Properties

Label 3330.2.d.r.1999.4
Level $3330$
Weight $2$
Character 3330.1999
Analytic conductor $26.590$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Error: table mf_hecke_newspace_traces does not exist

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3330,2,Mod(1999,3330)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3330.1999"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3330, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3330 = 2 \cdot 3^{2} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3330.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,0,-14,4,0,0,0,0,-6,-12,0,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.5901838731\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 20x^{12} + 154x^{10} + 580x^{8} + 1105x^{6} + 960x^{4} + 256x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1999.4
Root \(1.79842i\) of defining polynomial
Character \(\chi\) \(=\) 3330.1999
Dual form 3330.2.d.r.1999.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -1.00000 q^{4} +(1.13070 + 1.92912i) q^{5} +1.23431i q^{7} +1.00000i q^{8} +(1.92912 - 1.13070i) q^{10} +3.36649 q^{11} -3.44302i q^{13} +1.23431 q^{14} +1.00000 q^{16} -7.03986i q^{17} +4.40976 q^{19} +(-1.13070 - 1.92912i) q^{20} -3.36649i q^{22} -3.31926i q^{23} +(-2.44302 + 4.36253i) q^{25} -3.44302 q^{26} -1.23431i q^{28} +0.635565 q^{29} +0.759332 q^{31} -1.00000i q^{32} -7.03986 q^{34} +(-2.38114 + 1.39564i) q^{35} +1.00000i q^{37} -4.40976i q^{38} +(-1.92912 + 1.13070i) q^{40} -7.63407 q^{41} -8.35089i q^{43} -3.36649 q^{44} -3.31926 q^{46} +4.94420i q^{47} +5.47647 q^{49} +(4.36253 + 2.44302i) q^{50} +3.44302i q^{52} +9.85982i q^{53} +(3.80650 + 6.49437i) q^{55} -1.23431 q^{56} -0.635565i q^{58} +3.03345 q^{59} -7.27814 q^{61} -0.759332i q^{62} -1.00000 q^{64} +(6.64201 - 3.89304i) q^{65} -8.94445i q^{67} +7.03986i q^{68} +(1.39564 + 2.38114i) q^{70} +9.43709 q^{71} -12.6894i q^{73} +1.00000 q^{74} -4.40976 q^{76} +4.15530i q^{77} -1.67207 q^{79} +(1.13070 + 1.92912i) q^{80} +7.63407i q^{82} +1.86165i q^{83} +(13.5808 - 7.95999i) q^{85} -8.35089 q^{86} +3.36649i q^{88} +14.5766 q^{89} +4.24977 q^{91} +3.31926i q^{92} +4.94420 q^{94} +(4.98613 + 8.50696i) q^{95} -9.34055i q^{97} -5.47647i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 14 q^{4} + 4 q^{5} - 6 q^{10} - 12 q^{11} + 12 q^{14} + 14 q^{16} + 4 q^{19} - 4 q^{20} + 10 q^{25} - 4 q^{26} + 16 q^{29} + 12 q^{31} - 12 q^{34} + 8 q^{35} + 6 q^{40} - 56 q^{41} + 12 q^{44} - 8 q^{46}+ \cdots - 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3330\mathbb{Z}\right)^\times\).

\(n\) \(371\) \(631\) \(667\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) 1.13070 + 1.92912i 0.505665 + 0.862730i
\(6\) 0 0
\(7\) 1.23431i 0.466527i 0.972414 + 0.233263i \(0.0749404\pi\)
−0.972414 + 0.233263i \(0.925060\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 1.92912 1.13070i 0.610042 0.357560i
\(11\) 3.36649 1.01504 0.507518 0.861641i \(-0.330563\pi\)
0.507518 + 0.861641i \(0.330563\pi\)
\(12\) 0 0
\(13\) 3.44302i 0.954923i −0.878653 0.477462i \(-0.841557\pi\)
0.878653 0.477462i \(-0.158443\pi\)
\(14\) 1.23431 0.329884
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 7.03986i 1.70742i −0.520751 0.853709i \(-0.674348\pi\)
0.520751 0.853709i \(-0.325652\pi\)
\(18\) 0 0
\(19\) 4.40976 1.01167 0.505834 0.862631i \(-0.331185\pi\)
0.505834 + 0.862631i \(0.331185\pi\)
\(20\) −1.13070 1.92912i −0.252833 0.431365i
\(21\) 0 0
\(22\) 3.36649i 0.717738i
\(23\) 3.31926i 0.692113i −0.938214 0.346057i \(-0.887521\pi\)
0.938214 0.346057i \(-0.112479\pi\)
\(24\) 0 0
\(25\) −2.44302 + 4.36253i −0.488605 + 0.872505i
\(26\) −3.44302 −0.675233
\(27\) 0 0
\(28\) 1.23431i 0.233263i
\(29\) 0.635565 0.118022 0.0590108 0.998257i \(-0.481205\pi\)
0.0590108 + 0.998257i \(0.481205\pi\)
\(30\) 0 0
\(31\) 0.759332 0.136380 0.0681900 0.997672i \(-0.478278\pi\)
0.0681900 + 0.997672i \(0.478278\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) −7.03986 −1.20733
\(35\) −2.38114 + 1.39564i −0.402486 + 0.235906i
\(36\) 0 0
\(37\) 1.00000i 0.164399i
\(38\) 4.40976i 0.715357i
\(39\) 0 0
\(40\) −1.92912 + 1.13070i −0.305021 + 0.178780i
\(41\) −7.63407 −1.19224 −0.596121 0.802895i \(-0.703292\pi\)
−0.596121 + 0.802895i \(0.703292\pi\)
\(42\) 0 0
\(43\) 8.35089i 1.27350i −0.771071 0.636750i \(-0.780279\pi\)
0.771071 0.636750i \(-0.219721\pi\)
\(44\) −3.36649 −0.507518
\(45\) 0 0
\(46\) −3.31926 −0.489398
\(47\) 4.94420i 0.721186i 0.932723 + 0.360593i \(0.117426\pi\)
−0.932723 + 0.360593i \(0.882574\pi\)
\(48\) 0 0
\(49\) 5.47647 0.782353
\(50\) 4.36253 + 2.44302i 0.616954 + 0.345496i
\(51\) 0 0
\(52\) 3.44302i 0.477462i
\(53\) 9.85982i 1.35435i 0.735822 + 0.677175i \(0.236796\pi\)
−0.735822 + 0.677175i \(0.763204\pi\)
\(54\) 0 0
\(55\) 3.80650 + 6.49437i 0.513268 + 0.875701i
\(56\) −1.23431 −0.164942
\(57\) 0 0
\(58\) 0.635565i 0.0834538i
\(59\) 3.03345 0.394921 0.197461 0.980311i \(-0.436731\pi\)
0.197461 + 0.980311i \(0.436731\pi\)
\(60\) 0 0
\(61\) −7.27814 −0.931871 −0.465935 0.884819i \(-0.654282\pi\)
−0.465935 + 0.884819i \(0.654282\pi\)
\(62\) 0.759332i 0.0964352i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 6.64201 3.89304i 0.823840 0.482872i
\(66\) 0 0
\(67\) 8.94445i 1.09274i −0.837545 0.546369i \(-0.816010\pi\)
0.837545 0.546369i \(-0.183990\pi\)
\(68\) 7.03986i 0.853709i
\(69\) 0 0
\(70\) 1.39564 + 2.38114i 0.166811 + 0.284601i
\(71\) 9.43709 1.11998 0.559988 0.828500i \(-0.310806\pi\)
0.559988 + 0.828500i \(0.310806\pi\)
\(72\) 0 0
\(73\) 12.6894i 1.48518i −0.669745 0.742591i \(-0.733597\pi\)
0.669745 0.742591i \(-0.266403\pi\)
\(74\) 1.00000 0.116248
\(75\) 0 0
\(76\) −4.40976 −0.505834
\(77\) 4.15530i 0.473541i
\(78\) 0 0
\(79\) −1.67207 −0.188122 −0.0940610 0.995566i \(-0.529985\pi\)
−0.0940610 + 0.995566i \(0.529985\pi\)
\(80\) 1.13070 + 1.92912i 0.126416 + 0.215682i
\(81\) 0 0
\(82\) 7.63407i 0.843042i
\(83\) 1.86165i 0.204343i 0.994767 + 0.102171i \(0.0325790\pi\)
−0.994767 + 0.102171i \(0.967421\pi\)
\(84\) 0 0
\(85\) 13.5808 7.95999i 1.47304 0.863382i
\(86\) −8.35089 −0.900500
\(87\) 0 0
\(88\) 3.36649i 0.358869i
\(89\) 14.5766 1.54512 0.772560 0.634941i \(-0.218976\pi\)
0.772560 + 0.634941i \(0.218976\pi\)
\(90\) 0 0
\(91\) 4.24977 0.445497
\(92\) 3.31926i 0.346057i
\(93\) 0 0
\(94\) 4.94420 0.509956
\(95\) 4.98613 + 8.50696i 0.511566 + 0.872796i
\(96\) 0 0
\(97\) 9.34055i 0.948390i −0.880420 0.474195i \(-0.842739\pi\)
0.880420 0.474195i \(-0.157261\pi\)
\(98\) 5.47647i 0.553207i
\(99\) 0 0
\(100\) 2.44302 4.36253i 0.244302 0.436253i
\(101\) 1.79302 0.178412 0.0892062 0.996013i \(-0.471567\pi\)
0.0892062 + 0.996013i \(0.471567\pi\)
\(102\) 0 0
\(103\) 18.7262i 1.84514i −0.385826 0.922572i \(-0.626083\pi\)
0.385826 0.922572i \(-0.373917\pi\)
\(104\) 3.44302 0.337616
\(105\) 0 0
\(106\) 9.85982 0.957670
\(107\) 3.51666i 0.339968i −0.985447 0.169984i \(-0.945628\pi\)
0.985447 0.169984i \(-0.0543716\pi\)
\(108\) 0 0
\(109\) 6.41092 0.614055 0.307027 0.951701i \(-0.400666\pi\)
0.307027 + 0.951701i \(0.400666\pi\)
\(110\) 6.49437 3.80650i 0.619214 0.362935i
\(111\) 0 0
\(112\) 1.23431i 0.116632i
\(113\) 19.0839i 1.79526i 0.440750 + 0.897630i \(0.354713\pi\)
−0.440750 + 0.897630i \(0.645287\pi\)
\(114\) 0 0
\(115\) 6.40325 3.75309i 0.597106 0.349978i
\(116\) −0.635565 −0.0590108
\(117\) 0 0
\(118\) 3.03345i 0.279251i
\(119\) 8.68940 0.796556
\(120\) 0 0
\(121\) 0.333261 0.0302964
\(122\) 7.27814i 0.658932i
\(123\) 0 0
\(124\) −0.759332 −0.0681900
\(125\) −11.1782 + 0.219827i −0.999807 + 0.0196619i
\(126\) 0 0
\(127\) 16.3720i 1.45278i 0.687282 + 0.726390i \(0.258803\pi\)
−0.687282 + 0.726390i \(0.741197\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) −3.89304 6.64201i −0.341442 0.582543i
\(131\) 16.3686 1.43013 0.715066 0.699057i \(-0.246397\pi\)
0.715066 + 0.699057i \(0.246397\pi\)
\(132\) 0 0
\(133\) 5.44302i 0.471970i
\(134\) −8.94445 −0.772682
\(135\) 0 0
\(136\) 7.03986 0.603663
\(137\) 1.92605i 0.164554i −0.996610 0.0822769i \(-0.973781\pi\)
0.996610 0.0822769i \(-0.0262192\pi\)
\(138\) 0 0
\(139\) 21.5940 1.83158 0.915788 0.401661i \(-0.131567\pi\)
0.915788 + 0.401661i \(0.131567\pi\)
\(140\) 2.38114 1.39564i 0.201243 0.117953i
\(141\) 0 0
\(142\) 9.43709i 0.791943i
\(143\) 11.5909i 0.969281i
\(144\) 0 0
\(145\) 0.718635 + 1.22608i 0.0596794 + 0.101821i
\(146\) −12.6894 −1.05018
\(147\) 0 0
\(148\) 1.00000i 0.0821995i
\(149\) 21.3688 1.75060 0.875300 0.483581i \(-0.160664\pi\)
0.875300 + 0.483581i \(0.160664\pi\)
\(150\) 0 0
\(151\) −11.5280 −0.938138 −0.469069 0.883162i \(-0.655410\pi\)
−0.469069 + 0.883162i \(0.655410\pi\)
\(152\) 4.40976i 0.357679i
\(153\) 0 0
\(154\) 4.15530 0.334844
\(155\) 0.858578 + 1.46484i 0.0689627 + 0.117659i
\(156\) 0 0
\(157\) 3.80302i 0.303514i −0.988418 0.151757i \(-0.951507\pi\)
0.988418 0.151757i \(-0.0484932\pi\)
\(158\) 1.67207i 0.133022i
\(159\) 0 0
\(160\) 1.92912 1.13070i 0.152510 0.0893899i
\(161\) 4.09700 0.322889
\(162\) 0 0
\(163\) 1.70971i 0.133915i −0.997756 0.0669573i \(-0.978671\pi\)
0.997756 0.0669573i \(-0.0213291\pi\)
\(164\) 7.63407 0.596121
\(165\) 0 0
\(166\) 1.86165 0.144492
\(167\) 22.1107i 1.71098i −0.517820 0.855490i \(-0.673256\pi\)
0.517820 0.855490i \(-0.326744\pi\)
\(168\) 0 0
\(169\) 1.14559 0.0881220
\(170\) −7.95999 13.5808i −0.610503 1.04160i
\(171\) 0 0
\(172\) 8.35089i 0.636750i
\(173\) 12.5446i 0.953747i 0.878972 + 0.476874i \(0.158230\pi\)
−0.878972 + 0.476874i \(0.841770\pi\)
\(174\) 0 0
\(175\) −5.38472 3.01546i −0.407047 0.227947i
\(176\) 3.36649 0.253759
\(177\) 0 0
\(178\) 14.5766i 1.09257i
\(179\) −19.8089 −1.48059 −0.740294 0.672283i \(-0.765314\pi\)
−0.740294 + 0.672283i \(0.765314\pi\)
\(180\) 0 0
\(181\) 5.07891 0.377512 0.188756 0.982024i \(-0.439554\pi\)
0.188756 + 0.982024i \(0.439554\pi\)
\(182\) 4.24977i 0.315014i
\(183\) 0 0
\(184\) 3.31926 0.244699
\(185\) −1.92912 + 1.13070i −0.141832 + 0.0831309i
\(186\) 0 0
\(187\) 23.6996i 1.73309i
\(188\) 4.94420i 0.360593i
\(189\) 0 0
\(190\) 8.50696 4.98613i 0.617160 0.361732i
\(191\) −12.1697 −0.880566 −0.440283 0.897859i \(-0.645122\pi\)
−0.440283 + 0.897859i \(0.645122\pi\)
\(192\) 0 0
\(193\) 14.4442i 1.03972i −0.854252 0.519860i \(-0.825984\pi\)
0.854252 0.519860i \(-0.174016\pi\)
\(194\) −9.34055 −0.670613
\(195\) 0 0
\(196\) −5.47647 −0.391176
\(197\) 20.4747i 1.45876i 0.684108 + 0.729381i \(0.260192\pi\)
−0.684108 + 0.729381i \(0.739808\pi\)
\(198\) 0 0
\(199\) −18.0454 −1.27921 −0.639604 0.768705i \(-0.720902\pi\)
−0.639604 + 0.768705i \(0.720902\pi\)
\(200\) −4.36253 2.44302i −0.308477 0.172748i
\(201\) 0 0
\(202\) 1.79302i 0.126157i
\(203\) 0.784487i 0.0550602i
\(204\) 0 0
\(205\) −8.63186 14.7271i −0.602875 1.02858i
\(206\) −18.7262 −1.30471
\(207\) 0 0
\(208\) 3.44302i 0.238731i
\(209\) 14.8454 1.02688
\(210\) 0 0
\(211\) 8.58522 0.591031 0.295516 0.955338i \(-0.404509\pi\)
0.295516 + 0.955338i \(0.404509\pi\)
\(212\) 9.85982i 0.677175i
\(213\) 0 0
\(214\) −3.51666 −0.240394
\(215\) 16.1099 9.44237i 1.09869 0.643965i
\(216\) 0 0
\(217\) 0.937253i 0.0636249i
\(218\) 6.41092i 0.434202i
\(219\) 0 0
\(220\) −3.80650 6.49437i −0.256634 0.437850i
\(221\) −24.2384 −1.63045
\(222\) 0 0
\(223\) 28.8602i 1.93262i 0.257379 + 0.966310i \(0.417141\pi\)
−0.257379 + 0.966310i \(0.582859\pi\)
\(224\) 1.23431 0.0824710
\(225\) 0 0
\(226\) 19.0839 1.26944
\(227\) 16.2253i 1.07691i 0.842654 + 0.538455i \(0.180992\pi\)
−0.842654 + 0.538455i \(0.819008\pi\)
\(228\) 0 0
\(229\) 15.6420 1.03365 0.516826 0.856090i \(-0.327113\pi\)
0.516826 + 0.856090i \(0.327113\pi\)
\(230\) −3.75309 6.40325i −0.247472 0.422218i
\(231\) 0 0
\(232\) 0.635565i 0.0417269i
\(233\) 13.8052i 0.904407i 0.891915 + 0.452203i \(0.149362\pi\)
−0.891915 + 0.452203i \(0.850638\pi\)
\(234\) 0 0
\(235\) −9.53797 + 5.59042i −0.622189 + 0.364679i
\(236\) −3.03345 −0.197461
\(237\) 0 0
\(238\) 8.68940i 0.563250i
\(239\) 15.7337 1.01773 0.508864 0.860847i \(-0.330065\pi\)
0.508864 + 0.860847i \(0.330065\pi\)
\(240\) 0 0
\(241\) 25.4466 1.63916 0.819579 0.572966i \(-0.194207\pi\)
0.819579 + 0.572966i \(0.194207\pi\)
\(242\) 0.333261i 0.0214228i
\(243\) 0 0
\(244\) 7.27814 0.465935
\(245\) 6.19226 + 10.5648i 0.395609 + 0.674959i
\(246\) 0 0
\(247\) 15.1829i 0.966065i
\(248\) 0.759332i 0.0482176i
\(249\) 0 0
\(250\) 0.219827 + 11.1782i 0.0139031 + 0.706970i
\(251\) −22.5978 −1.42636 −0.713179 0.700982i \(-0.752745\pi\)
−0.713179 + 0.700982i \(0.752745\pi\)
\(252\) 0 0
\(253\) 11.1743i 0.702519i
\(254\) 16.3720 1.02727
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 0.382839i 0.0238809i −0.999929 0.0119404i \(-0.996199\pi\)
0.999929 0.0119404i \(-0.00380085\pi\)
\(258\) 0 0
\(259\) −1.23431 −0.0766965
\(260\) −6.64201 + 3.89304i −0.411920 + 0.241436i
\(261\) 0 0
\(262\) 16.3686i 1.01126i
\(263\) 17.8935i 1.10336i 0.834055 + 0.551681i \(0.186013\pi\)
−0.834055 + 0.551681i \(0.813987\pi\)
\(264\) 0 0
\(265\) −19.0208 + 11.1485i −1.16844 + 0.684848i
\(266\) 5.44302 0.333733
\(267\) 0 0
\(268\) 8.94445i 0.546369i
\(269\) 23.7565 1.44846 0.724231 0.689558i \(-0.242195\pi\)
0.724231 + 0.689558i \(0.242195\pi\)
\(270\) 0 0
\(271\) −19.7487 −1.19965 −0.599825 0.800131i \(-0.704763\pi\)
−0.599825 + 0.800131i \(0.704763\pi\)
\(272\) 7.03986i 0.426854i
\(273\) 0 0
\(274\) −1.92605 −0.116357
\(275\) −8.22442 + 14.6864i −0.495951 + 0.885623i
\(276\) 0 0
\(277\) 18.7112i 1.12424i −0.827054 0.562122i \(-0.809985\pi\)
0.827054 0.562122i \(-0.190015\pi\)
\(278\) 21.5940i 1.29512i
\(279\) 0 0
\(280\) −1.39564 2.38114i −0.0834055 0.142300i
\(281\) −2.65311 −0.158271 −0.0791355 0.996864i \(-0.525216\pi\)
−0.0791355 + 0.996864i \(0.525216\pi\)
\(282\) 0 0
\(283\) 7.89107i 0.469076i −0.972107 0.234538i \(-0.924642\pi\)
0.972107 0.234538i \(-0.0753577\pi\)
\(284\) −9.43709 −0.559988
\(285\) 0 0
\(286\) −11.5909 −0.685385
\(287\) 9.42283i 0.556212i
\(288\) 0 0
\(289\) −32.5597 −1.91528
\(290\) 1.22608 0.718635i 0.0719981 0.0421997i
\(291\) 0 0
\(292\) 12.6894i 0.742591i
\(293\) 9.20656i 0.537853i −0.963161 0.268927i \(-0.913331\pi\)
0.963161 0.268927i \(-0.0866689\pi\)
\(294\) 0 0
\(295\) 3.42993 + 5.85189i 0.199698 + 0.340710i
\(296\) −1.00000 −0.0581238
\(297\) 0 0
\(298\) 21.3688i 1.23786i
\(299\) −11.4283 −0.660915
\(300\) 0 0
\(301\) 10.3076 0.594121
\(302\) 11.5280i 0.663364i
\(303\) 0 0
\(304\) 4.40976 0.252917
\(305\) −8.22941 14.0404i −0.471215 0.803952i
\(306\) 0 0
\(307\) 10.5484i 0.602028i 0.953620 + 0.301014i \(0.0973251\pi\)
−0.953620 + 0.301014i \(0.902675\pi\)
\(308\) 4.15530i 0.236770i
\(309\) 0 0
\(310\) 1.46484 0.858578i 0.0831975 0.0487640i
\(311\) −27.1869 −1.54163 −0.770813 0.637062i \(-0.780150\pi\)
−0.770813 + 0.637062i \(0.780150\pi\)
\(312\) 0 0
\(313\) 8.74232i 0.494145i −0.968997 0.247073i \(-0.920531\pi\)
0.968997 0.247073i \(-0.0794686\pi\)
\(314\) −3.80302 −0.214617
\(315\) 0 0
\(316\) 1.67207 0.0940610
\(317\) 4.74399i 0.266449i 0.991086 + 0.133225i \(0.0425332\pi\)
−0.991086 + 0.133225i \(0.957467\pi\)
\(318\) 0 0
\(319\) 2.13963 0.119796
\(320\) −1.13070 1.92912i −0.0632082 0.107841i
\(321\) 0 0
\(322\) 4.09700i 0.228317i
\(323\) 31.0441i 1.72734i
\(324\) 0 0
\(325\) 15.0203 + 8.41139i 0.833175 + 0.466580i
\(326\) −1.70971 −0.0946920
\(327\) 0 0
\(328\) 7.63407i 0.421521i
\(329\) −6.10270 −0.336453
\(330\) 0 0
\(331\) 8.82644 0.485145 0.242573 0.970133i \(-0.422009\pi\)
0.242573 + 0.970133i \(0.422009\pi\)
\(332\) 1.86165i 0.102171i
\(333\) 0 0
\(334\) −22.1107 −1.20985
\(335\) 17.2549 10.1135i 0.942737 0.552560i
\(336\) 0 0
\(337\) 3.59908i 0.196054i −0.995184 0.0980271i \(-0.968747\pi\)
0.995184 0.0980271i \(-0.0312532\pi\)
\(338\) 1.14559i 0.0623116i
\(339\) 0 0
\(340\) −13.5808 + 7.95999i −0.736520 + 0.431691i
\(341\) 2.55628 0.138430
\(342\) 0 0
\(343\) 15.3999i 0.831515i
\(344\) 8.35089 0.450250
\(345\) 0 0
\(346\) 12.5446 0.674401
\(347\) 13.6943i 0.735146i 0.929995 + 0.367573i \(0.119811\pi\)
−0.929995 + 0.367573i \(0.880189\pi\)
\(348\) 0 0
\(349\) 12.9295 0.692101 0.346050 0.938216i \(-0.387523\pi\)
0.346050 + 0.938216i \(0.387523\pi\)
\(350\) −3.01546 + 5.38472i −0.161183 + 0.287826i
\(351\) 0 0
\(352\) 3.36649i 0.179435i
\(353\) 19.5646i 1.04132i −0.853765 0.520659i \(-0.825686\pi\)
0.853765 0.520659i \(-0.174314\pi\)
\(354\) 0 0
\(355\) 10.6705 + 18.2053i 0.566334 + 0.966237i
\(356\) −14.5766 −0.772560
\(357\) 0 0
\(358\) 19.8089i 1.04693i
\(359\) −22.1544 −1.16926 −0.584632 0.811299i \(-0.698761\pi\)
−0.584632 + 0.811299i \(0.698761\pi\)
\(360\) 0 0
\(361\) 0.445974 0.0234723
\(362\) 5.07891i 0.266941i
\(363\) 0 0
\(364\) −4.24977 −0.222748
\(365\) 24.4794 14.3479i 1.28131 0.751005i
\(366\) 0 0
\(367\) 16.8362i 0.878843i 0.898281 + 0.439422i \(0.144817\pi\)
−0.898281 + 0.439422i \(0.855183\pi\)
\(368\) 3.31926i 0.173028i
\(369\) 0 0
\(370\) 1.13070 + 1.92912i 0.0587824 + 0.100290i
\(371\) −12.1701 −0.631840
\(372\) 0 0
\(373\) 4.76106i 0.246518i −0.992375 0.123259i \(-0.960665\pi\)
0.992375 0.123259i \(-0.0393346\pi\)
\(374\) −23.6996 −1.22548
\(375\) 0 0
\(376\) −4.94420 −0.254978
\(377\) 2.18827i 0.112701i
\(378\) 0 0
\(379\) 2.62236 0.134701 0.0673507 0.997729i \(-0.478545\pi\)
0.0673507 + 0.997729i \(0.478545\pi\)
\(380\) −4.98613 8.50696i −0.255783 0.436398i
\(381\) 0 0
\(382\) 12.1697i 0.622654i
\(383\) 26.7104i 1.36484i −0.730962 0.682418i \(-0.760928\pi\)
0.730962 0.682418i \(-0.239072\pi\)
\(384\) 0 0
\(385\) −8.01609 + 4.69841i −0.408538 + 0.239453i
\(386\) −14.4442 −0.735193
\(387\) 0 0
\(388\) 9.34055i 0.474195i
\(389\) 28.4487 1.44241 0.721204 0.692723i \(-0.243589\pi\)
0.721204 + 0.692723i \(0.243589\pi\)
\(390\) 0 0
\(391\) −23.3671 −1.18173
\(392\) 5.47647i 0.276604i
\(393\) 0 0
\(394\) 20.4747 1.03150
\(395\) −1.89061 3.22562i −0.0951268 0.162298i
\(396\) 0 0
\(397\) 16.3501i 0.820587i 0.911953 + 0.410294i \(0.134574\pi\)
−0.911953 + 0.410294i \(0.865426\pi\)
\(398\) 18.0454i 0.904537i
\(399\) 0 0
\(400\) −2.44302 + 4.36253i −0.122151 + 0.218126i
\(401\) −9.08493 −0.453680 −0.226840 0.973932i \(-0.572839\pi\)
−0.226840 + 0.973932i \(0.572839\pi\)
\(402\) 0 0
\(403\) 2.61440i 0.130232i
\(404\) −1.79302 −0.0892062
\(405\) 0 0
\(406\) 0.784487 0.0389334
\(407\) 3.36649i 0.166871i
\(408\) 0 0
\(409\) 8.22234 0.406569 0.203284 0.979120i \(-0.434838\pi\)
0.203284 + 0.979120i \(0.434838\pi\)
\(410\) −14.7271 + 8.63186i −0.727317 + 0.426297i
\(411\) 0 0
\(412\) 18.7262i 0.922572i
\(413\) 3.74422i 0.184241i
\(414\) 0 0
\(415\) −3.59135 + 2.10497i −0.176292 + 0.103329i
\(416\) −3.44302 −0.168808
\(417\) 0 0
\(418\) 14.8454i 0.726113i
\(419\) −8.88285 −0.433956 −0.216978 0.976177i \(-0.569620\pi\)
−0.216978 + 0.976177i \(0.569620\pi\)
\(420\) 0 0
\(421\) 12.3712 0.602936 0.301468 0.953476i \(-0.402523\pi\)
0.301468 + 0.953476i \(0.402523\pi\)
\(422\) 8.58522i 0.417922i
\(423\) 0 0
\(424\) −9.85982 −0.478835
\(425\) 30.7116 + 17.1986i 1.48973 + 0.834252i
\(426\) 0 0
\(427\) 8.98351i 0.434742i
\(428\) 3.51666i 0.169984i
\(429\) 0 0
\(430\) −9.44237 16.1099i −0.455352 0.776888i
\(431\) −7.83341 −0.377322 −0.188661 0.982042i \(-0.560415\pi\)
−0.188661 + 0.982042i \(0.560415\pi\)
\(432\) 0 0
\(433\) 16.5213i 0.793963i −0.917827 0.396981i \(-0.870058\pi\)
0.917827 0.396981i \(-0.129942\pi\)
\(434\) 0.937253 0.0449896
\(435\) 0 0
\(436\) −6.41092 −0.307027
\(437\) 14.6371i 0.700189i
\(438\) 0 0
\(439\) −18.6337 −0.889336 −0.444668 0.895695i \(-0.646678\pi\)
−0.444668 + 0.895695i \(0.646678\pi\)
\(440\) −6.49437 + 3.80650i −0.309607 + 0.181468i
\(441\) 0 0
\(442\) 24.2384i 1.15290i
\(443\) 1.02442i 0.0486718i −0.999704 0.0243359i \(-0.992253\pi\)
0.999704 0.0243359i \(-0.00774712\pi\)
\(444\) 0 0
\(445\) 16.4818 + 28.1201i 0.781314 + 1.33302i
\(446\) 28.8602 1.36657
\(447\) 0 0
\(448\) 1.23431i 0.0583158i
\(449\) −11.4182 −0.538859 −0.269429 0.963020i \(-0.586835\pi\)
−0.269429 + 0.963020i \(0.586835\pi\)
\(450\) 0 0
\(451\) −25.7000 −1.21017
\(452\) 19.0839i 0.897630i
\(453\) 0 0
\(454\) 16.2253 0.761491
\(455\) 4.80523 + 8.19833i 0.225272 + 0.384343i
\(456\) 0 0
\(457\) 32.5920i 1.52459i 0.647231 + 0.762294i \(0.275927\pi\)
−0.647231 + 0.762294i \(0.724073\pi\)
\(458\) 15.6420i 0.730903i
\(459\) 0 0
\(460\) −6.40325 + 3.75309i −0.298553 + 0.174989i
\(461\) −7.68554 −0.357951 −0.178976 0.983854i \(-0.557278\pi\)
−0.178976 + 0.983854i \(0.557278\pi\)
\(462\) 0 0
\(463\) 0.229299i 0.0106564i 0.999986 + 0.00532822i \(0.00169603\pi\)
−0.999986 + 0.00532822i \(0.998304\pi\)
\(464\) 0.635565 0.0295054
\(465\) 0 0
\(466\) 13.8052 0.639512
\(467\) 17.7416i 0.820985i 0.911864 + 0.410493i \(0.134643\pi\)
−0.911864 + 0.410493i \(0.865357\pi\)
\(468\) 0 0
\(469\) 11.0402 0.509791
\(470\) 5.59042 + 9.53797i 0.257867 + 0.439954i
\(471\) 0 0
\(472\) 3.03345i 0.139626i
\(473\) 28.1132i 1.29265i
\(474\) 0 0
\(475\) −10.7731 + 19.2377i −0.494306 + 0.882686i
\(476\) −8.68940 −0.398278
\(477\) 0 0
\(478\) 15.7337i 0.719643i
\(479\) −28.1920 −1.28813 −0.644063 0.764972i \(-0.722753\pi\)
−0.644063 + 0.764972i \(0.722753\pi\)
\(480\) 0 0
\(481\) 3.44302 0.156988
\(482\) 25.4466i 1.15906i
\(483\) 0 0
\(484\) −0.333261 −0.0151482
\(485\) 18.0191 10.5614i 0.818204 0.479568i
\(486\) 0 0
\(487\) 26.8387i 1.21618i −0.793869 0.608088i \(-0.791937\pi\)
0.793869 0.608088i \(-0.208063\pi\)
\(488\) 7.27814i 0.329466i
\(489\) 0 0
\(490\) 10.5648 6.19226i 0.477268 0.279738i
\(491\) −22.4175 −1.01169 −0.505845 0.862624i \(-0.668819\pi\)
−0.505845 + 0.862624i \(0.668819\pi\)
\(492\) 0 0
\(493\) 4.47429i 0.201512i
\(494\) −15.1829 −0.683111
\(495\) 0 0
\(496\) 0.759332 0.0340950
\(497\) 11.6483i 0.522499i
\(498\) 0 0
\(499\) −31.6931 −1.41878 −0.709389 0.704817i \(-0.751029\pi\)
−0.709389 + 0.704817i \(0.751029\pi\)
\(500\) 11.1782 0.219827i 0.499903 0.00983097i
\(501\) 0 0
\(502\) 22.5978i 1.00859i
\(503\) 7.20775i 0.321378i −0.987005 0.160689i \(-0.948628\pi\)
0.987005 0.160689i \(-0.0513716\pi\)
\(504\) 0 0
\(505\) 2.02737 + 3.45896i 0.0902169 + 0.153922i
\(506\) −11.1743 −0.496756
\(507\) 0 0
\(508\) 16.3720i 0.726390i
\(509\) 30.8524 1.36751 0.683754 0.729713i \(-0.260346\pi\)
0.683754 + 0.729713i \(0.260346\pi\)
\(510\) 0 0
\(511\) 15.6627 0.692877
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −0.382839 −0.0168863
\(515\) 36.1250 21.1737i 1.59186 0.933025i
\(516\) 0 0
\(517\) 16.6446i 0.732029i
\(518\) 1.23431i 0.0542326i
\(519\) 0 0
\(520\) 3.89304 + 6.64201i 0.170721 + 0.291272i
\(521\) −2.93822 −0.128726 −0.0643629 0.997927i \(-0.520502\pi\)
−0.0643629 + 0.997927i \(0.520502\pi\)
\(522\) 0 0
\(523\) 16.6208i 0.726775i 0.931638 + 0.363387i \(0.118380\pi\)
−0.931638 + 0.363387i \(0.881620\pi\)
\(524\) −16.3686 −0.715066
\(525\) 0 0
\(526\) 17.8935 0.780194
\(527\) 5.34559i 0.232858i
\(528\) 0 0
\(529\) 11.9825 0.520979
\(530\) 11.1485 + 19.0208i 0.484261 + 0.826210i
\(531\) 0 0
\(532\) 5.44302i 0.235985i
\(533\) 26.2843i 1.13850i
\(534\) 0 0
\(535\) 6.78406 3.97629i 0.293301 0.171910i
\(536\) 8.94445 0.386341
\(537\) 0 0
\(538\) 23.7565i 1.02422i
\(539\) 18.4365 0.794116
\(540\) 0 0
\(541\) 3.00414 0.129158 0.0645791 0.997913i \(-0.479430\pi\)
0.0645791 + 0.997913i \(0.479430\pi\)
\(542\) 19.7487i 0.848281i
\(543\) 0 0
\(544\) −7.03986 −0.301832
\(545\) 7.24884 + 12.3675i 0.310506 + 0.529763i
\(546\) 0 0
\(547\) 26.3147i 1.12513i −0.826752 0.562567i \(-0.809814\pi\)
0.826752 0.562567i \(-0.190186\pi\)
\(548\) 1.92605i 0.0822769i
\(549\) 0 0
\(550\) 14.6864 + 8.22442i 0.626230 + 0.350690i
\(551\) 2.80269 0.119399
\(552\) 0 0
\(553\) 2.06385i 0.0877639i
\(554\) −18.7112 −0.794961
\(555\) 0 0
\(556\) −21.5940 −0.915788
\(557\) 12.5755i 0.532839i −0.963857 0.266420i \(-0.914159\pi\)
0.963857 0.266420i \(-0.0858407\pi\)
\(558\) 0 0
\(559\) −28.7523 −1.21609
\(560\) −2.38114 + 1.39564i −0.100622 + 0.0589766i
\(561\) 0 0
\(562\) 2.65311i 0.111914i
\(563\) 15.8495i 0.667977i 0.942577 + 0.333989i \(0.108395\pi\)
−0.942577 + 0.333989i \(0.891605\pi\)
\(564\) 0 0
\(565\) −36.8151 + 21.5782i −1.54882 + 0.907801i
\(566\) −7.89107 −0.331687
\(567\) 0 0
\(568\) 9.43709i 0.395972i
\(569\) −2.70072 −0.113220 −0.0566100 0.998396i \(-0.518029\pi\)
−0.0566100 + 0.998396i \(0.518029\pi\)
\(570\) 0 0
\(571\) 33.6184 1.40689 0.703443 0.710752i \(-0.251645\pi\)
0.703443 + 0.710752i \(0.251645\pi\)
\(572\) 11.5909i 0.484640i
\(573\) 0 0
\(574\) −9.42283 −0.393301
\(575\) 14.4803 + 8.10903i 0.603872 + 0.338170i
\(576\) 0 0
\(577\) 18.3099i 0.762249i −0.924524 0.381125i \(-0.875537\pi\)
0.924524 0.381125i \(-0.124463\pi\)
\(578\) 32.5597i 1.35430i
\(579\) 0 0
\(580\) −0.718635 1.22608i −0.0298397 0.0509103i
\(581\) −2.29786 −0.0953312
\(582\) 0 0
\(583\) 33.1930i 1.37471i
\(584\) 12.6894 0.525091
\(585\) 0 0
\(586\) −9.20656 −0.380320
\(587\) 16.7897i 0.692986i 0.938053 + 0.346493i \(0.112628\pi\)
−0.938053 + 0.346493i \(0.887372\pi\)
\(588\) 0 0
\(589\) 3.34847 0.137971
\(590\) 5.85189 3.42993i 0.240918 0.141208i
\(591\) 0 0
\(592\) 1.00000i 0.0410997i
\(593\) 29.5264i 1.21250i 0.795272 + 0.606252i \(0.207328\pi\)
−0.795272 + 0.606252i \(0.792672\pi\)
\(594\) 0 0
\(595\) 9.82512 + 16.7629i 0.402791 + 0.687212i
\(596\) −21.3688 −0.875300
\(597\) 0 0
\(598\) 11.4283i 0.467337i
\(599\) 14.4857 0.591872 0.295936 0.955208i \(-0.404369\pi\)
0.295936 + 0.955208i \(0.404369\pi\)
\(600\) 0 0
\(601\) −32.2637 −1.31606 −0.658032 0.752990i \(-0.728611\pi\)
−0.658032 + 0.752990i \(0.728611\pi\)
\(602\) 10.3076i 0.420107i
\(603\) 0 0
\(604\) 11.5280 0.469069
\(605\) 0.376819 + 0.642901i 0.0153199 + 0.0261376i
\(606\) 0 0
\(607\) 4.68289i 0.190072i −0.995474 0.0950362i \(-0.969703\pi\)
0.995474 0.0950362i \(-0.0302967\pi\)
\(608\) 4.40976i 0.178839i
\(609\) 0 0
\(610\) −14.0404 + 8.22941i −0.568480 + 0.333199i
\(611\) 17.0230 0.688677
\(612\) 0 0
\(613\) 15.5305i 0.627271i 0.949543 + 0.313636i \(0.101547\pi\)
−0.949543 + 0.313636i \(0.898453\pi\)
\(614\) 10.5484 0.425698
\(615\) 0 0
\(616\) −4.15530 −0.167422
\(617\) 33.7696i 1.35951i 0.733438 + 0.679757i \(0.237915\pi\)
−0.733438 + 0.679757i \(0.762085\pi\)
\(618\) 0 0
\(619\) −23.7149 −0.953182 −0.476591 0.879125i \(-0.658128\pi\)
−0.476591 + 0.879125i \(0.658128\pi\)
\(620\) −0.858578 1.46484i −0.0344813 0.0588295i
\(621\) 0 0
\(622\) 27.1869i 1.09009i
\(623\) 17.9921i 0.720840i
\(624\) 0 0
\(625\) −13.0633 21.3155i −0.522531 0.852620i
\(626\) −8.74232 −0.349413
\(627\) 0 0
\(628\) 3.80302i 0.151757i
\(629\) 7.03986 0.280698
\(630\) 0 0
\(631\) −5.46438 −0.217533 −0.108767 0.994067i \(-0.534690\pi\)
−0.108767 + 0.994067i \(0.534690\pi\)
\(632\) 1.67207i 0.0665112i
\(633\) 0 0
\(634\) 4.74399 0.188408
\(635\) −31.5836 + 18.5119i −1.25336 + 0.734621i
\(636\) 0 0
\(637\) 18.8556i 0.747087i
\(638\) 2.13963i 0.0847086i
\(639\) 0 0
\(640\) −1.92912 + 1.13070i −0.0762552 + 0.0446949i
\(641\) 4.72202 0.186508 0.0932542 0.995642i \(-0.470273\pi\)
0.0932542 + 0.995642i \(0.470273\pi\)
\(642\) 0 0
\(643\) 26.5265i 1.04610i −0.852301 0.523052i \(-0.824793\pi\)
0.852301 0.523052i \(-0.175207\pi\)
\(644\) −4.09700 −0.161445
\(645\) 0 0
\(646\) −31.0441 −1.22141
\(647\) 16.8901i 0.664017i −0.943276 0.332009i \(-0.892274\pi\)
0.943276 0.332009i \(-0.107726\pi\)
\(648\) 0 0
\(649\) 10.2121 0.400859
\(650\) 8.41139 15.0203i 0.329922 0.589144i
\(651\) 0 0
\(652\) 1.70971i 0.0669573i
\(653\) 14.6814i 0.574528i −0.957851 0.287264i \(-0.907254\pi\)
0.957851 0.287264i \(-0.0927457\pi\)
\(654\) 0 0
\(655\) 18.5080 + 31.5770i 0.723168 + 1.23382i
\(656\) −7.63407 −0.298060
\(657\) 0 0
\(658\) 6.10270i 0.237908i
\(659\) 24.3591 0.948896 0.474448 0.880284i \(-0.342648\pi\)
0.474448 + 0.880284i \(0.342648\pi\)
\(660\) 0 0
\(661\) −42.9547 −1.67075 −0.835373 0.549684i \(-0.814748\pi\)
−0.835373 + 0.549684i \(0.814748\pi\)
\(662\) 8.82644i 0.343049i
\(663\) 0 0
\(664\) −1.86165 −0.0722460
\(665\) −10.5003 + 6.15444i −0.407183 + 0.238659i
\(666\) 0 0
\(667\) 2.10961i 0.0816843i
\(668\) 22.1107i 0.855490i
\(669\) 0 0
\(670\) −10.1135 17.2549i −0.390719 0.666616i
\(671\) −24.5018 −0.945881
\(672\) 0 0
\(673\) 22.2378i 0.857205i −0.903493 0.428602i \(-0.859006\pi\)
0.903493 0.428602i \(-0.140994\pi\)
\(674\) −3.59908 −0.138631
\(675\) 0 0
\(676\) −1.14559 −0.0440610
\(677\) 17.3025i 0.664987i −0.943105 0.332494i \(-0.892110\pi\)
0.943105 0.332494i \(-0.107890\pi\)
\(678\) 0 0
\(679\) 11.5292 0.442449
\(680\) 7.95999 + 13.5808i 0.305252 + 0.520798i
\(681\) 0 0
\(682\) 2.55628i 0.0978851i
\(683\) 2.42928i 0.0929537i 0.998919 + 0.0464769i \(0.0147994\pi\)
−0.998919 + 0.0464769i \(0.985201\pi\)
\(684\) 0 0
\(685\) 3.71559 2.17779i 0.141966 0.0832092i
\(686\) 15.3999 0.587970
\(687\) 0 0
\(688\) 8.35089i 0.318375i
\(689\) 33.9476 1.29330
\(690\) 0 0
\(691\) −45.3655 −1.72578 −0.862892 0.505389i \(-0.831349\pi\)
−0.862892 + 0.505389i \(0.831349\pi\)
\(692\) 12.5446i 0.476874i
\(693\) 0 0
\(694\) 13.6943 0.519827
\(695\) 24.4164 + 41.6574i 0.926165 + 1.58016i
\(696\) 0 0
\(697\) 53.7428i 2.03565i
\(698\) 12.9295i 0.489389i
\(699\) 0 0
\(700\) 5.38472 + 3.01546i 0.203523 + 0.113974i
\(701\) −49.1290 −1.85558 −0.927788 0.373109i \(-0.878292\pi\)
−0.927788 + 0.373109i \(0.878292\pi\)
\(702\) 0 0
\(703\) 4.40976i 0.166317i
\(704\) −3.36649 −0.126879
\(705\) 0 0
\(706\) −19.5646 −0.736323
\(707\) 2.21315i 0.0832341i
\(708\) 0 0
\(709\) −11.3111 −0.424796 −0.212398 0.977183i \(-0.568127\pi\)
−0.212398 + 0.977183i \(0.568127\pi\)
\(710\) 18.2053 10.6705i 0.683233 0.400458i
\(711\) 0 0
\(712\) 14.5766i 0.546283i
\(713\) 2.52042i 0.0943904i
\(714\) 0 0
\(715\) 22.3603 13.1059i 0.836227 0.490132i
\(716\) 19.8089 0.740294
\(717\) 0 0
\(718\) 22.1544i 0.826794i
\(719\) 20.4566 0.762901 0.381451 0.924389i \(-0.375425\pi\)
0.381451 + 0.924389i \(0.375425\pi\)
\(720\) 0 0
\(721\) 23.1139 0.860808
\(722\) 0.445974i 0.0165974i
\(723\) 0 0
\(724\) −5.07891 −0.188756
\(725\) −1.55270 + 2.77267i −0.0576659 + 0.102974i
\(726\) 0 0
\(727\) 40.0799i 1.48648i 0.669024 + 0.743241i \(0.266712\pi\)
−0.669024 + 0.743241i \(0.733288\pi\)
\(728\) 4.24977i 0.157507i
\(729\) 0 0
\(730\) −14.3479 24.4794i −0.531041 0.906023i
\(731\) −58.7891 −2.17439
\(732\) 0 0
\(733\) 13.6671i 0.504806i 0.967622 + 0.252403i \(0.0812209\pi\)
−0.967622 + 0.252403i \(0.918779\pi\)
\(734\) 16.8362 0.621436
\(735\) 0 0
\(736\) −3.31926 −0.122349
\(737\) 30.1114i 1.10917i
\(738\) 0 0
\(739\) −36.2928 −1.33505 −0.667527 0.744586i \(-0.732647\pi\)
−0.667527 + 0.744586i \(0.732647\pi\)
\(740\) 1.92912 1.13070i 0.0709159 0.0415654i
\(741\) 0 0
\(742\) 12.1701i 0.446779i
\(743\) 37.8206i 1.38750i 0.720215 + 0.693751i \(0.244043\pi\)
−0.720215 + 0.693751i \(0.755957\pi\)
\(744\) 0 0
\(745\) 24.1617 + 41.2230i 0.885218 + 1.51029i
\(746\) −4.76106 −0.174315
\(747\) 0 0
\(748\) 23.6996i 0.866545i
\(749\) 4.34066 0.158604
\(750\) 0 0
\(751\) −4.25776 −0.155368 −0.0776840 0.996978i \(-0.524753\pi\)
−0.0776840 + 0.996978i \(0.524753\pi\)
\(752\) 4.94420i 0.180297i
\(753\) 0 0
\(754\) −2.18827 −0.0796920
\(755\) −13.0348 22.2390i −0.474384 0.809359i
\(756\) 0 0
\(757\) 30.2524i 1.09954i 0.835315 + 0.549772i \(0.185285\pi\)
−0.835315 + 0.549772i \(0.814715\pi\)
\(758\) 2.62236i 0.0952483i
\(759\) 0 0
\(760\) −8.50696 + 4.98613i −0.308580 + 0.180866i
\(761\) 24.7344 0.896622 0.448311 0.893878i \(-0.352026\pi\)
0.448311 + 0.893878i \(0.352026\pi\)
\(762\) 0 0
\(763\) 7.91309i 0.286473i
\(764\) 12.1697 0.440283
\(765\) 0 0
\(766\) −26.7104 −0.965085
\(767\) 10.4442i 0.377119i
\(768\) 0 0
\(769\) 13.1340 0.473624 0.236812 0.971555i \(-0.423897\pi\)
0.236812 + 0.971555i \(0.423897\pi\)
\(770\) 4.69841 + 8.01609i 0.169319 + 0.288880i
\(771\) 0 0
\(772\) 14.4442i 0.519860i
\(773\) 30.7387i 1.10559i 0.833316 + 0.552796i \(0.186439\pi\)
−0.833316 + 0.552796i \(0.813561\pi\)
\(774\) 0 0
\(775\) −1.85507 + 3.31260i −0.0666359 + 0.118992i
\(776\) 9.34055 0.335306
\(777\) 0 0
\(778\) 28.4487i 1.01994i
\(779\) −33.6644 −1.20615
\(780\) 0 0
\(781\) 31.7699 1.13682
\(782\) 23.3671i 0.835607i
\(783\) 0 0
\(784\) 5.47647 0.195588
\(785\) 7.33650 4.30009i 0.261851 0.153477i
\(786\) 0 0
\(787\) 39.3548i 1.40285i −0.712744 0.701424i \(-0.752548\pi\)
0.712744 0.701424i \(-0.247452\pi\)
\(788\) 20.4747i 0.729381i
\(789\) 0 0
\(790\) −3.22562 + 1.89061i −0.114762 + 0.0672648i
\(791\) −23.5555 −0.837536
\(792\) 0 0
\(793\) 25.0588i 0.889865i
\(794\) 16.3501 0.580243
\(795\) 0 0
\(796\) 18.0454 0.639604
\(797\) 36.3497i 1.28757i 0.765206 + 0.643786i \(0.222637\pi\)
−0.765206 + 0.643786i \(0.777363\pi\)
\(798\) 0 0
\(799\) 34.8065 1.23137
\(800\) 4.36253 + 2.44302i 0.154239 + 0.0863739i
\(801\) 0 0
\(802\) 9.08493i 0.320800i
\(803\) 42.7187i 1.50751i
\(804\) 0 0
\(805\) 4.63249 + 7.90362i 0.163274 + 0.278566i
\(806\) −2.61440 −0.0920882
\(807\) 0 0
\(808\) 1.79302i 0.0630783i
\(809\) 27.3642 0.962073 0.481036 0.876701i \(-0.340260\pi\)
0.481036 + 0.876701i \(0.340260\pi\)
\(810\) 0 0
\(811\) 21.7327 0.763138 0.381569 0.924340i \(-0.375384\pi\)
0.381569 + 0.924340i \(0.375384\pi\)
\(812\) 0.784487i 0.0275301i
\(813\) 0 0
\(814\) 3.36649 0.117995
\(815\) 3.29824 1.93317i 0.115532 0.0677160i
\(816\) 0 0
\(817\) 36.8254i 1.28836i
\(818\) 8.22234i 0.287488i
\(819\) 0 0
\(820\) 8.63186 + 14.7271i 0.301438 + 0.514291i
\(821\) 17.0859 0.596303 0.298152 0.954519i \(-0.403630\pi\)
0.298152 + 0.954519i \(0.403630\pi\)
\(822\) 0 0
\(823\) 4.74737i 0.165483i −0.996571 0.0827414i \(-0.973632\pi\)
0.996571 0.0827414i \(-0.0263676\pi\)
\(824\) 18.7262 0.652357
\(825\) 0 0
\(826\) 3.74422 0.130278
\(827\) 14.9656i 0.520405i −0.965554 0.260203i \(-0.916211\pi\)
0.965554 0.260203i \(-0.0837894\pi\)
\(828\) 0 0
\(829\) −50.8537 −1.76622 −0.883111 0.469165i \(-0.844555\pi\)
−0.883111 + 0.469165i \(0.844555\pi\)
\(830\) 2.10497 + 3.59135i 0.0730646 + 0.124658i
\(831\) 0 0
\(832\) 3.44302i 0.119365i
\(833\) 38.5536i 1.33580i
\(834\) 0 0
\(835\) 42.6543 25.0007i 1.47611 0.865183i
\(836\) −14.8454 −0.513439
\(837\) 0 0
\(838\) 8.88285i 0.306853i
\(839\) −9.20967 −0.317953 −0.158977 0.987282i \(-0.550819\pi\)
−0.158977 + 0.987282i \(0.550819\pi\)
\(840\) 0 0
\(841\) −28.5961 −0.986071
\(842\) 12.3712i 0.426340i
\(843\) 0 0
\(844\) −8.58522 −0.295516
\(845\) 1.29532 + 2.20997i 0.0445602 + 0.0760254i
\(846\) 0 0
\(847\) 0.411348i 0.0141341i
\(848\) 9.85982i 0.338588i
\(849\) 0 0
\(850\) 17.1986 30.7116i 0.589906 1.05340i
\(851\) 3.31926 0.113783
\(852\) 0 0
\(853\) 3.39058i 0.116091i 0.998314 + 0.0580457i \(0.0184869\pi\)
−0.998314 + 0.0580457i \(0.981513\pi\)
\(854\) −8.98351 −0.307409
\(855\) 0 0
\(856\) 3.51666 0.120197
\(857\) 6.65800i 0.227433i 0.993513 + 0.113716i \(0.0362755\pi\)
−0.993513 + 0.113716i \(0.963724\pi\)
\(858\) 0 0
\(859\) 41.7302 1.42382 0.711909 0.702272i \(-0.247831\pi\)
0.711909 + 0.702272i \(0.247831\pi\)
\(860\) −16.1099 + 9.44237i −0.549343 + 0.321982i
\(861\) 0 0
\(862\) 7.83341i 0.266807i
\(863\) 14.0899i 0.479624i −0.970819 0.239812i \(-0.922914\pi\)
0.970819 0.239812i \(-0.0770859\pi\)
\(864\) 0 0
\(865\) −24.2000 + 14.1842i −0.822826 + 0.482277i
\(866\) −16.5213 −0.561416
\(867\) 0 0
\(868\) 0.937253i 0.0318124i
\(869\) −5.62899 −0.190950
\(870\) 0 0
\(871\) −30.7959 −1.04348
\(872\) 6.41092i 0.217101i
\(873\) 0 0
\(874\) −14.6371 −0.495108
\(875\) −0.271336 13.7974i −0.00917282 0.466436i
\(876\) 0 0
\(877\) 22.8145i 0.770391i −0.922835 0.385196i \(-0.874134\pi\)
0.922835 0.385196i \(-0.125866\pi\)
\(878\) 18.6337i 0.628856i
\(879\) 0 0
\(880\) 3.80650 + 6.49437i 0.128317 + 0.218925i
\(881\) 35.0903 1.18222 0.591111 0.806590i \(-0.298689\pi\)
0.591111 + 0.806590i \(0.298689\pi\)
\(882\) 0 0
\(883\) 0.587522i 0.0197717i −0.999951 0.00988585i \(-0.996853\pi\)
0.999951 0.00988585i \(-0.00314681\pi\)
\(884\) 24.2384 0.815226
\(885\) 0 0
\(886\) −1.02442 −0.0344162
\(887\) 28.9277i 0.971299i 0.874154 + 0.485649i \(0.161417\pi\)
−0.874154 + 0.485649i \(0.838583\pi\)
\(888\) 0 0
\(889\) −20.2082 −0.677761
\(890\) 28.1201 16.4818i 0.942589 0.552473i
\(891\) 0 0
\(892\) 28.8602i 0.966310i
\(893\) 21.8027i 0.729601i
\(894\) 0 0
\(895\) −22.3980 38.2138i −0.748683 1.27735i
\(896\) −1.23431 −0.0412355
\(897\) 0 0
\(898\) 11.4182i 0.381031i
\(899\) 0.482605 0.0160958
\(900\) 0 0
\(901\) 69.4118 2.31244
\(902\) 25.7000i 0.855717i
\(903\) 0 0
\(904\) −19.0839 −0.634720
\(905\) 5.74273 + 9.79783i 0.190895 + 0.325691i
\(906\) 0 0
\(907\) 6.27428i 0.208334i 0.994560 + 0.104167i \(0.0332177\pi\)
−0.994560 + 0.104167i \(0.966782\pi\)
\(908\) 16.2253i 0.538455i
\(909\) 0 0
\(910\) 8.19833 4.80523i 0.271772 0.159292i
\(911\) −24.6606 −0.817041 −0.408521 0.912749i \(-0.633955\pi\)
−0.408521 + 0.912749i \(0.633955\pi\)
\(912\) 0 0
\(913\) 6.26722i 0.207415i
\(914\) 32.5920 1.07805
\(915\) 0 0
\(916\) −15.6420 −0.516826
\(917\) 20.2040i 0.667194i
\(918\) 0 0
\(919\) 28.1230 0.927691 0.463845 0.885916i \(-0.346469\pi\)
0.463845 + 0.885916i \(0.346469\pi\)
\(920\) 3.75309 + 6.40325i 0.123736 + 0.211109i
\(921\) 0 0
\(922\) 7.68554i 0.253110i
\(923\) 32.4921i 1.06949i
\(924\) 0 0
\(925\) −4.36253 2.44302i −0.143439 0.0803261i
\(926\) 0.229299 0.00753524
\(927\) 0 0
\(928\) 0.635565i 0.0208635i
\(929\) −32.4655 −1.06516 −0.532579 0.846381i \(-0.678777\pi\)
−0.532579 + 0.846381i \(0.678777\pi\)
\(930\) 0 0
\(931\) 24.1499 0.791482
\(932\) 13.8052i 0.452203i
\(933\) 0 0
\(934\) 17.7416 0.580524
\(935\) 45.7195 26.7972i 1.49519 0.876363i
\(936\) 0 0
\(937\) 25.6809i 0.838959i −0.907765 0.419479i \(-0.862213\pi\)
0.907765 0.419479i \(-0.137787\pi\)
\(938\) 11.0402i 0.360477i
\(939\) 0 0
\(940\) 9.53797 5.59042i 0.311094 0.182339i
\(941\) 14.5913 0.475662 0.237831 0.971307i \(-0.423564\pi\)
0.237831 + 0.971307i \(0.423564\pi\)
\(942\) 0 0
\(943\) 25.3394i 0.825166i
\(944\) 3.03345 0.0987303
\(945\) 0 0
\(946\) −28.1132 −0.914039
\(947\) 46.7035i 1.51766i −0.651290 0.758829i \(-0.725772\pi\)
0.651290 0.758829i \(-0.274228\pi\)
\(948\) 0 0
\(949\) −43.6899 −1.41823
\(950\) 19.2377 + 10.7731i 0.624153 + 0.349527i
\(951\) 0 0
\(952\) 8.68940i 0.281625i
\(953\) 45.6196i 1.47777i 0.673834 + 0.738883i \(0.264646\pi\)
−0.673834 + 0.738883i \(0.735354\pi\)
\(954\) 0 0
\(955\) −13.7603 23.4768i −0.445272 0.759691i
\(956\) −15.7337 −0.508864
\(957\) 0 0
\(958\) 28.1920i 0.910843i
\(959\) 2.37735 0.0767688
\(960\) 0 0
\(961\) −30.4234 −0.981401
\(962\) 3.44302i 0.111008i
\(963\) 0 0
\(964\) −25.4466 −0.819579
\(965\) 27.8647 16.3321i 0.896997 0.525750i
\(966\) 0 0
\(967\) 12.7855i 0.411154i −0.978641 0.205577i \(-0.934093\pi\)
0.978641 0.205577i \(-0.0659072\pi\)
\(968\) 0.333261i 0.0107114i
\(969\) 0 0
\(970\) −10.5614 18.0191i −0.339106 0.578557i
\(971\) 6.30783 0.202428 0.101214 0.994865i \(-0.467727\pi\)
0.101214 + 0.994865i \(0.467727\pi\)
\(972\) 0 0
\(973\) 26.6537i 0.854479i
\(974\) −26.8387 −0.859967
\(975\) 0 0
\(976\) −7.27814 −0.232968
\(977\) 36.6913i 1.17386i −0.809638 0.586929i \(-0.800337\pi\)
0.809638 0.586929i \(-0.199663\pi\)
\(978\) 0 0
\(979\) 49.0721 1.56835
\(980\) −6.19226 10.5648i −0.197804 0.337480i
\(981\) 0 0
\(982\) 22.4175i 0.715373i
\(983\) 3.96172i 0.126359i −0.998002 0.0631796i \(-0.979876\pi\)
0.998002 0.0631796i \(-0.0201241\pi\)
\(984\) 0 0
\(985\) −39.4982 + 23.1508i −1.25852 + 0.737646i
\(986\) −4.47429 −0.142491
\(987\) 0 0
\(988\) 15.1829i 0.483033i
\(989\) −27.7188 −0.881405
\(990\) 0 0
\(991\) −36.5320 −1.16048 −0.580239 0.814446i \(-0.697041\pi\)
−0.580239 + 0.814446i \(0.697041\pi\)
\(992\) 0.759332i 0.0241088i
\(993\) 0 0
\(994\) 11.6483 0.369463
\(995\) −20.4040 34.8119i −0.646851 1.10361i
\(996\) 0 0
\(997\) 45.1850i 1.43102i 0.698601 + 0.715511i \(0.253806\pi\)
−0.698601 + 0.715511i \(0.746194\pi\)
\(998\) 31.6931i 1.00323i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3330.2.d.r.1999.4 yes 14
3.2 odd 2 3330.2.d.q.1999.11 yes 14
5.4 even 2 inner 3330.2.d.r.1999.11 yes 14
15.14 odd 2 3330.2.d.q.1999.4 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3330.2.d.q.1999.4 14 15.14 odd 2
3330.2.d.q.1999.11 yes 14 3.2 odd 2
3330.2.d.r.1999.4 yes 14 1.1 even 1 trivial
3330.2.d.r.1999.11 yes 14 5.4 even 2 inner