Properties

Label 336.2
Level 336
Weight 2
Dimension 1196
Nonzero newspaces 16
Newform subspaces 56
Sturm bound 12288
Trace bound 8

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 336 = 2^{4} \cdot 3 \cdot 7 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 16 \)
Newform subspaces: \( 56 \)
Sturm bound: \(12288\)
Trace bound: \(8\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(336))\).

Total New Old
Modular forms 3408 1288 2120
Cusp forms 2737 1196 1541
Eisenstein series 671 92 579

Trace form

\( 1196 q - 7 q^{3} - 8 q^{4} + 4 q^{5} + 4 q^{6} - 10 q^{7} + 24 q^{8} + 7 q^{9} - 8 q^{10} + 24 q^{11} - 12 q^{12} - 4 q^{13} - 12 q^{14} + 2 q^{15} - 56 q^{16} - 4 q^{17} - 28 q^{18} + 26 q^{19} - 32 q^{20}+ \cdots + 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(336))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
336.2.a \(\chi_{336}(1, \cdot)\) 336.2.a.a 1 1
336.2.a.b 1
336.2.a.c 1
336.2.a.d 1
336.2.a.e 1
336.2.a.f 1
336.2.b \(\chi_{336}(223, \cdot)\) 336.2.b.a 2 1
336.2.b.b 2
336.2.b.c 2
336.2.b.d 2
336.2.c \(\chi_{336}(169, \cdot)\) None 0 1
336.2.h \(\chi_{336}(239, \cdot)\) 336.2.h.a 4 1
336.2.h.b 8
336.2.i \(\chi_{336}(41, \cdot)\) None 0 1
336.2.j \(\chi_{336}(71, \cdot)\) None 0 1
336.2.k \(\chi_{336}(209, \cdot)\) 336.2.k.a 2 1
336.2.k.b 4
336.2.k.c 8
336.2.p \(\chi_{336}(55, \cdot)\) None 0 1
336.2.q \(\chi_{336}(193, \cdot)\) 336.2.q.a 2 2
336.2.q.b 2
336.2.q.c 2
336.2.q.d 2
336.2.q.e 2
336.2.q.f 2
336.2.q.g 4
336.2.s \(\chi_{336}(155, \cdot)\) 336.2.s.a 4 2
336.2.s.b 4
336.2.s.c 40
336.2.s.d 48
336.2.u \(\chi_{336}(139, \cdot)\) 336.2.u.a 64 2
336.2.w \(\chi_{336}(85, \cdot)\) 336.2.w.a 20 2
336.2.w.b 28
336.2.y \(\chi_{336}(125, \cdot)\) 336.2.y.a 120 2
336.2.bb \(\chi_{336}(103, \cdot)\) None 0 2
336.2.bc \(\chi_{336}(17, \cdot)\) 336.2.bc.a 2 2
336.2.bc.b 2
336.2.bc.c 2
336.2.bc.d 2
336.2.bc.e 4
336.2.bc.f 16
336.2.bd \(\chi_{336}(23, \cdot)\) None 0 2
336.2.bi \(\chi_{336}(89, \cdot)\) None 0 2
336.2.bj \(\chi_{336}(95, \cdot)\) 336.2.bj.a 2 2
336.2.bj.b 2
336.2.bj.c 2
336.2.bj.d 2
336.2.bj.e 8
336.2.bj.f 8
336.2.bj.g 8
336.2.bk \(\chi_{336}(25, \cdot)\) None 0 2
336.2.bl \(\chi_{336}(31, \cdot)\) 336.2.bl.a 2 2
336.2.bl.b 2
336.2.bl.c 2
336.2.bl.d 2
336.2.bl.e 2
336.2.bl.f 2
336.2.bl.g 2
336.2.bl.h 2
336.2.bo \(\chi_{336}(5, \cdot)\) 336.2.bo.a 240 4
336.2.bq \(\chi_{336}(37, \cdot)\) 336.2.bq.a 8 4
336.2.bq.b 120
336.2.bs \(\chi_{336}(19, \cdot)\) 336.2.bs.a 128 4
336.2.bu \(\chi_{336}(11, \cdot)\) 336.2.bu.a 240 4

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(336))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(336)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 20}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(42))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(48))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(56))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(84))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(112))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(168))\)\(^{\oplus 2}\)