\)
0.995995 0.0894085i \(-0.0284977\pi\)
\(384\) 0 0
\(385\) 1.92337 3.03581i 0.0980242 0.154719i
\(386\) 0 0
\(387\) −0.629479 1.37061i −0.0319982 0.0696723i
\(388\) 0 0
\(389\) 32.1899 18.5848i 1.63209 0.942289i 0.648645 0.761091i \(-0.275336\pi\)
0.983447 0.181197i \(-0.0579973\pi\)
\(390\) 0 0
\(391\) 0.138245i 0.00699136i
\(392\) 0 0
\(393\) −8.19750 + 4.23719i −0.413509 + 0.213738i
\(394\) 0 0
\(395\) 6.12795 + 10.6139i 0.308330 + 0.534044i
\(396\) 0 0
\(397\) −24.0288 13.8730i −1.20597 0.696268i −0.244095 0.969751i \(-0.578491\pi\)
−0.961877 + 0.273483i \(0.911824\pi\)
\(398\) 0 0
\(399\) 0.985032 11.2073i 0.0493133 0.561068i
\(400\) 0 0
\(401\) 19.7233 + 11.3872i 0.984933 + 0.568651i 0.903756 0.428048i \(-0.140799\pi\)
0.0811773 + 0.996700i \(0.474132\pi\)
\(402\) 0 0
\(403\) 15.9536 + 27.6324i 0.794704 + 1.37647i
\(404\) 0 0
\(405\) −11.3246 32.2738i −0.562725 1.60370i
\(406\) 0 0
\(407\) 3.90038i 0.193334i
\(408\) 0 0
\(409\) −22.6849 + 13.0972i −1.12170 + 0.647613i −0.941834 0.336078i \(-0.890899\pi\)
−0.179865 + 0.983691i \(0.557566\pi\)
\(410\) 0 0
\(411\) −8.73813 0.406900i −0.431020 0.0200709i
\(412\) 0 0
\(413\) −0.821144 + 19.9513i −0.0404059 + 0.981741i
\(414\) 0 0
\(415\) −17.2487 + 29.8757i −0.846707 + 1.46654i
\(416\) 0 0
\(417\) −19.8799 + 31.0065i −0.973524 + 1.51839i
\(418\) 0 0
\(419\) 8.93992 0.436744 0.218372 0.975866i \(-0.429925\pi\)
0.218372 + 0.975866i \(0.429925\pi\)
\(420\) 0 0
\(421\) −5.00735 −0.244043 −0.122022 0.992527i \(-0.538938\pi\)
−0.122022 + 0.992527i \(0.538938\pi\)
\(422\) 0 0
\(423\) −34.2060 3.19260i −1.66315 0.155229i
\(424\) 0 0
\(425\) −0.490719 + 0.849951i −0.0238034 + 0.0412287i
\(426\) 0 0
\(427\) −11.6298 22.2050i −0.562807 1.07458i
\(428\) 0 0
\(429\) −0.116503 + 2.50189i −0.00562482 + 0.120792i
\(430\) 0 0
\(431\) −5.62468 + 3.24741i −0.270931 + 0.156422i −0.629311 0.777154i \(-0.716663\pi\)
0.358379 + 0.933576i \(0.383329\pi\)
\(432\) 0 0
\(433\) 1.05254i 0.0505818i −0.999680 0.0252909i \(-0.991949\pi\)
0.999680 0.0252909i \(-0.00805120\pi\)
\(434\) 0 0
\(435\) −15.0296 29.0772i −0.720616 1.39414i
\(436\) 0 0
\(437\) −1.63271 2.82794i −0.0781032 0.135279i
\(438\) 0 0
\(439\) −25.8990 14.9528i −1.23609 0.713658i −0.267799 0.963475i \(-0.586296\pi\)
−0.968293 + 0.249817i \(0.919630\pi\)
\(440\) 0 0
\(441\) −13.5114 + 16.0761i −0.643400 + 0.765530i
\(442\) 0 0
\(443\) 26.7104 + 15.4212i 1.26905 + 0.732685i 0.974808 0.223047i \(-0.0716002\pi\)
0.294240 + 0.955732i \(0.404934\pi\)
\(444\) 0 0
\(445\) 12.9672 + 22.4599i 0.614707 + 1.06470i
\(446\) 0 0
\(447\) −9.68695 18.7409i −0.458177 0.886415i
\(448\) 0 0
\(449\) 36.6953i 1.73176i −0.500253 0.865879i \(-0.666760\pi\)
0.500253 0.865879i \(-0.333240\pi\)
\(450\) 0 0
\(451\) 1.90510 1.09991i 0.0897076 0.0517927i
\(452\) 0 0
\(453\) 0.662071 14.2179i 0.0311068 0.668015i
\(454\) 0 0
\(455\) 18.8733 + 36.0351i 0.884795 + 1.68935i
\(456\) 0 0
\(457\) 11.8750 20.5681i 0.555489 0.962135i −0.442376 0.896830i \(-0.645864\pi\)
0.997865 0.0653057i \(-0.0208022\pi\)
\(458\) 0 0
\(459\) 0.500745 0.202331i 0.0233728 0.00944400i
\(460\) 0 0
\(461\) 10.5938 0.493404 0.246702 0.969091i \(-0.420653\pi\)
0.246702 + 0.969091i \(0.420653\pi\)
\(462\) 0 0
\(463\) 0.367649 0.0170861 0.00854305 0.999964i \(-0.497281\pi\)
0.00854305 + 0.999964i \(0.497281\pi\)
\(464\) 0 0
\(465\) −28.0197 + 43.7021i −1.29938 + 2.02663i
\(466\) 0 0
\(467\) −15.7847 + 27.3399i −0.730428 + 1.26514i 0.226272 + 0.974064i \(0.427346\pi\)
−0.956700 + 0.291075i \(0.905987\pi\)
\(468\) 0 0
\(469\) 0.292400 7.10444i 0.0135018 0.328053i
\(470\) 0 0
\(471\) 22.3964 + 1.04291i 1.03197 + 0.0480549i
\(472\) 0 0
\(473\) −0.155621 + 0.0898478i −0.00715546 + 0.00413120i
\(474\) 0 0
\(475\) 23.1821i 1.06367i
\(476\) 0 0
\(477\) 14.3604 + 10.1799i 0.657518 + 0.466104i
\(478\) 0 0
\(479\) 6.01497 + 10.4182i 0.274831 + 0.476022i 0.970093 0.242735i \(-0.0780447\pi\)
−0.695261 + 0.718757i \(0.744711\pi\)
\(480\) 0 0
\(481\) 38.2337 + 22.0742i 1.74331 + 1.00650i
\(482\) 0 0
\(483\) −0.533658 + 6.07176i −0.0242823 + 0.276275i
\(484\) 0 0
\(485\) 16.9247 + 9.77148i 0.768511 + 0.443700i
\(486\) 0 0
\(487\) −9.47737 16.4153i −0.429461 0.743848i 0.567365 0.823467i \(-0.307963\pi\)
−0.996825 + 0.0796188i \(0.974630\pi\)
\(488\) 0 0
\(489\) −3.36159 + 1.73756i −0.152016 + 0.0785753i
\(490\) 0 0
\(491\) 15.8373i 0.714727i −0.933965 0.357364i \(-0.883676\pi\)
0.933965 0.357364i \(-0.116324\pi\)
\(492\) 0 0
\(493\) 0.447602 0.258423i 0.0201590 0.0116388i
\(494\) 0 0
\(495\) −3.70313 + 1.70073i −0.166443 + 0.0764419i
\(496\) 0 0
\(497\) −8.19817 + 12.9398i −0.367738 + 0.580429i
\(498\) 0 0
\(499\) 10.0988 17.4916i 0.452084 0.783033i −0.546431 0.837504i \(-0.684014\pi\)
0.998515 + 0.0544710i \(0.0173473\pi\)
\(500\) 0 0
\(501\) −0.677418 0.434329i −0.0302648 0.0194044i
\(502\) 0 0
\(503\) −36.8663 −1.64379 −0.821893 0.569641i \(-0.807082\pi\)
−0.821893 + 0.569641i \(0.807082\pi\)
\(504\) 0 0
\(505\) 48.9400 2.17780
\(506\) 0 0
\(507\) −4.91034 3.14829i −0.218076 0.139820i
\(508\) 0 0
\(509\) −5.13197 + 8.88884i −0.227471 + 0.393991i −0.957058 0.289897i \(-0.906379\pi\)
0.729587 + 0.683888i \(0.239712\pi\)
\(510\) 0 0
\(511\) 0.622475 + 0.0256194i 0.0275367 + 0.00113334i
\(512\) 0 0
\(513\) −7.85364 + 10.0528i −0.346747 + 0.443842i
\(514\) 0 0
\(515\) 18.5502 10.7100i 0.817419 0.471937i
\(516\) 0 0
\(517\) 4.09307i 0.180013i
\(518\) 0 0
\(519\) 14.2353 7.35804i 0.624859 0.322982i
\(520\) 0 0
\(521\) 7.98887 + 13.8371i 0.349999 + 0.606216i 0.986249 0.165267i \(-0.0528486\pi\)
−0.636250 + 0.771483i \(0.719515\pi\)
\(522\) 0 0
\(523\) −0.676700 0.390693i −0.0295900 0.0170838i 0.485132 0.874441i \(-0.338772\pi\)
−0.514722 + 0.857357i \(0.672105\pi\)
\(524\) 0 0
\(525\) −24.8335 + 35.4358i −1.08382 + 1.54654i
\(526\) 0 0
\(527\) −0.709904 0.409863i −0.0309239 0.0178539i
\(528\) 0 0
\(529\) −10.6155 18.3865i −0.461541 0.799413i
\(530\) 0 0
\(531\) 13.0942 18.4715i 0.568238 0.801595i
\(532\) 0 0
\(533\) 24.8998i 1.07853i
\(534\) 0 0
\(535\) 28.9865 16.7354i 1.25320 0.723534i
\(536\) 0 0
\(537\) −3.53808 0.164754i −0.152679 0.00710967i
\(538\) 0 0
\(539\) 2.05664 + 1.42481i 0.0885859 + 0.0613709i
\(540\) 0 0
\(541\) 3.63362 6.29362i 0.156222 0.270584i −0.777282 0.629153i \(-0.783402\pi\)
0.933503 + 0.358569i \(0.116735\pi\)
\(542\) 0 0
\(543\) −16.4716 + 25.6905i −0.706863 + 1.10249i
\(544\) 0 0
\(545\) −17.0150 −0.728845
\(546\) 0 0
\(547\) −41.2546 −1.76392 −0.881960 0.471325i \(-0.843776\pi\)
−0.881960 + 0.471325i \(0.843776\pi\)
\(548\) 0 0
\(549\) −2.64131 + 28.2994i −0.112729 + 1.20779i
\(550\) 0 0
\(551\) −6.10409 + 10.5726i −0.260043 + 0.450408i
\(552\) 0 0
\(553\) −7.55847 + 3.95873i −0.321419 + 0.168342i
\(554\) 0 0
\(555\) −3.34121 + 71.7521i −0.141826 + 3.04571i
\(556\) 0 0
\(557\) −5.48798 + 3.16849i −0.232533 + 0.134253i −0.611740 0.791059i \(-0.709530\pi\)
0.379207 + 0.925312i \(0.376197\pi\)
\(558\) 0 0
\(559\) 2.03398i 0.0860281i
\(560\) 0 0
\(561\) −0.0295459 0.0571611i −0.00124743 0.00241335i
\(562\) 0 0
\(563\) 7.73130 + 13.3910i 0.325836 + 0.564364i 0.981681 0.190531i \(-0.0610211\pi\)
−0.655846 + 0.754895i \(0.727688\pi\)
\(564\) 0 0
\(565\) −13.1647 7.60067i −0.553845 0.319763i
\(566\) 0 0
\(567\) 22.7739 6.95343i 0.956413 0.292017i
\(568\) 0 0
\(569\) 10.2364 + 5.90999i 0.429132 + 0.247760i 0.698977 0.715144i \(-0.253639\pi\)
−0.269845 + 0.962904i \(0.586972\pi\)
\(570\) 0 0
\(571\) 18.0386 + 31.2438i 0.754892 + 1.30751i 0.945428 + 0.325831i \(0.105644\pi\)
−0.190536 + 0.981680i \(0.561023\pi\)
\(572\) 0 0
\(573\) 17.8905 + 34.6119i 0.747385 + 1.44593i
\(574\) 0 0
\(575\) 12.5593i 0.523759i
\(576\) 0 0
\(577\) −20.4253 + 11.7926i −0.850316 + 0.490930i −0.860758 0.509015i \(-0.830010\pi\)
0.0104412 + 0.999945i \(0.496676\pi\)
\(578\) 0 0
\(579\) 0.776646 16.6784i 0.0322763 0.693130i
\(580\) 0 0
\(581\) −20.2877 12.8535i −0.841676 0.533254i
\(582\) 0 0
\(583\) 1.04860 1.81623i 0.0434285 0.0752204i
\(584\) 0 0
\(585\) 4.28642 45.9254i 0.177222 1.89878i
\(586\) 0 0
\(587\) −0.287490 −0.0118660 −0.00593298 0.999982i \(-0.501889\pi\)
−0.00593298 + 0.999982i \(0.501889\pi\)
\(588\) 0 0
\(589\) 19.3623 0.797812
\(590\) 0 0
\(591\) −14.3735 + 22.4182i −0.591247 + 0.922160i
\(592\) 0 0
\(593\) −5.71589 + 9.90021i −0.234723 + 0.406553i −0.959192 0.282755i \(-0.908752\pi\)
0.724469 + 0.689308i \(0.242085\pi\)
\(594\) 0 0
\(595\) −0.882803 0.559311i −0.0361914 0.0229295i
\(596\) 0 0
\(597\) 7.93076 + 0.369304i 0.324584 + 0.0151146i
\(598\) 0 0
\(599\) −18.7842 + 10.8451i −0.767502 + 0.443117i −0.831983 0.554802i \(-0.812794\pi\)
0.0644810 + 0.997919i \(0.479461\pi\)
\(600\) 0 0
\(601\) 23.7036i 0.966889i −0.875375 0.483445i \(-0.839385\pi\)
0.875375 0.483445i \(-0.160615\pi\)
\(602\) 0 0
\(603\) −4.66268 + 6.57749i −0.189879 + 0.267856i
\(604\) 0 0
\(605\) −20.6591 35.7826i −0.839912 1.45477i
\(606\) 0 0
\(607\) 18.5031 + 10.6828i 0.751017 + 0.433600i 0.826061 0.563580i \(-0.190577\pi\)
−0.0750445 + 0.997180i \(0.523910\pi\)
\(608\) 0 0
\(609\) 20.6564 9.62217i 0.837039 0.389910i
\(610\) 0 0
\(611\) −40.1225 23.1647i −1.62318 0.937145i
\(612\) 0 0
\(613\) −19.8248 34.3376i −0.800716 1.38688i −0.919145 0.393918i \(-0.871119\pi\)
0.118429 0.992962i \(-0.462214\pi\)
\(614\) 0 0
\(615\) −35.9888 + 18.6022i −1.45121 + 0.750112i
\(616\) 0 0
\(617\) 28.6296i 1.15258i −0.817244 0.576292i \(-0.804499\pi\)
0.817244 0.576292i \(-0.195501\pi\)
\(618\) 0 0
\(619\) 32.9529 19.0254i 1.32449 0.764694i 0.340047 0.940408i \(-0.389557\pi\)
0.984441 + 0.175714i \(0.0562235\pi\)
\(620\) 0 0
\(621\) 4.25485 5.44628i 0.170741 0.218552i
\(622\) 0 0
\(623\) −15.9944 + 8.37701i −0.640801 + 0.335618i
\(624\) 0 0
\(625\) −8.47450 + 14.6783i −0.338980 + 0.587130i
\(626\) 0 0
\(627\) 1.27948 + 0.820342i 0.0510974 + 0.0327613i
\(628\) 0 0
\(629\) −1.13422 −0.0452242
\(630\) 0 0
\(631\) 3.65235 0.145398 0.0726989 0.997354i \(-0.476839\pi\)
0.0726989 + 0.997354i \(0.476839\pi\)
\(632\) 0 0
\(633\) 1.26912 + 0.813704i 0.0504432 + 0.0323418i
\(634\) 0 0
\(635\) 24.5498 42.5215i 0.974228 1.68741i
\(636\) 0 0
\(637\) −25.6064 + 12.0966i −1.01456 + 0.479286i
\(638\) 0 0
\(639\) 15.7842 7.24916i 0.624413 0.286772i
\(640\) 0 0
\(641\) 21.2563 12.2723i 0.839574 0.484728i −0.0175456 0.999846i \(-0.505585\pi\)
0.857119 + 0.515118i \(0.172252\pi\)
\(642\) 0 0
\(643\) 27.3936i 1.08030i 0.841569 + 0.540149i \(0.181632\pi\)
−0.841569 + 0.540149i \(0.818368\pi\)
\(644\) 0 0
\(645\) 2.93980 1.51955i 0.115754 0.0598321i
\(646\) 0 0
\(647\) 16.1181 + 27.9173i 0.633667 + 1.09754i 0.986796 + 0.161969i \(0.0517845\pi\)
−0.353129 + 0.935575i \(0.614882\pi\)
\(648\) 0 0
\(649\) −2.33618 1.34879i −0.0917029 0.0529447i
\(650\) 0 0
\(651\) −29.5970 20.7417i −1.16000 0.812930i
\(652\) 0 0
\(653\) −13.5027 7.79579i −0.528401 0.305073i 0.211964 0.977278i \(-0.432014\pi\)
−0.740365 + 0.672205i \(0.765347\pi\)
\(654\) 0 0
\(655\) −10.1235 17.5344i −0.395558 0.685126i
\(656\) 0 0
\(657\) −0.576304 0.408533i −0.0224838 0.0159384i
\(658\) 0 0
\(659\) 35.1100i 1.36769i −0.729626 0.683847i \(-0.760306\pi\)
0.729626 0.683847i \(-0.239694\pi\)
\(660\) 0 0
\(661\) 6.96082 4.01883i 0.270745 0.156314i −0.358481 0.933537i \(-0.616705\pi\)
0.629226 + 0.777222i \(0.283372\pi\)
\(662\) 0 0
\(663\) 0.727541 + 0.0338787i 0.0282553 + 0.00131574i
\(664\) 0 0
\(665\) 24.6642 + 1.01511i 0.956436 + 0.0393644i
\(666\) 0 0
\(667\) 3.30700 5.72789i 0.128047 0.221785i
\(668\) 0 0
\(669\) 1.13467 1.76974i 0.0438690 0.0684220i
\(670\) 0 0
\(671\) 3.38629 0.130726
\(672\) 0 0
\(673\) 28.1744 1.08604 0.543022 0.839719i \(-0.317280\pi\)
0.543022 + 0.839719i \(0.317280\pi\)
\(674\) 0 0
\(675\) 45.4917 18.3814i 1.75098 0.707499i
\(676\) 0 0
\(677\) −17.3844 + 30.1106i −0.668135 + 1.15724i 0.310290 + 0.950642i \(0.399574\pi\)
−0.978425 + 0.206602i \(0.933760\pi\)
\(678\) 0 0
\(679\) −7.28158 + 11.4931i −0.279441 + 0.441063i
\(680\) 0 0
\(681\) 1.07510 23.0877i 0.0411980 0.884721i
\(682\) 0 0
\(683\) 40.7393 23.5209i 1.55885 0.900001i 0.561479 0.827491i \(-0.310232\pi\)
0.997368 0.0725098i \(-0.0231009\pi\)
\(684\) 0 0
\(685\) 19.1933i 0.733339i
\(686\) 0 0
\(687\) 8.82192 + 17.0674i 0.336577 + 0.651161i
\(688\) 0 0
\(689\) 11.8691 + 20.5579i 0.452177 + 0.783194i
\(690\) 0 0
\(691\) 27.1758 + 15.6900i 1.03382 + 0.596874i 0.918076 0.396406i \(-0.129743\pi\)
0.115740 + 0.993279i \(0.463076\pi\)
\(692\) 0 0
\(693\) −1.07701 2.62459i −0.0409121 0.0996998i
\(694\) 0 0
\(695\) −69.9874 40.4073i −2.65478 1.53274i
\(696\) 0 0
\(697\) −0.319850 0.553997i −0.0121152 0.0209841i
\(698\) 0 0
\(699\) −6.50569 12.5863i −0.246068 0.476057i
\(700\) 0 0
\(701\) 29.9818i 1.13240i −0.824268 0.566199i \(-0.808413\pi\)
0.824268 0.566199i \(-0.191587\pi\)
\(702\) 0 0
\(703\) 23.2015 13.3954i 0.875061 0.505217i
\(704\) 0 0
\(705\) 3.50628 75.2968i 0.132054 2.83584i
\(706\) 0 0
\(707\) −1.40111 + 34.0427i −0.0526940 + 1.28031i
\(708\) 0 0
\(709\) −11.5451 + 19.9968i −0.433587 + 0.750995i −0.997179 0.0750583i \(-0.976086\pi\)
0.563592 + 0.826053i \(0.309419\pi\)
\(710\) 0 0
\(711\) 9.63298 + 0.899089i 0.361265 + 0.0337185i
\(712\) 0 0
\(713\) −10.4899 −0.392849
\(714\) 0 0
\(715\) −5.49540 −0.205516
\(716\) 0 0
\(717\) 21.1227 32.9448i 0.788841 1.23035i
\(718\) 0 0
\(719\) 22.5340 39.0300i 0.840376 1.45557i −0.0492012 0.998789i \(-0.515668\pi\)
0.889577 0.456785i \(-0.150999\pi\)
\(720\) 0 0
\(721\) 6.91877 + 13.2101i 0.257669 + 0.491971i
\(722\) 0 0
\(723\) 8.47337 + 0.394571i 0.315128 + 0.0146743i
\(724\) 0 0
\(725\) 40.6638 23.4772i 1.51022 0.871923i
\(726\) 0 0
\(727\) 3.14662i 0.116702i 0.998296 + 0.0583508i \(0.0185842\pi\)
−0.998296 + 0.0583508i \(0.981416\pi\)
\(728\) 0 0
\(729\) −25.9545 7.44070i −0.961278 0.275582i
\(730\) 0 0
\(731\) 0.0261274 + 0.0452541i 0.000966358 + 0.00167378i
\(732\) 0 0
\(733\) 14.9590 + 8.63657i 0.552522 + 0.318999i 0.750139 0.661281i \(-0.229987\pi\)
−0.197616 + 0.980279i \(0.563320\pi\)
\(734\) 0 0
\(735\) −36.6138 27.9729i −1.35052 1.03180i
\(736\) 0 0
\(737\) 0.831885 + 0.480289i 0.0306429 + 0.0176917i
\(738\) 0 0
\(739\) 0.996550 + 1.72607i 0.0366587 + 0.0634947i 0.883773 0.467917i \(-0.154995\pi\)
−0.847114 + 0.531411i \(0.821662\pi\)
\(740\) 0 0
\(741\) −15.2827 + 7.89942i −0.561423 + 0.290192i
\(742\) 0 0
\(743\) 5.54435i 0.203402i 0.994815 + 0.101701i \(0.0324286\pi\)
−0.994815 + 0.101701i \(0.967571\pi\)
\(744\) 0 0
\(745\) 40.0867 23.1441i 1.46866 0.847934i
\(746\) 0 0
\(747\) 11.3656 + 24.7473i 0.415846 + 0.905456i
\(748\) 0 0
\(749\) 10.8113 + 20.6422i 0.395036 + 0.754248i
\(750\) 0 0
\(751\) −22.0897 + 38.2605i −0.806065 + 1.39615i 0.109504 + 0.993986i \(0.465074\pi\)
−0.915569 + 0.402160i \(0.868260\pi\)
\(752\) 0 0
\(753\) −13.3832 8.58069i −0.487711 0.312698i
\(754\) 0 0
\(755\) 31.2296 1.13656
\(756\) 0 0
\(757\) 10.6250 0.386172 0.193086 0.981182i \(-0.438150\pi\)
0.193086 + 0.981182i \(0.438150\pi\)
\(758\) 0 0
\(759\) −0.693179 0.444434i −0.0251608 0.0161319i
\(760\) 0 0
\(761\) −13.9084 + 24.0900i −0.504178 + 0.873262i 0.495810 + 0.868431i \(0.334871\pi\)
−0.999988 + 0.00483132i \(0.998462\pi\)
\(762\) 0 0
\(763\) 0.487125 11.8357i 0.0176351 0.428480i
\(764\) 0 0
\(765\) 0.494565 + 1.07686i 0.0178811 + 0.0389339i
\(766\) 0 0
\(767\) 26.4432 15.2670i 0.954809 0.551259i
\(768\) 0 0
\(769\) 10.2707i 0.370369i −0.982704 0.185185i \(-0.940712\pi\)
0.982704 0.185185i \(-0.0592883\pi\)
\(770\) 0 0
\(771\) 19.4196 10.0377i 0.699379 0.361500i
\(772\) 0 0
\(773\) −20.2953 35.1525i −0.729972 1.26435i −0.956895 0.290435i \(-0.906200\pi\)
0.226923 0.973913i \(-0.427133\pi\)
\(774\) 0 0
\(775\) −64.4933 37.2352i −2.31667 1.33753i
\(776\) 0 0
\(777\) −49.8151 4.37834i −1.78711 0.157072i
\(778\) 0 0
\(779\) 13.0857 + 7.55502i 0.468843 + 0.270687i
\(780\) 0 0
\(781\) −1.03470 1.79215i −0.0370244 0.0641282i
\(782\) 0 0
\(783\) −25.5873 3.59530i −0.914415 0.128486i
\(784\) 0 0
\(785\) 49.1938i 1.75580i
\(786\) 0 0
\(787\) −22.6225 + 13.0611i −0.806404 + 0.465578i −0.845706 0.533650i \(-0.820820\pi\)
0.0393014 + 0.999227i \(0.487487\pi\)
\(788\) 0 0
\(789\) 50.4432 + 2.34894i 1.79583 + 0.0836246i
\(790\) 0 0
\(791\) 5.66392 8.93980i 0.201386 0.317863i
\(792\) 0 0
\(793\) −19.1647 + 33.1943i −0.680560 + 1.17876i
\(794\) 0 0
\(795\) −20.8461 + 32.5134i −0.739334 + 1.15313i
\(796\) 0 0
\(797\) −38.0284 −1.34704 −0.673518 0.739171i \(-0.735218\pi\)
−0.673518 + 0.739171i \(0.735218\pi\)
\(798\) 0 0
\(799\) 1.19025 0.0421080
\(800\) 0 0
\(801\) 20.3842 + 1.90255i 0.720240 + 0.0672233i
\(802\) 0 0
\(803\) −0.0420818 + 0.0728879i −0.00148504 + 0.00257216i
\(804\) 0 0
\(805\) −13.3622 0.549955i −0.470957 0.0193834i
\(806\) 0 0
\(807\) −0.360362 + 7.73874i −0.0126854 + 0.272416i
\(808\) 0 0
\(809\) −25.8553 + 14.9276i −0.909024 + 0.524825i −0.880117 0.474757i \(-0.842536\pi\)
−0.0289068 + 0.999582i \(0.509203\pi\)
\(810\) 0 0
\(811\) 15.4099i 0.541114i 0.962704 + 0.270557i \(0.0872079\pi\)
−0.962704 + 0.270557i \(0.912792\pi\)
\(812\) 0 0
\(813\) 13.3147 + 25.7594i 0.466967 + 0.903420i
\(814\) 0 0
\(815\) −4.15139 7.19042i −0.145417 0.251869i
\(816\) 0 0
\(817\) −1.06892 0.617144i −0.0373969 0.0215911i
\(818\) 0 0
\(819\) 31.8230 + 4.29644i 1.11199 + 0.150130i
\(820\) 0 0
\(821\) 25.0908 + 14.4862i 0.875674 + 0.505570i 0.869230 0.494409i \(-0.164615\pi\)
0.00644422 + 0.999979i \(0.497949\pi\)
\(822\) 0 0
\(823\) −3.58962 6.21741i −0.125126 0.216725i 0.796656 0.604433i \(-0.206600\pi\)
−0.921782 + 0.387708i \(0.873267\pi\)
\(824\) 0 0
\(825\) −2.68419 5.19298i −0.0934513 0.180796i
\(826\) 0 0
\(827\) 37.6512i 1.30926i −0.755949 0.654630i \(-0.772824\pi\)
0.755949 0.654630i \(-0.227176\pi\)
\(828\) 0 0
\(829\) −43.4385 + 25.0792i −1.50868 + 0.871038i −0.508733 + 0.860924i \(0.669886\pi\)
−0.999949 + 0.0101139i \(0.996781\pi\)
\(830\) 0 0
\(831\) 0.0823277 1.76798i 0.00285592 0.0613304i
\(832\) 0 0
\(833\) 0.414330 0.598065i 0.0143557 0.0207217i
\(834\) 0 0
\(835\) 0.882803 1.52906i 0.0305506 0.0529153i
\(836\) 0 0
\(837\) 15.3526 + 37.9960i 0.530665 + 1.31333i
\(838\) 0 0
\(839\) 10.2849 0.355073 0.177536 0.984114i \(-0.443187\pi\)
0.177536 + 0.984114i \(0.443187\pi\)
\(840\) 0 0
\(841\) 4.27275 0.147336
\(842\) 0 0
\(843\) 13.0369 20.3335i 0.449016 0.700324i
\(844\) 0 0
\(845\) 6.39910 11.0836i 0.220136 0.381286i
\(846\) 0 0
\(847\) 25.4818 13.3460i 0.875566 0.458575i
\(848\) 0 0
\(849\) −28.0468 1.30603i −0.962564 0.0448228i
\(850\) 0 0
\(851\) −12.5698 + 7.25719i −0.430888 + 0.248773i
\(852\) 0 0
\(853\) 29.0278i 0.993891i 0.867782 + 0.496946i \(0.165545\pi\)
−0.867782 + 0.496946i \(0.834455\pi\)
\(854\) 0 0
\(855\) −22.8348 16.1872i −0.780933 0.553591i
\(856\) 0 0
\(857\) 7.98887 + 13.8371i 0.272895 + 0.472668i 0.969602 0.244688i \(-0.0786856\pi\)
−0.696707 + 0.717356i \(0.745352\pi\)
\(858\) 0 0
\(859\) 4.98253 + 2.87666i 0.170002 + 0.0981505i 0.582587 0.812769i \(-0.302041\pi\)
−0.412585 + 0.910919i \(0.635374\pi\)
\(860\) 0 0
\(861\) −11.9093 25.5664i −0.405869 0.871299i
\(862\) 0 0
\(863\) 10.7735 + 6.22006i 0.366733 + 0.211733i 0.672030 0.740524i \(-0.265422\pi\)
−0.305297 + 0.952257i \(0.598756\pi\)
\(864\) 0 0
\(865\) 17.5798 + 30.4492i 0.597733 + 1.03530i
\(866\) 0 0
\(867\) 26.1406 13.5118i 0.887781 0.458883i
\(868\) 0 0
\(869\) 1.15268i 0.0391019i
\(870\) 0 0
\(871\) −9.41612 + 5.43640i −0.319053 + 0.184205i
\(872\) 0 0
\(873\) 14.0194 6.43867i 0.474486 0.217916i
\(874\) 0 0
\(875\) −37.7331 23.9062i −1.27561 0.808179i
\(876\) 0 0
\(877\) 21.9672 38.0484i 0.741781 1.28480i −0.209902 0.977722i \(-0.567315\pi\)
0.951684 0.307080i \(-0.0993521\pi\)
\(878\) 0 0
\(879\) −28.0052 17.9556i −0.944591 0.605628i
\(880\) 0 0
\(881\) 51.0805 1.72095 0.860473 0.509496i \(-0.170168\pi\)
0.860473 + 0.509496i \(0.170168\pi\)
\(882\) 0 0
\(883\) 34.3823 1.15706 0.578529 0.815662i \(-0.303627\pi\)
0.578529 + 0.815662i \(0.303627\pi\)
\(884\) 0 0
\(885\) 41.8213 + 26.8139i 1.40581 + 0.901339i
\(886\) 0 0
\(887\) −20.8829 + 36.1703i −0.701180 + 1.21448i 0.266873 + 0.963732i \(0.414010\pi\)
−0.968053 + 0.250748i \(0.919324\pi\)
\(888\) 0 0
\(889\) 28.8751 + 18.2942i 0.968440 + 0.613567i
\(890\) 0 0
\(891\) −0.595295 + 3.16126i −0.0199431 + 0.105906i
\(892\) 0 0
\(893\) −24.3477 + 14.0572i −0.814765 + 0.470405i
\(894\) 0 0
\(895\) 7.77140i 0.259769i
\(896\) 0 0
\(897\) 8.27965 4.27965i 0.276449 0.142893i
\(898\) 0 0
\(899\) 19.6089 + 33.9636i 0.653993 + 1.13275i
\(900\) 0 0
\(901\) −0.528153 0.304929i −0.0175953 0.0101587i
\(902\) 0 0
\(903\) 0.972832 + 2.08843i 0.0323738 + 0.0694985i
\(904\) 0 0
\(905\) −57.9883 33.4795i −1.92760 1.11290i
\(906\) 0 0
\(907\) −18.9839 32.8811i −0.630350 1.09180i −0.987480 0.157744i \(-0.949578\pi\)
0.357130 0.934055i \(-0.383755\pi\)
\(908\) 0 0
\(909\) 22.3424 31.5176i 0.741049 1.04537i
\(910\) 0 0
\(911\) 55.0007i 1.82225i 0.412127 + 0.911126i \(0.364786\pi\)
−0.412127 + 0.911126i \(0.635214\pi\)
\(912\) 0 0
\(913\) 2.80983 1.62226i 0.0929918 0.0536888i
\(914\) 0 0
\(915\) −62.2949 2.90083i −2.05940 0.0958983i
\(916\) 0 0
\(917\) 12.4868 6.53991i 0.412349 0.215967i
\(918\) 0 0
\(919\) 13.5889 23.5367i 0.448256 0.776403i −0.550016 0.835154i \(-0.685378\pi\)
0.998273 + 0.0587510i \(0.0187118\pi\)
\(920\) 0 0
\(921\) 0.449199 0.700611i 0.0148016 0.0230859i
\(922\) 0 0
\(923\) 23.4236 0.770996
\(924\) 0 0
\(925\) −103.041 −3.38798
\(926\) 0 0
\(927\) 1.57136 16.8358i 0.0516103 0.552960i
\(928\) 0 0
\(929\) −0.982860 + 1.70236i −0.0322466 + 0.0558527i −0.881698 0.471814i \(-0.843600\pi\)
0.849452 + 0.527666i \(0.176933\pi\)
\(930\) 0 0
\(931\) −1.41222 + 17.1273i −0.0462838 + 0.561326i
\(932\) 0 0
\(933\) 0.751941 16.1478i 0.0246174 0.528656i
\(934\) 0 0
\(935\) 0.122267 0.0705911i 0.00399857 0.00230858i
\(936\) 0 0
\(937\) 31.0157i 1.01324i 0.862170 + 0.506620i \(0.169105\pi\)
−0.862170 + 0.506620i \(0.830895\pi\)
\(938\) 0 0
\(939\) 14.2479 + 27.5648i 0.464963 + 0.899544i
\(940\) 0 0
\(941\) 16.7914 + 29.0836i 0.547384 + 0.948097i 0.998453 + 0.0556078i \(0.0177096\pi\)
−0.451069 + 0.892489i \(0.648957\pi\)
\(942\) 0 0
\(943\) −7.08940 4.09307i −0.230863 0.133289i
\(944\) 0 0
\(945\) 17.5645 + 49.2050i 0.571374 + 1.60064i
\(946\) 0 0
\(947\) −8.89077 5.13309i −0.288911 0.166803i 0.348539 0.937294i \(-0.386678\pi\)
−0.637451 + 0.770491i \(0.720011\pi\)
\(948\) 0 0
\(949\) −0.476325 0.825019i −0.0154622 0.0267813i
\(950\) 0 0
\(951\) 17.7494 + 34.3389i 0.575563 + 1.11352i
\(952\) 0 0
\(953\) 1.00920i 0.0326911i −0.999866 0.0163455i \(-0.994797\pi\)
0.999866 0.0163455i \(-0.00520318\pi\)
\(954\) 0 0
\(955\) −74.0347 + 42.7439i −2.39571 + 1.38316i
\(956\) 0 0
\(957\) −0.143196 + 3.07512i −0.00462888 + 0.0994046i
\(958\) 0 0
\(959\) 13.3509 + 0.549486i 0.431122 + 0.0177438i
\(960\) 0 0
\(961\) 15.5999 27.0199i 0.503224 0.871610i
\(962\) 0 0
\(963\) 2.45541 26.3076i 0.0791245 0.847752i
\(964\) 0 0
\(965\) 36.6341 1.17929
\(966\) 0 0
\(967\) −1.83020 −0.0588552 −0.0294276 0.999567i \(-0.509368\pi\)
−0.0294276 + 0.999567i \(0.509368\pi\)
\(968\) 0 0
\(969\) 0.238553 0.372068i 0.00766342 0.0119525i
\(970\) 0 0
\(971\) −7.28478 + 12.6176i −0.233780 + 0.404918i −0.958917 0.283686i \(-0.908443\pi\)
0.725138 + 0.688604i \(0.241776\pi\)
\(972\) 0 0
\(973\) 30.1110 47.5264i 0.965313 1.52363i
\(974\) 0 0
\(975\) 66.0956 + 3.07781i 2.11675 + 0.0985689i
\(976\) 0 0
\(977\) 5.93615 3.42724i 0.189914 0.109647i −0.402028 0.915627i \(-0.631695\pi\)
0.591942 + 0.805980i \(0.298361\pi\)
\(978\) 0 0
\(979\) 2.43916i 0.0779559i
\(980\) 0 0
\(981\) −7.76780 + 10.9578i −0.248007 + 0.349855i
\(982\) 0 0
\(983\) −29.5934 51.2573i −0.943883 1.63485i −0.757973 0.652286i \(-0.773810\pi\)
−0.185910 0.982567i \(-0.559523\pi\)
\(984\) 0 0
\(985\) −50.6020 29.2151i −1.61231 0.930870i
\(986\) 0 0
\(987\) 52.2761 + 4.59464i 1.66397 + 0.146249i
\(988\) 0 0
\(989\) 0.579108 + 0.334348i 0.0184146 + 0.0106317i
\(990\) 0 0
\(991\) 28.2143 + 48.8686i 0.896256 + 1.55236i 0.832243 + 0.554412i \(0.187057\pi\)
0.0640132 + 0.997949i \(0.479610\pi\)
\(992\) 0 0
\(993\) 21.7216 11.2276i 0.689313 0.356297i
\(994\) 0 0
\(995\) 17.4199i 0.552249i
\(996\) 0 0
\(997\) −45.5831 + 26.3174i −1.44363 + 0.833480i −0.998090 0.0617814i \(-0.980322\pi\)
−0.445541 + 0.895262i \(0.646988\pi\)
\(998\) 0 0
\(999\) 44.6834 + 34.9084i 1.41372 + 1.10445i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 336.2.bc.f.257.7 16
3.2 odd 2 inner 336.2.bc.f.257.5 16
4.3 odd 2 168.2.u.a.89.2 yes 16
7.2 even 3 2352.2.k.i.881.2 16
7.3 odd 6 inner 336.2.bc.f.17.5 16
7.5 odd 6 2352.2.k.i.881.15 16
12.11 even 2 168.2.u.a.89.4 yes 16
21.2 odd 6 2352.2.k.i.881.16 16
21.5 even 6 2352.2.k.i.881.1 16
21.17 even 6 inner 336.2.bc.f.17.7 16
28.3 even 6 168.2.u.a.17.4 yes 16
28.11 odd 6 1176.2.u.b.521.5 16
28.19 even 6 1176.2.k.a.881.2 16
28.23 odd 6 1176.2.k.a.881.15 16
28.27 even 2 1176.2.u.b.1097.7 16
84.11 even 6 1176.2.u.b.521.7 16
84.23 even 6 1176.2.k.a.881.1 16
84.47 odd 6 1176.2.k.a.881.16 16
84.59 odd 6 168.2.u.a.17.2 16
84.83 odd 2 1176.2.u.b.1097.5 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.2.u.a.17.2 16 84.59 odd 6
168.2.u.a.17.4 yes 16 28.3 even 6
168.2.u.a.89.2 yes 16 4.3 odd 2
168.2.u.a.89.4 yes 16 12.11 even 2
336.2.bc.f.17.5 16 7.3 odd 6 inner
336.2.bc.f.17.7 16 21.17 even 6 inner
336.2.bc.f.257.5 16 3.2 odd 2 inner
336.2.bc.f.257.7 16 1.1 even 1 trivial
1176.2.k.a.881.1 16 84.23 even 6
1176.2.k.a.881.2 16 28.19 even 6
1176.2.k.a.881.15 16 28.23 odd 6
1176.2.k.a.881.16 16 84.47 odd 6
1176.2.u.b.521.5 16 28.11 odd 6
1176.2.u.b.521.7 16 84.11 even 6
1176.2.u.b.1097.5 16 84.83 odd 2
1176.2.u.b.1097.7 16 28.27 even 2
2352.2.k.i.881.1 16 21.5 even 6
2352.2.k.i.881.2 16 7.2 even 3
2352.2.k.i.881.15 16 7.5 odd 6
2352.2.k.i.881.16 16 21.2 odd 6