Properties

Label 3330.2.d.r.1999.1
Level $3330$
Weight $2$
Character 3330.1999
Analytic conductor $26.590$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3330,2,Mod(1999,3330)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3330.1999"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3330, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3330 = 2 \cdot 3^{2} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3330.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,0,-14,4,0,0,0,0,-6,-12,0,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.5901838731\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 20x^{12} + 154x^{10} + 580x^{8} + 1105x^{6} + 960x^{4} + 256x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1999.1
Root \(2.64550i\) of defining polynomial
Character \(\chi\) \(=\) 3330.1999
Dual form 3330.2.d.r.1999.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -1.00000 q^{4} +(-2.17297 - 0.527467i) q^{5} +4.99866i q^{7} +1.00000i q^{8} +(-0.527467 + 2.17297i) q^{10} -2.41083 q^{11} +3.44356i q^{13} +4.99866 q^{14} +1.00000 q^{16} -1.84744i q^{17} -0.288789 q^{19} +(2.17297 + 0.527467i) q^{20} +2.41083i q^{22} -0.170297i q^{23} +(4.44356 + 2.29234i) q^{25} +3.44356 q^{26} -4.99866i q^{28} +6.81364 q^{29} +3.19979 q^{31} -1.00000i q^{32} -1.84744 q^{34} +(2.63663 - 10.8619i) q^{35} +1.00000i q^{37} +0.288789i q^{38} +(0.527467 - 2.17297i) q^{40} -3.43306 q^{41} +8.57489i q^{43} +2.41083 q^{44} -0.170297 q^{46} +1.88658i q^{47} -17.9866 q^{49} +(2.29234 - 4.44356i) q^{50} -3.44356i q^{52} +3.73718i q^{53} +(5.23865 + 1.27163i) q^{55} -4.99866 q^{56} -6.81364i q^{58} -13.5430 q^{59} -2.14293 q^{61} -3.19979i q^{62} -1.00000 q^{64} +(1.81636 - 7.48273i) q^{65} -9.08723i q^{67} +1.84744i q^{68} +(-10.8619 - 2.63663i) q^{70} -2.43273 q^{71} -13.2347i q^{73} +1.00000 q^{74} +0.288789 q^{76} -12.0509i q^{77} -12.6555 q^{79} +(-2.17297 - 0.527467i) q^{80} +3.43306i q^{82} +3.21967i q^{83} +(-0.974464 + 4.01442i) q^{85} +8.57489 q^{86} -2.41083i q^{88} -4.27078 q^{89} -17.2132 q^{91} +0.170297i q^{92} +1.88658 q^{94} +(0.627528 + 0.152327i) q^{95} +7.95362i q^{97} +17.9866i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 14 q^{4} + 4 q^{5} - 6 q^{10} - 12 q^{11} + 12 q^{14} + 14 q^{16} + 4 q^{19} - 4 q^{20} + 10 q^{25} - 4 q^{26} + 16 q^{29} + 12 q^{31} - 12 q^{34} + 8 q^{35} + 6 q^{40} - 56 q^{41} + 12 q^{44} - 8 q^{46}+ \cdots - 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3330\mathbb{Z}\right)^\times\).

\(n\) \(371\) \(631\) \(667\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) −2.17297 0.527467i −0.971780 0.235891i
\(6\) 0 0
\(7\) 4.99866i 1.88932i 0.328058 + 0.944658i \(0.393606\pi\)
−0.328058 + 0.944658i \(0.606394\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) −0.527467 + 2.17297i −0.166800 + 0.687152i
\(11\) −2.41083 −0.726892 −0.363446 0.931615i \(-0.618400\pi\)
−0.363446 + 0.931615i \(0.618400\pi\)
\(12\) 0 0
\(13\) 3.44356i 0.955071i 0.878613 + 0.477535i \(0.158470\pi\)
−0.878613 + 0.477535i \(0.841530\pi\)
\(14\) 4.99866 1.33595
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 1.84744i 0.448070i −0.974581 0.224035i \(-0.928077\pi\)
0.974581 0.224035i \(-0.0719230\pi\)
\(18\) 0 0
\(19\) −0.288789 −0.0662527 −0.0331263 0.999451i \(-0.510546\pi\)
−0.0331263 + 0.999451i \(0.510546\pi\)
\(20\) 2.17297 + 0.527467i 0.485890 + 0.117945i
\(21\) 0 0
\(22\) 2.41083i 0.513990i
\(23\) 0.170297i 0.0355093i −0.999842 0.0177547i \(-0.994348\pi\)
0.999842 0.0177547i \(-0.00565178\pi\)
\(24\) 0 0
\(25\) 4.44356 + 2.29234i 0.888711 + 0.458467i
\(26\) 3.44356 0.675337
\(27\) 0 0
\(28\) 4.99866i 0.944658i
\(29\) 6.81364 1.26526 0.632630 0.774454i \(-0.281975\pi\)
0.632630 + 0.774454i \(0.281975\pi\)
\(30\) 0 0
\(31\) 3.19979 0.574698 0.287349 0.957826i \(-0.407226\pi\)
0.287349 + 0.957826i \(0.407226\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) −1.84744 −0.316833
\(35\) 2.63663 10.8619i 0.445672 1.83600i
\(36\) 0 0
\(37\) 1.00000i 0.164399i
\(38\) 0.288789i 0.0468477i
\(39\) 0 0
\(40\) 0.527467 2.17297i 0.0833999 0.343576i
\(41\) −3.43306 −0.536154 −0.268077 0.963397i \(-0.586388\pi\)
−0.268077 + 0.963397i \(0.586388\pi\)
\(42\) 0 0
\(43\) 8.57489i 1.30766i 0.756642 + 0.653830i \(0.226839\pi\)
−0.756642 + 0.653830i \(0.773161\pi\)
\(44\) 2.41083 0.363446
\(45\) 0 0
\(46\) −0.170297 −0.0251089
\(47\) 1.88658i 0.275186i 0.990489 + 0.137593i \(0.0439366\pi\)
−0.990489 + 0.137593i \(0.956063\pi\)
\(48\) 0 0
\(49\) −17.9866 −2.56951
\(50\) 2.29234 4.44356i 0.324185 0.628414i
\(51\) 0 0
\(52\) 3.44356i 0.477535i
\(53\) 3.73718i 0.513341i 0.966499 + 0.256670i \(0.0826255\pi\)
−0.966499 + 0.256670i \(0.917375\pi\)
\(54\) 0 0
\(55\) 5.23865 + 1.27163i 0.706379 + 0.171467i
\(56\) −4.99866 −0.667974
\(57\) 0 0
\(58\) 6.81364i 0.894675i
\(59\) −13.5430 −1.76315 −0.881576 0.472041i \(-0.843517\pi\)
−0.881576 + 0.472041i \(0.843517\pi\)
\(60\) 0 0
\(61\) −2.14293 −0.274374 −0.137187 0.990545i \(-0.543806\pi\)
−0.137187 + 0.990545i \(0.543806\pi\)
\(62\) 3.19979i 0.406373i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 1.81636 7.48273i 0.225292 0.928118i
\(66\) 0 0
\(67\) 9.08723i 1.11018i −0.831790 0.555091i \(-0.812683\pi\)
0.831790 0.555091i \(-0.187317\pi\)
\(68\) 1.84744i 0.224035i
\(69\) 0 0
\(70\) −10.8619 2.63663i −1.29825 0.315138i
\(71\) −2.43273 −0.288712 −0.144356 0.989526i \(-0.546111\pi\)
−0.144356 + 0.989526i \(0.546111\pi\)
\(72\) 0 0
\(73\) 13.2347i 1.54901i −0.632570 0.774503i \(-0.718000\pi\)
0.632570 0.774503i \(-0.282000\pi\)
\(74\) 1.00000 0.116248
\(75\) 0 0
\(76\) 0.288789 0.0331263
\(77\) 12.0509i 1.37333i
\(78\) 0 0
\(79\) −12.6555 −1.42385 −0.711926 0.702255i \(-0.752177\pi\)
−0.711926 + 0.702255i \(0.752177\pi\)
\(80\) −2.17297 0.527467i −0.242945 0.0589727i
\(81\) 0 0
\(82\) 3.43306i 0.379118i
\(83\) 3.21967i 0.353404i 0.984264 + 0.176702i \(0.0565429\pi\)
−0.984264 + 0.176702i \(0.943457\pi\)
\(84\) 0 0
\(85\) −0.974464 + 4.01442i −0.105695 + 0.435425i
\(86\) 8.57489 0.924655
\(87\) 0 0
\(88\) 2.41083i 0.256995i
\(89\) −4.27078 −0.452702 −0.226351 0.974046i \(-0.572680\pi\)
−0.226351 + 0.974046i \(0.572680\pi\)
\(90\) 0 0
\(91\) −17.2132 −1.80443
\(92\) 0.170297i 0.0177547i
\(93\) 0 0
\(94\) 1.88658 0.194586
\(95\) 0.627528 + 0.152327i 0.0643830 + 0.0156284i
\(96\) 0 0
\(97\) 7.95362i 0.807567i 0.914855 + 0.403784i \(0.132305\pi\)
−0.914855 + 0.403784i \(0.867695\pi\)
\(98\) 17.9866i 1.81692i
\(99\) 0 0
\(100\) −4.44356 2.29234i −0.444356 0.229234i
\(101\) −9.14260 −0.909722 −0.454861 0.890562i \(-0.650311\pi\)
−0.454861 + 0.890562i \(0.650311\pi\)
\(102\) 0 0
\(103\) 15.0650i 1.48440i −0.670178 0.742201i \(-0.733782\pi\)
0.670178 0.742201i \(-0.266218\pi\)
\(104\) −3.44356 −0.337668
\(105\) 0 0
\(106\) 3.73718 0.362987
\(107\) 3.15153i 0.304670i 0.988329 + 0.152335i \(0.0486792\pi\)
−0.988329 + 0.152335i \(0.951321\pi\)
\(108\) 0 0
\(109\) 14.9899 1.43577 0.717885 0.696162i \(-0.245110\pi\)
0.717885 + 0.696162i \(0.245110\pi\)
\(110\) 1.27163 5.23865i 0.121246 0.499485i
\(111\) 0 0
\(112\) 4.99866i 0.472329i
\(113\) 9.39655i 0.883953i −0.897027 0.441977i \(-0.854277\pi\)
0.897027 0.441977i \(-0.145723\pi\)
\(114\) 0 0
\(115\) −0.0898259 + 0.370049i −0.00837631 + 0.0345072i
\(116\) −6.81364 −0.632630
\(117\) 0 0
\(118\) 13.5430i 1.24674i
\(119\) 9.23472 0.846545
\(120\) 0 0
\(121\) −5.18790 −0.471628
\(122\) 2.14293i 0.194012i
\(123\) 0 0
\(124\) −3.19979 −0.287349
\(125\) −8.44656 7.32500i −0.755483 0.655168i
\(126\) 0 0
\(127\) 0.310541i 0.0275560i −0.999905 0.0137780i \(-0.995614\pi\)
0.999905 0.0137780i \(-0.00438582\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) −7.48273 1.81636i −0.656279 0.159306i
\(131\) −6.58514 −0.575346 −0.287673 0.957729i \(-0.592882\pi\)
−0.287673 + 0.957729i \(0.592882\pi\)
\(132\) 0 0
\(133\) 1.44356i 0.125172i
\(134\) −9.08723 −0.785017
\(135\) 0 0
\(136\) 1.84744 0.158417
\(137\) 19.3362i 1.65200i −0.563667 0.826002i \(-0.690610\pi\)
0.563667 0.826002i \(-0.309390\pi\)
\(138\) 0 0
\(139\) −7.69153 −0.652387 −0.326193 0.945303i \(-0.605766\pi\)
−0.326193 + 0.945303i \(0.605766\pi\)
\(140\) −2.63663 + 10.8619i −0.222836 + 0.917999i
\(141\) 0 0
\(142\) 2.43273i 0.204150i
\(143\) 8.30182i 0.694233i
\(144\) 0 0
\(145\) −14.8058 3.59397i −1.22955 0.298463i
\(146\) −13.2347 −1.09531
\(147\) 0 0
\(148\) 1.00000i 0.0821995i
\(149\) 19.1926 1.57232 0.786161 0.618022i \(-0.212066\pi\)
0.786161 + 0.618022i \(0.212066\pi\)
\(150\) 0 0
\(151\) −15.3170 −1.24648 −0.623240 0.782031i \(-0.714184\pi\)
−0.623240 + 0.782031i \(0.714184\pi\)
\(152\) 0.288789i 0.0234239i
\(153\) 0 0
\(154\) −12.0509 −0.971090
\(155\) −6.95302 1.68778i −0.558480 0.135566i
\(156\) 0 0
\(157\) 3.86579i 0.308524i 0.988030 + 0.154262i \(0.0492999\pi\)
−0.988030 + 0.154262i \(0.950700\pi\)
\(158\) 12.6555i 1.00681i
\(159\) 0 0
\(160\) −0.527467 + 2.17297i −0.0417000 + 0.171788i
\(161\) 0.851255 0.0670883
\(162\) 0 0
\(163\) 9.27619i 0.726567i −0.931679 0.363284i \(-0.881656\pi\)
0.931679 0.363284i \(-0.118344\pi\)
\(164\) 3.43306 0.268077
\(165\) 0 0
\(166\) 3.21967 0.249895
\(167\) 15.1512i 1.17243i 0.810154 + 0.586217i \(0.199383\pi\)
−0.810154 + 0.586217i \(0.800617\pi\)
\(168\) 0 0
\(169\) 1.14192 0.0878401
\(170\) 4.01442 + 0.974464i 0.307892 + 0.0747380i
\(171\) 0 0
\(172\) 8.57489i 0.653830i
\(173\) 13.2051i 1.00396i −0.864878 0.501982i \(-0.832604\pi\)
0.864878 0.501982i \(-0.167396\pi\)
\(174\) 0 0
\(175\) −11.4586 + 22.2118i −0.866189 + 1.67906i
\(176\) −2.41083 −0.181723
\(177\) 0 0
\(178\) 4.27078i 0.320108i
\(179\) 12.8119 0.957605 0.478802 0.877923i \(-0.341071\pi\)
0.478802 + 0.877923i \(0.341071\pi\)
\(180\) 0 0
\(181\) −8.80834 −0.654718 −0.327359 0.944900i \(-0.606159\pi\)
−0.327359 + 0.944900i \(0.606159\pi\)
\(182\) 17.2132i 1.27592i
\(183\) 0 0
\(184\) 0.170297 0.0125544
\(185\) 0.527467 2.17297i 0.0387802 0.159760i
\(186\) 0 0
\(187\) 4.45386i 0.325699i
\(188\) 1.88658i 0.137593i
\(189\) 0 0
\(190\) 0.152327 0.627528i 0.0110509 0.0455257i
\(191\) −10.2136 −0.739027 −0.369514 0.929225i \(-0.620476\pi\)
−0.369514 + 0.929225i \(0.620476\pi\)
\(192\) 0 0
\(193\) 15.1989i 1.09404i 0.837119 + 0.547020i \(0.184238\pi\)
−0.837119 + 0.547020i \(0.815762\pi\)
\(194\) 7.95362 0.571036
\(195\) 0 0
\(196\) 17.9866 1.28476
\(197\) 7.11984i 0.507268i 0.967300 + 0.253634i \(0.0816258\pi\)
−0.967300 + 0.253634i \(0.918374\pi\)
\(198\) 0 0
\(199\) −1.07977 −0.0765427 −0.0382713 0.999267i \(-0.512185\pi\)
−0.0382713 + 0.999267i \(0.512185\pi\)
\(200\) −2.29234 + 4.44356i −0.162093 + 0.314207i
\(201\) 0 0
\(202\) 9.14260i 0.643271i
\(203\) 34.0591i 2.39048i
\(204\) 0 0
\(205\) 7.45993 + 1.81083i 0.521024 + 0.126474i
\(206\) −15.0650 −1.04963
\(207\) 0 0
\(208\) 3.44356i 0.238768i
\(209\) 0.696220 0.0481586
\(210\) 0 0
\(211\) −16.7884 −1.15576 −0.577881 0.816121i \(-0.696120\pi\)
−0.577881 + 0.816121i \(0.696120\pi\)
\(212\) 3.73718i 0.256670i
\(213\) 0 0
\(214\) 3.15153 0.215434
\(215\) 4.52298 18.6329i 0.308465 1.27076i
\(216\) 0 0
\(217\) 15.9946i 1.08579i
\(218\) 14.9899i 1.01524i
\(219\) 0 0
\(220\) −5.23865 1.27163i −0.353190 0.0857335i
\(221\) 6.36176 0.427938
\(222\) 0 0
\(223\) 7.49275i 0.501751i 0.968019 + 0.250876i \(0.0807185\pi\)
−0.968019 + 0.250876i \(0.919281\pi\)
\(224\) 4.99866 0.333987
\(225\) 0 0
\(226\) −9.39655 −0.625049
\(227\) 4.44353i 0.294927i −0.989067 0.147464i \(-0.952889\pi\)
0.989067 0.147464i \(-0.0471110\pi\)
\(228\) 0 0
\(229\) 4.02673 0.266094 0.133047 0.991110i \(-0.457524\pi\)
0.133047 + 0.991110i \(0.457524\pi\)
\(230\) 0.370049 + 0.0898259i 0.0244003 + 0.00592295i
\(231\) 0 0
\(232\) 6.81364i 0.447337i
\(233\) 30.1146i 1.97287i 0.164144 + 0.986436i \(0.447514\pi\)
−0.164144 + 0.986436i \(0.552486\pi\)
\(234\) 0 0
\(235\) 0.995111 4.09948i 0.0649139 0.267420i
\(236\) 13.5430 0.881576
\(237\) 0 0
\(238\) 9.23472i 0.598598i
\(239\) −19.1950 −1.24162 −0.620809 0.783962i \(-0.713196\pi\)
−0.620809 + 0.783962i \(0.713196\pi\)
\(240\) 0 0
\(241\) −1.03560 −0.0667092 −0.0333546 0.999444i \(-0.510619\pi\)
−0.0333546 + 0.999444i \(0.510619\pi\)
\(242\) 5.18790i 0.333491i
\(243\) 0 0
\(244\) 2.14293 0.137187
\(245\) 39.0842 + 9.48734i 2.49700 + 0.606124i
\(246\) 0 0
\(247\) 0.994460i 0.0632760i
\(248\) 3.19979i 0.203187i
\(249\) 0 0
\(250\) −7.32500 + 8.44656i −0.463274 + 0.534207i
\(251\) −3.99357 −0.252072 −0.126036 0.992026i \(-0.540226\pi\)
−0.126036 + 0.992026i \(0.540226\pi\)
\(252\) 0 0
\(253\) 0.410556i 0.0258114i
\(254\) −0.310541 −0.0194851
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 16.5532i 1.03256i −0.856419 0.516281i \(-0.827316\pi\)
0.856419 0.516281i \(-0.172684\pi\)
\(258\) 0 0
\(259\) −4.99866 −0.310602
\(260\) −1.81636 + 7.48273i −0.112646 + 0.464059i
\(261\) 0 0
\(262\) 6.58514i 0.406831i
\(263\) 26.4909i 1.63350i −0.576992 0.816750i \(-0.695774\pi\)
0.576992 0.816750i \(-0.304226\pi\)
\(264\) 0 0
\(265\) 1.97124 8.12076i 0.121092 0.498854i
\(266\) −1.44356 −0.0885101
\(267\) 0 0
\(268\) 9.08723i 0.555091i
\(269\) 29.5153 1.79958 0.899791 0.436321i \(-0.143719\pi\)
0.899791 + 0.436321i \(0.143719\pi\)
\(270\) 0 0
\(271\) 1.03452 0.0628424 0.0314212 0.999506i \(-0.489997\pi\)
0.0314212 + 0.999506i \(0.489997\pi\)
\(272\) 1.84744i 0.112017i
\(273\) 0 0
\(274\) −19.3362 −1.16814
\(275\) −10.7127 5.52643i −0.645997 0.333256i
\(276\) 0 0
\(277\) 3.42257i 0.205642i −0.994700 0.102821i \(-0.967213\pi\)
0.994700 0.102821i \(-0.0327869\pi\)
\(278\) 7.69153i 0.461307i
\(279\) 0 0
\(280\) 10.8619 + 2.63663i 0.649123 + 0.157569i
\(281\) −5.71617 −0.340998 −0.170499 0.985358i \(-0.554538\pi\)
−0.170499 + 0.985358i \(0.554538\pi\)
\(282\) 0 0
\(283\) 16.4185i 0.975979i 0.872849 + 0.487990i \(0.162270\pi\)
−0.872849 + 0.487990i \(0.837730\pi\)
\(284\) 2.43273 0.144356
\(285\) 0 0
\(286\) −8.30182 −0.490897
\(287\) 17.1607i 1.01296i
\(288\) 0 0
\(289\) 13.5870 0.799233
\(290\) −3.59397 + 14.8058i −0.211045 + 0.869426i
\(291\) 0 0
\(292\) 13.2347i 0.774503i
\(293\) 4.25371i 0.248505i −0.992251 0.124252i \(-0.960347\pi\)
0.992251 0.124252i \(-0.0396532\pi\)
\(294\) 0 0
\(295\) 29.4285 + 7.14351i 1.71340 + 0.415911i
\(296\) −1.00000 −0.0581238
\(297\) 0 0
\(298\) 19.1926i 1.11180i
\(299\) 0.586426 0.0339139
\(300\) 0 0
\(301\) −42.8630 −2.47058
\(302\) 15.3170i 0.881394i
\(303\) 0 0
\(304\) −0.288789 −0.0165632
\(305\) 4.65652 + 1.13033i 0.266631 + 0.0647223i
\(306\) 0 0
\(307\) 29.4057i 1.67827i −0.543922 0.839136i \(-0.683061\pi\)
0.543922 0.839136i \(-0.316939\pi\)
\(308\) 12.0509i 0.686664i
\(309\) 0 0
\(310\) −1.68778 + 6.95302i −0.0958596 + 0.394905i
\(311\) −18.0328 −1.02255 −0.511273 0.859418i \(-0.670826\pi\)
−0.511273 + 0.859418i \(0.670826\pi\)
\(312\) 0 0
\(313\) 13.2327i 0.747958i −0.927437 0.373979i \(-0.877993\pi\)
0.927437 0.373979i \(-0.122007\pi\)
\(314\) 3.86579 0.218159
\(315\) 0 0
\(316\) 12.6555 0.711926
\(317\) 29.9410i 1.68165i −0.541303 0.840827i \(-0.682069\pi\)
0.541303 0.840827i \(-0.317931\pi\)
\(318\) 0 0
\(319\) −16.4265 −0.919708
\(320\) 2.17297 + 0.527467i 0.121472 + 0.0294863i
\(321\) 0 0
\(322\) 0.851255i 0.0474386i
\(323\) 0.533520i 0.0296858i
\(324\) 0 0
\(325\) −7.89379 + 15.3016i −0.437869 + 0.848782i
\(326\) −9.27619 −0.513761
\(327\) 0 0
\(328\) 3.43306i 0.189559i
\(329\) −9.43038 −0.519914
\(330\) 0 0
\(331\) 18.4123 1.01203 0.506014 0.862525i \(-0.331118\pi\)
0.506014 + 0.862525i \(0.331118\pi\)
\(332\) 3.21967i 0.176702i
\(333\) 0 0
\(334\) 15.1512 0.829036
\(335\) −4.79322 + 19.7462i −0.261882 + 1.07885i
\(336\) 0 0
\(337\) 8.69446i 0.473617i 0.971556 + 0.236809i \(0.0761015\pi\)
−0.971556 + 0.236809i \(0.923899\pi\)
\(338\) 1.14192i 0.0621123i
\(339\) 0 0
\(340\) 0.974464 4.01442i 0.0528477 0.217713i
\(341\) −7.71414 −0.417744
\(342\) 0 0
\(343\) 54.9182i 2.96530i
\(344\) −8.57489 −0.462327
\(345\) 0 0
\(346\) −13.2051 −0.709909
\(347\) 2.34430i 0.125849i −0.998018 0.0629243i \(-0.979957\pi\)
0.998018 0.0629243i \(-0.0200427\pi\)
\(348\) 0 0
\(349\) 25.8033 1.38122 0.690610 0.723228i \(-0.257342\pi\)
0.690610 + 0.723228i \(0.257342\pi\)
\(350\) 22.2118 + 11.4586i 1.18727 + 0.612488i
\(351\) 0 0
\(352\) 2.41083i 0.128498i
\(353\) 12.5607i 0.668539i −0.942477 0.334270i \(-0.891510\pi\)
0.942477 0.334270i \(-0.108490\pi\)
\(354\) 0 0
\(355\) 5.28623 + 1.28318i 0.280564 + 0.0681043i
\(356\) 4.27078 0.226351
\(357\) 0 0
\(358\) 12.8119i 0.677129i
\(359\) 9.61865 0.507653 0.253826 0.967250i \(-0.418311\pi\)
0.253826 + 0.967250i \(0.418311\pi\)
\(360\) 0 0
\(361\) −18.9166 −0.995611
\(362\) 8.80834i 0.462956i
\(363\) 0 0
\(364\) 17.2132 0.902215
\(365\) −6.98088 + 28.7586i −0.365396 + 1.50529i
\(366\) 0 0
\(367\) 16.0992i 0.840371i −0.907438 0.420186i \(-0.861965\pi\)
0.907438 0.420186i \(-0.138035\pi\)
\(368\) 0.170297i 0.00887733i
\(369\) 0 0
\(370\) −2.17297 0.527467i −0.112967 0.0274217i
\(371\) −18.6809 −0.969863
\(372\) 0 0
\(373\) 19.1756i 0.992877i 0.868072 + 0.496438i \(0.165359\pi\)
−0.868072 + 0.496438i \(0.834641\pi\)
\(374\) 4.45386 0.230304
\(375\) 0 0
\(376\) −1.88658 −0.0972930
\(377\) 23.4631i 1.20841i
\(378\) 0 0
\(379\) −4.84571 −0.248907 −0.124454 0.992225i \(-0.539718\pi\)
−0.124454 + 0.992225i \(0.539718\pi\)
\(380\) −0.627528 0.152327i −0.0321915 0.00781419i
\(381\) 0 0
\(382\) 10.2136i 0.522571i
\(383\) 29.3127i 1.49781i 0.662678 + 0.748904i \(0.269420\pi\)
−0.662678 + 0.748904i \(0.730580\pi\)
\(384\) 0 0
\(385\) −6.35646 + 26.1862i −0.323955 + 1.33457i
\(386\) 15.1989 0.773603
\(387\) 0 0
\(388\) 7.95362i 0.403784i
\(389\) −0.432598 −0.0219336 −0.0109668 0.999940i \(-0.503491\pi\)
−0.0109668 + 0.999940i \(0.503491\pi\)
\(390\) 0 0
\(391\) −0.314613 −0.0159107
\(392\) 17.9866i 0.908460i
\(393\) 0 0
\(394\) 7.11984 0.358692
\(395\) 27.4999 + 6.67535i 1.38367 + 0.335873i
\(396\) 0 0
\(397\) 4.21228i 0.211408i −0.994398 0.105704i \(-0.966290\pi\)
0.994398 0.105704i \(-0.0337097\pi\)
\(398\) 1.07977i 0.0541238i
\(399\) 0 0
\(400\) 4.44356 + 2.29234i 0.222178 + 0.114617i
\(401\) −31.3490 −1.56550 −0.782748 0.622339i \(-0.786182\pi\)
−0.782748 + 0.622339i \(0.786182\pi\)
\(402\) 0 0
\(403\) 11.0186i 0.548878i
\(404\) 9.14260 0.454861
\(405\) 0 0
\(406\) 34.0591 1.69032
\(407\) 2.41083i 0.119500i
\(408\) 0 0
\(409\) 0.0295145 0.00145940 0.000729699 1.00000i \(-0.499768\pi\)
0.000729699 1.00000i \(0.499768\pi\)
\(410\) 1.81083 7.45993i 0.0894305 0.368419i
\(411\) 0 0
\(412\) 15.0650i 0.742201i
\(413\) 67.6970i 3.33115i
\(414\) 0 0
\(415\) 1.69827 6.99622i 0.0833647 0.343431i
\(416\) 3.44356 0.168834
\(417\) 0 0
\(418\) 0.696220i 0.0340532i
\(419\) 11.9707 0.584808 0.292404 0.956295i \(-0.405545\pi\)
0.292404 + 0.956295i \(0.405545\pi\)
\(420\) 0 0
\(421\) −2.45820 −0.119805 −0.0599027 0.998204i \(-0.519079\pi\)
−0.0599027 + 0.998204i \(0.519079\pi\)
\(422\) 16.7884i 0.817247i
\(423\) 0 0
\(424\) −3.73718 −0.181493
\(425\) 4.23495 8.20920i 0.205425 0.398205i
\(426\) 0 0
\(427\) 10.7118i 0.518380i
\(428\) 3.15153i 0.152335i
\(429\) 0 0
\(430\) −18.6329 4.52298i −0.898561 0.218117i
\(431\) 5.92658 0.285473 0.142737 0.989761i \(-0.454410\pi\)
0.142737 + 0.989761i \(0.454410\pi\)
\(432\) 0 0
\(433\) 5.13974i 0.247000i −0.992345 0.123500i \(-0.960588\pi\)
0.992345 0.123500i \(-0.0394119\pi\)
\(434\) 15.9946 0.767767
\(435\) 0 0
\(436\) −14.9899 −0.717885
\(437\) 0.0491797i 0.00235259i
\(438\) 0 0
\(439\) −24.9687 −1.19169 −0.595846 0.803099i \(-0.703183\pi\)
−0.595846 + 0.803099i \(0.703183\pi\)
\(440\) −1.27163 + 5.23865i −0.0606228 + 0.249743i
\(441\) 0 0
\(442\) 6.36176i 0.302598i
\(443\) 8.11812i 0.385704i 0.981228 + 0.192852i \(0.0617736\pi\)
−0.981228 + 0.192852i \(0.938226\pi\)
\(444\) 0 0
\(445\) 9.28026 + 2.25270i 0.439926 + 0.106788i
\(446\) 7.49275 0.354792
\(447\) 0 0
\(448\) 4.99866i 0.236164i
\(449\) 14.6825 0.692912 0.346456 0.938066i \(-0.387385\pi\)
0.346456 + 0.938066i \(0.387385\pi\)
\(450\) 0 0
\(451\) 8.27653 0.389726
\(452\) 9.39655i 0.441977i
\(453\) 0 0
\(454\) −4.44353 −0.208545
\(455\) 37.4036 + 9.07938i 1.75351 + 0.425648i
\(456\) 0 0
\(457\) 19.6738i 0.920304i −0.887840 0.460152i \(-0.847795\pi\)
0.887840 0.460152i \(-0.152205\pi\)
\(458\) 4.02673i 0.188157i
\(459\) 0 0
\(460\) 0.0898259 0.370049i 0.00418816 0.0172536i
\(461\) 23.3382 1.08697 0.543485 0.839419i \(-0.317104\pi\)
0.543485 + 0.839419i \(0.317104\pi\)
\(462\) 0 0
\(463\) 19.0971i 0.887520i −0.896146 0.443760i \(-0.853644\pi\)
0.896146 0.443760i \(-0.146356\pi\)
\(464\) 6.81364 0.316315
\(465\) 0 0
\(466\) 30.1146 1.39503
\(467\) 38.7494i 1.79311i 0.442934 + 0.896554i \(0.353938\pi\)
−0.442934 + 0.896554i \(0.646062\pi\)
\(468\) 0 0
\(469\) 45.4240 2.09748
\(470\) −4.09948 0.995111i −0.189095 0.0459010i
\(471\) 0 0
\(472\) 13.5430i 0.623369i
\(473\) 20.6726i 0.950527i
\(474\) 0 0
\(475\) −1.28325 0.662001i −0.0588795 0.0303747i
\(476\) −9.23472 −0.423273
\(477\) 0 0
\(478\) 19.1950i 0.877957i
\(479\) −18.4527 −0.843127 −0.421563 0.906799i \(-0.638519\pi\)
−0.421563 + 0.906799i \(0.638519\pi\)
\(480\) 0 0
\(481\) −3.44356 −0.157013
\(482\) 1.03560i 0.0471705i
\(483\) 0 0
\(484\) 5.18790 0.235814
\(485\) 4.19527 17.2829i 0.190498 0.784777i
\(486\) 0 0
\(487\) 18.9340i 0.857981i −0.903309 0.428990i \(-0.858869\pi\)
0.903309 0.428990i \(-0.141131\pi\)
\(488\) 2.14293i 0.0970060i
\(489\) 0 0
\(490\) 9.48734 39.0842i 0.428594 1.76565i
\(491\) −38.7713 −1.74973 −0.874863 0.484370i \(-0.839049\pi\)
−0.874863 + 0.484370i \(0.839049\pi\)
\(492\) 0 0
\(493\) 12.5878i 0.566925i
\(494\) −0.994460 −0.0447429
\(495\) 0 0
\(496\) 3.19979 0.143675
\(497\) 12.1604i 0.545467i
\(498\) 0 0
\(499\) 40.2106 1.80007 0.900036 0.435815i \(-0.143540\pi\)
0.900036 + 0.435815i \(0.143540\pi\)
\(500\) 8.44656 + 7.32500i 0.377742 + 0.327584i
\(501\) 0 0
\(502\) 3.99357i 0.178242i
\(503\) 21.5210i 0.959576i −0.877385 0.479788i \(-0.840714\pi\)
0.877385 0.479788i \(-0.159286\pi\)
\(504\) 0 0
\(505\) 19.8665 + 4.82242i 0.884050 + 0.214595i
\(506\) 0.410556 0.0182514
\(507\) 0 0
\(508\) 0.310541i 0.0137780i
\(509\) −17.0571 −0.756043 −0.378022 0.925797i \(-0.623396\pi\)
−0.378022 + 0.925797i \(0.623396\pi\)
\(510\) 0 0
\(511\) 66.1558 2.92656
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −16.5532 −0.730132
\(515\) −7.94631 + 32.7358i −0.350156 + 1.44251i
\(516\) 0 0
\(517\) 4.54823i 0.200031i
\(518\) 4.99866i 0.219628i
\(519\) 0 0
\(520\) 7.48273 + 1.81636i 0.328139 + 0.0796528i
\(521\) −28.1974 −1.23535 −0.617676 0.786433i \(-0.711926\pi\)
−0.617676 + 0.786433i \(0.711926\pi\)
\(522\) 0 0
\(523\) 25.3083i 1.10666i 0.832963 + 0.553328i \(0.186642\pi\)
−0.832963 + 0.553328i \(0.813358\pi\)
\(524\) 6.58514 0.287673
\(525\) 0 0
\(526\) −26.4909 −1.15506
\(527\) 5.91141i 0.257505i
\(528\) 0 0
\(529\) 22.9710 0.998739
\(530\) −8.12076 1.97124i −0.352743 0.0856252i
\(531\) 0 0
\(532\) 1.44356i 0.0625861i
\(533\) 11.8219i 0.512065i
\(534\) 0 0
\(535\) 1.66233 6.84816i 0.0718687 0.296072i
\(536\) 9.08723 0.392509
\(537\) 0 0
\(538\) 29.5153i 1.27250i
\(539\) 43.3626 1.86776
\(540\) 0 0
\(541\) −34.5346 −1.48476 −0.742379 0.669980i \(-0.766302\pi\)
−0.742379 + 0.669980i \(0.766302\pi\)
\(542\) 1.03452i 0.0444363i
\(543\) 0 0
\(544\) −1.84744 −0.0792083
\(545\) −32.5725 7.90667i −1.39525 0.338685i
\(546\) 0 0
\(547\) 41.8293i 1.78849i 0.447575 + 0.894247i \(0.352288\pi\)
−0.447575 + 0.894247i \(0.647712\pi\)
\(548\) 19.3362i 0.826002i
\(549\) 0 0
\(550\) −5.52643 + 10.7127i −0.235648 + 0.456789i
\(551\) −1.96770 −0.0838269
\(552\) 0 0
\(553\) 63.2604i 2.69010i
\(554\) −3.42257 −0.145411
\(555\) 0 0
\(556\) 7.69153 0.326193
\(557\) 25.5381i 1.08208i 0.840996 + 0.541042i \(0.181970\pi\)
−0.840996 + 0.541042i \(0.818030\pi\)
\(558\) 0 0
\(559\) −29.5281 −1.24891
\(560\) 2.63663 10.8619i 0.111418 0.459000i
\(561\) 0 0
\(562\) 5.71617i 0.241122i
\(563\) 14.7140i 0.620122i 0.950717 + 0.310061i \(0.100349\pi\)
−0.950717 + 0.310061i \(0.899651\pi\)
\(564\) 0 0
\(565\) −4.95638 + 20.4184i −0.208516 + 0.859008i
\(566\) 16.4185 0.690122
\(567\) 0 0
\(568\) 2.43273i 0.102075i
\(569\) −15.7693 −0.661082 −0.330541 0.943792i \(-0.607231\pi\)
−0.330541 + 0.943792i \(0.607231\pi\)
\(570\) 0 0
\(571\) 27.6667 1.15781 0.578907 0.815394i \(-0.303479\pi\)
0.578907 + 0.815394i \(0.303479\pi\)
\(572\) 8.30182i 0.347117i
\(573\) 0 0
\(574\) −17.1607 −0.716274
\(575\) 0.390377 0.756723i 0.0162799 0.0315575i
\(576\) 0 0
\(577\) 22.9753i 0.956475i −0.878231 0.478237i \(-0.841276\pi\)
0.878231 0.478237i \(-0.158724\pi\)
\(578\) 13.5870i 0.565143i
\(579\) 0 0
\(580\) 14.8058 + 3.59397i 0.614777 + 0.149232i
\(581\) −16.0940 −0.667692
\(582\) 0 0
\(583\) 9.00970i 0.373143i
\(584\) 13.2347 0.547657
\(585\) 0 0
\(586\) −4.25371 −0.175719
\(587\) 37.8905i 1.56391i 0.623335 + 0.781955i \(0.285777\pi\)
−0.623335 + 0.781955i \(0.714223\pi\)
\(588\) 0 0
\(589\) −0.924062 −0.0380753
\(590\) 7.14351 29.4285i 0.294094 1.21155i
\(591\) 0 0
\(592\) 1.00000i 0.0410997i
\(593\) 39.3179i 1.61459i −0.590146 0.807296i \(-0.700930\pi\)
0.590146 0.807296i \(-0.299070\pi\)
\(594\) 0 0
\(595\) −20.0667 4.87101i −0.822656 0.199692i
\(596\) −19.1926 −0.786161
\(597\) 0 0
\(598\) 0.586426i 0.0239807i
\(599\) 26.4050 1.07888 0.539440 0.842024i \(-0.318636\pi\)
0.539440 + 0.842024i \(0.318636\pi\)
\(600\) 0 0
\(601\) 41.0745 1.67547 0.837733 0.546080i \(-0.183881\pi\)
0.837733 + 0.546080i \(0.183881\pi\)
\(602\) 42.8630i 1.74696i
\(603\) 0 0
\(604\) 15.3170 0.623240
\(605\) 11.2731 + 2.73645i 0.458318 + 0.111253i
\(606\) 0 0
\(607\) 28.2417i 1.14629i 0.819453 + 0.573147i \(0.194278\pi\)
−0.819453 + 0.573147i \(0.805722\pi\)
\(608\) 0.288789i 0.0117119i
\(609\) 0 0
\(610\) 1.13033 4.65652i 0.0457656 0.188537i
\(611\) −6.49655 −0.262822
\(612\) 0 0
\(613\) 24.6764i 0.996671i 0.866984 + 0.498335i \(0.166055\pi\)
−0.866984 + 0.498335i \(0.833945\pi\)
\(614\) −29.4057 −1.18672
\(615\) 0 0
\(616\) 12.0509 0.485545
\(617\) 38.5546i 1.55215i 0.630640 + 0.776075i \(0.282792\pi\)
−0.630640 + 0.776075i \(0.717208\pi\)
\(618\) 0 0
\(619\) −30.0442 −1.20758 −0.603789 0.797144i \(-0.706343\pi\)
−0.603789 + 0.797144i \(0.706343\pi\)
\(620\) 6.95302 + 1.68778i 0.279240 + 0.0677830i
\(621\) 0 0
\(622\) 18.0328i 0.723049i
\(623\) 21.3482i 0.855296i
\(624\) 0 0
\(625\) 14.4904 + 20.3723i 0.579615 + 0.814890i
\(626\) −13.2327 −0.528886
\(627\) 0 0
\(628\) 3.86579i 0.154262i
\(629\) 1.84744 0.0736622
\(630\) 0 0
\(631\) 2.76916 0.110238 0.0551192 0.998480i \(-0.482446\pi\)
0.0551192 + 0.998480i \(0.482446\pi\)
\(632\) 12.6555i 0.503407i
\(633\) 0 0
\(634\) −29.9410 −1.18911
\(635\) −0.163800 + 0.674794i −0.00650021 + 0.0267784i
\(636\) 0 0
\(637\) 61.9378i 2.45407i
\(638\) 16.4265i 0.650332i
\(639\) 0 0
\(640\) 0.527467 2.17297i 0.0208500 0.0858940i
\(641\) −49.6368 −1.96054 −0.980268 0.197675i \(-0.936661\pi\)
−0.980268 + 0.197675i \(0.936661\pi\)
\(642\) 0 0
\(643\) 12.9550i 0.510896i −0.966823 0.255448i \(-0.917777\pi\)
0.966823 0.255448i \(-0.0822230\pi\)
\(644\) −0.851255 −0.0335441
\(645\) 0 0
\(646\) 0.533520 0.0209910
\(647\) 19.6591i 0.772878i 0.922315 + 0.386439i \(0.126295\pi\)
−0.922315 + 0.386439i \(0.873705\pi\)
\(648\) 0 0
\(649\) 32.6499 1.28162
\(650\) 15.3016 + 7.89379i 0.600180 + 0.309620i
\(651\) 0 0
\(652\) 9.27619i 0.363284i
\(653\) 3.07313i 0.120261i −0.998191 0.0601304i \(-0.980848\pi\)
0.998191 0.0601304i \(-0.0191516\pi\)
\(654\) 0 0
\(655\) 14.3093 + 3.47345i 0.559110 + 0.135719i
\(656\) −3.43306 −0.134039
\(657\) 0 0
\(658\) 9.43038i 0.367634i
\(659\) −33.8785 −1.31972 −0.659859 0.751390i \(-0.729384\pi\)
−0.659859 + 0.751390i \(0.729384\pi\)
\(660\) 0 0
\(661\) −16.7825 −0.652762 −0.326381 0.945238i \(-0.605829\pi\)
−0.326381 + 0.945238i \(0.605829\pi\)
\(662\) 18.4123i 0.715612i
\(663\) 0 0
\(664\) −3.21967 −0.124947
\(665\) −0.761429 + 3.13680i −0.0295269 + 0.121640i
\(666\) 0 0
\(667\) 1.16034i 0.0449285i
\(668\) 15.1512i 0.586217i
\(669\) 0 0
\(670\) 19.7462 + 4.79322i 0.762864 + 0.185178i
\(671\) 5.16624 0.199441
\(672\) 0 0
\(673\) 23.3945i 0.901791i 0.892577 + 0.450895i \(0.148895\pi\)
−0.892577 + 0.450895i \(0.851105\pi\)
\(674\) 8.69446 0.334898
\(675\) 0 0
\(676\) −1.14192 −0.0439200
\(677\) 10.1163i 0.388800i −0.980922 0.194400i \(-0.937724\pi\)
0.980922 0.194400i \(-0.0622761\pi\)
\(678\) 0 0
\(679\) −39.7574 −1.52575
\(680\) −4.01442 0.974464i −0.153946 0.0373690i
\(681\) 0 0
\(682\) 7.71414i 0.295390i
\(683\) 15.8875i 0.607918i −0.952685 0.303959i \(-0.901691\pi\)
0.952685 0.303959i \(-0.0983085\pi\)
\(684\) 0 0
\(685\) −10.1992 + 42.0169i −0.389692 + 1.60538i
\(686\) −54.9182 −2.09679
\(687\) 0 0
\(688\) 8.57489i 0.326915i
\(689\) −12.8692 −0.490277
\(690\) 0 0
\(691\) 50.4451 1.91902 0.959510 0.281673i \(-0.0908893\pi\)
0.959510 + 0.281673i \(0.0908893\pi\)
\(692\) 13.2051i 0.501982i
\(693\) 0 0
\(694\) −2.34430 −0.0889884
\(695\) 16.7134 + 4.05703i 0.633976 + 0.153892i
\(696\) 0 0
\(697\) 6.34237i 0.240235i
\(698\) 25.8033i 0.976670i
\(699\) 0 0
\(700\) 11.4586 22.2118i 0.433095 0.839528i
\(701\) −32.4597 −1.22599 −0.612994 0.790088i \(-0.710035\pi\)
−0.612994 + 0.790088i \(0.710035\pi\)
\(702\) 0 0
\(703\) 0.288789i 0.0108919i
\(704\) 2.41083 0.0908615
\(705\) 0 0
\(706\) −12.5607 −0.472729
\(707\) 45.7007i 1.71875i
\(708\) 0 0
\(709\) 32.7296 1.22919 0.614593 0.788844i \(-0.289320\pi\)
0.614593 + 0.788844i \(0.289320\pi\)
\(710\) 1.28318 5.28623i 0.0481570 0.198389i
\(711\) 0 0
\(712\) 4.27078i 0.160054i
\(713\) 0.544913i 0.0204071i
\(714\) 0 0
\(715\) −4.37894 + 18.0396i −0.163763 + 0.674642i
\(716\) −12.8119 −0.478802
\(717\) 0 0
\(718\) 9.61865i 0.358965i
\(719\) −42.7154 −1.59302 −0.796509 0.604627i \(-0.793322\pi\)
−0.796509 + 0.604627i \(0.793322\pi\)
\(720\) 0 0
\(721\) 75.3049 2.80450
\(722\) 18.9166i 0.704003i
\(723\) 0 0
\(724\) 8.80834 0.327359
\(725\) 30.2768 + 15.6192i 1.12445 + 0.580081i
\(726\) 0 0
\(727\) 7.32006i 0.271486i −0.990744 0.135743i \(-0.956658\pi\)
0.990744 0.135743i \(-0.0433421\pi\)
\(728\) 17.2132i 0.637962i
\(729\) 0 0
\(730\) 28.7586 + 6.98088i 1.06440 + 0.258374i
\(731\) 15.8416 0.585923
\(732\) 0 0
\(733\) 20.9087i 0.772280i 0.922440 + 0.386140i \(0.126192\pi\)
−0.922440 + 0.386140i \(0.873808\pi\)
\(734\) −16.0992 −0.594232
\(735\) 0 0
\(736\) −0.170297 −0.00627722
\(737\) 21.9078i 0.806983i
\(738\) 0 0
\(739\) 42.5665 1.56583 0.782917 0.622126i \(-0.213731\pi\)
0.782917 + 0.622126i \(0.213731\pi\)
\(740\) −0.527467 + 2.17297i −0.0193901 + 0.0798798i
\(741\) 0 0
\(742\) 18.6809i 0.685797i
\(743\) 22.8670i 0.838907i 0.907777 + 0.419454i \(0.137778\pi\)
−0.907777 + 0.419454i \(0.862222\pi\)
\(744\) 0 0
\(745\) −41.7049 10.1235i −1.52795 0.370896i
\(746\) 19.1756 0.702070
\(747\) 0 0
\(748\) 4.45386i 0.162849i
\(749\) −15.7534 −0.575617
\(750\) 0 0
\(751\) −32.0864 −1.17085 −0.585424 0.810727i \(-0.699072\pi\)
−0.585424 + 0.810727i \(0.699072\pi\)
\(752\) 1.88658i 0.0687966i
\(753\) 0 0
\(754\) 23.4631 0.854477
\(755\) 33.2833 + 8.07922i 1.21130 + 0.294033i
\(756\) 0 0
\(757\) 28.0202i 1.01841i 0.860644 + 0.509206i \(0.170061\pi\)
−0.860644 + 0.509206i \(0.829939\pi\)
\(758\) 4.84571i 0.176004i
\(759\) 0 0
\(760\) −0.152327 + 0.627528i −0.00552547 + 0.0227628i
\(761\) −47.5310 −1.72300 −0.861499 0.507759i \(-0.830474\pi\)
−0.861499 + 0.507759i \(0.830474\pi\)
\(762\) 0 0
\(763\) 74.9293i 2.71262i
\(764\) 10.2136 0.369514
\(765\) 0 0
\(766\) 29.3127 1.05911
\(767\) 46.6362i 1.68394i
\(768\) 0 0
\(769\) −36.2676 −1.30784 −0.653922 0.756562i \(-0.726878\pi\)
−0.653922 + 0.756562i \(0.726878\pi\)
\(770\) 26.1862 + 6.35646i 0.943686 + 0.229071i
\(771\) 0 0
\(772\) 15.1989i 0.547020i
\(773\) 39.2967i 1.41340i −0.707512 0.706701i \(-0.750182\pi\)
0.707512 0.706701i \(-0.249818\pi\)
\(774\) 0 0
\(775\) 14.2184 + 7.33499i 0.510741 + 0.263480i
\(776\) −7.95362 −0.285518
\(777\) 0 0
\(778\) 0.432598i 0.0155094i
\(779\) 0.991430 0.0355217
\(780\) 0 0
\(781\) 5.86489 0.209862
\(782\) 0.314613i 0.0112505i
\(783\) 0 0
\(784\) −17.9866 −0.642378
\(785\) 2.03908 8.40023i 0.0727778 0.299817i
\(786\) 0 0
\(787\) 37.6379i 1.34164i 0.741618 + 0.670822i \(0.234059\pi\)
−0.741618 + 0.670822i \(0.765941\pi\)
\(788\) 7.11984i 0.253634i
\(789\) 0 0
\(790\) 6.67535 27.4999i 0.237498 0.978402i
\(791\) 46.9702 1.67007
\(792\) 0 0
\(793\) 7.37931i 0.262047i
\(794\) −4.21228 −0.149488
\(795\) 0 0
\(796\) 1.07977 0.0382713
\(797\) 34.0691i 1.20679i −0.797442 0.603396i \(-0.793814\pi\)
0.797442 0.603396i \(-0.206186\pi\)
\(798\) 0 0
\(799\) 3.48535 0.123303
\(800\) 2.29234 4.44356i 0.0810463 0.157103i
\(801\) 0 0
\(802\) 31.3490i 1.10697i
\(803\) 31.9066i 1.12596i
\(804\) 0 0
\(805\) −1.84975 0.449009i −0.0651950 0.0158255i
\(806\) 11.0186 0.388115
\(807\) 0 0
\(808\) 9.14260i 0.321635i
\(809\) −52.5581 −1.84785 −0.923923 0.382578i \(-0.875036\pi\)
−0.923923 + 0.382578i \(0.875036\pi\)
\(810\) 0 0
\(811\) 26.6557 0.936008 0.468004 0.883726i \(-0.344973\pi\)
0.468004 + 0.883726i \(0.344973\pi\)
\(812\) 34.0591i 1.19524i
\(813\) 0 0
\(814\) −2.41083 −0.0844995
\(815\) −4.89289 + 20.1568i −0.171390 + 0.706063i
\(816\) 0 0
\(817\) 2.47633i 0.0866359i
\(818\) 0.0295145i 0.00103195i
\(819\) 0 0
\(820\) −7.45993 1.81083i −0.260512 0.0632369i
\(821\) 39.6834 1.38496 0.692480 0.721437i \(-0.256518\pi\)
0.692480 + 0.721437i \(0.256518\pi\)
\(822\) 0 0
\(823\) 13.4315i 0.468192i −0.972214 0.234096i \(-0.924787\pi\)
0.972214 0.234096i \(-0.0752130\pi\)
\(824\) 15.0650 0.524815
\(825\) 0 0
\(826\) −67.6970 −2.35548
\(827\) 15.7576i 0.547947i 0.961737 + 0.273973i \(0.0883380\pi\)
−0.961737 + 0.273973i \(0.911662\pi\)
\(828\) 0 0
\(829\) 5.68708 0.197521 0.0987603 0.995111i \(-0.468512\pi\)
0.0987603 + 0.995111i \(0.468512\pi\)
\(830\) −6.99622 1.69827i −0.242842 0.0589478i
\(831\) 0 0
\(832\) 3.44356i 0.119384i
\(833\) 33.2291i 1.15132i
\(834\) 0 0
\(835\) 7.99176 32.9230i 0.276566 1.13935i
\(836\) −0.696220 −0.0240793
\(837\) 0 0
\(838\) 11.9707i 0.413521i
\(839\) 50.8699 1.75622 0.878111 0.478457i \(-0.158804\pi\)
0.878111 + 0.478457i \(0.158804\pi\)
\(840\) 0 0
\(841\) 17.4257 0.600885
\(842\) 2.45820i 0.0847152i
\(843\) 0 0
\(844\) 16.7884 0.577881
\(845\) −2.48135 0.602326i −0.0853612 0.0207206i
\(846\) 0 0
\(847\) 25.9326i 0.891053i
\(848\) 3.73718i 0.128335i
\(849\) 0 0
\(850\) −8.20920 4.23495i −0.281573 0.145258i
\(851\) 0.170297 0.00583769
\(852\) 0 0
\(853\) 37.9664i 1.29994i −0.759958 0.649972i \(-0.774780\pi\)
0.759958 0.649972i \(-0.225220\pi\)
\(854\) −10.7118 −0.366550
\(855\) 0 0
\(856\) −3.15153 −0.107717
\(857\) 30.9464i 1.05711i −0.848899 0.528555i \(-0.822734\pi\)
0.848899 0.528555i \(-0.177266\pi\)
\(858\) 0 0
\(859\) −26.2307 −0.894978 −0.447489 0.894289i \(-0.647682\pi\)
−0.447489 + 0.894289i \(0.647682\pi\)
\(860\) −4.52298 + 18.6329i −0.154232 + 0.635378i
\(861\) 0 0
\(862\) 5.92658i 0.201860i
\(863\) 3.73171i 0.127029i −0.997981 0.0635145i \(-0.979769\pi\)
0.997981 0.0635145i \(-0.0202309\pi\)
\(864\) 0 0
\(865\) −6.96525 + 28.6942i −0.236826 + 0.975631i
\(866\) −5.13974 −0.174655
\(867\) 0 0
\(868\) 15.9946i 0.542893i
\(869\) 30.5102 1.03499
\(870\) 0 0
\(871\) 31.2924 1.06030
\(872\) 14.9899i 0.507621i
\(873\) 0 0
\(874\) 0.0491797 0.00166353
\(875\) 36.6152 42.2215i 1.23782 1.42735i
\(876\) 0 0
\(877\) 12.2050i 0.412132i 0.978538 + 0.206066i \(0.0660661\pi\)
−0.978538 + 0.206066i \(0.933934\pi\)
\(878\) 24.9687i 0.842654i
\(879\) 0 0
\(880\) 5.23865 + 1.27163i 0.176595 + 0.0428668i
\(881\) −36.3657 −1.22519 −0.612596 0.790397i \(-0.709875\pi\)
−0.612596 + 0.790397i \(0.709875\pi\)
\(882\) 0 0
\(883\) 21.1849i 0.712930i 0.934309 + 0.356465i \(0.116018\pi\)
−0.934309 + 0.356465i \(0.883982\pi\)
\(884\) −6.36176 −0.213969
\(885\) 0 0
\(886\) 8.11812 0.272734
\(887\) 16.6151i 0.557880i −0.960309 0.278940i \(-0.910017\pi\)
0.960309 0.278940i \(-0.0899830\pi\)
\(888\) 0 0
\(889\) 1.55229 0.0520620
\(890\) 2.25270 9.28026i 0.0755106 0.311075i
\(891\) 0 0
\(892\) 7.49275i 0.250876i
\(893\) 0.544824i 0.0182318i
\(894\) 0 0
\(895\) −27.8398 6.75785i −0.930581 0.225890i
\(896\) −4.99866 −0.166993
\(897\) 0 0
\(898\) 14.6825i 0.489963i
\(899\) 21.8022 0.727143
\(900\) 0 0
\(901\) 6.90421 0.230013
\(902\) 8.27653i 0.275578i
\(903\) 0 0
\(904\) 9.39655 0.312525
\(905\) 19.1402 + 4.64611i 0.636242 + 0.154442i
\(906\) 0 0
\(907\) 32.6208i 1.08316i −0.840650 0.541578i \(-0.817827\pi\)
0.840650 0.541578i \(-0.182173\pi\)
\(908\) 4.44353i 0.147464i
\(909\) 0 0
\(910\) 9.07938 37.4036i 0.300979 1.23992i
\(911\) −43.7539 −1.44963 −0.724816 0.688943i \(-0.758075\pi\)
−0.724816 + 0.688943i \(0.758075\pi\)
\(912\) 0 0
\(913\) 7.76206i 0.256887i
\(914\) −19.6738 −0.650753
\(915\) 0 0
\(916\) −4.02673 −0.133047
\(917\) 32.9169i 1.08701i
\(918\) 0 0
\(919\) 20.7488 0.684438 0.342219 0.939620i \(-0.388821\pi\)
0.342219 + 0.939620i \(0.388821\pi\)
\(920\) −0.370049 0.0898259i −0.0122001 0.00296147i
\(921\) 0 0
\(922\) 23.3382i 0.768604i
\(923\) 8.37723i 0.275740i
\(924\) 0 0
\(925\) −2.29234 + 4.44356i −0.0753716 + 0.146103i
\(926\) −19.0971 −0.627571
\(927\) 0 0
\(928\) 6.81364i 0.223669i
\(929\) 27.9190 0.915992 0.457996 0.888954i \(-0.348567\pi\)
0.457996 + 0.888954i \(0.348567\pi\)
\(930\) 0 0
\(931\) 5.19432 0.170237
\(932\) 30.1146i 0.986436i
\(933\) 0 0
\(934\) 38.7494 1.26792
\(935\) 2.34927 9.67808i 0.0768292 0.316507i
\(936\) 0 0
\(937\) 0.763669i 0.0249480i 0.999922 + 0.0124740i \(0.00397070\pi\)
−0.999922 + 0.0124740i \(0.996029\pi\)
\(938\) 45.4240i 1.48315i
\(939\) 0 0
\(940\) −0.995111 + 4.09948i −0.0324569 + 0.133710i
\(941\) 31.8565 1.03849 0.519247 0.854624i \(-0.326213\pi\)
0.519247 + 0.854624i \(0.326213\pi\)
\(942\) 0 0
\(943\) 0.584639i 0.0190385i
\(944\) −13.5430 −0.440788
\(945\) 0 0
\(946\) −20.6726 −0.672124
\(947\) 11.5491i 0.375295i 0.982236 + 0.187648i \(0.0600863\pi\)
−0.982236 + 0.187648i \(0.939914\pi\)
\(948\) 0 0
\(949\) 45.5745 1.47941
\(950\) −0.662001 + 1.28325i −0.0214781 + 0.0416341i
\(951\) 0 0
\(952\) 9.23472i 0.299299i
\(953\) 4.29656i 0.139179i 0.997576 + 0.0695896i \(0.0221690\pi\)
−0.997576 + 0.0695896i \(0.977831\pi\)
\(954\) 0 0
\(955\) 22.1937 + 5.38732i 0.718172 + 0.174330i
\(956\) 19.1950 0.620809
\(957\) 0 0
\(958\) 18.4527i 0.596181i
\(959\) 96.6551 3.12116
\(960\) 0 0
\(961\) −20.7614 −0.669722
\(962\) 3.44356i 0.111025i
\(963\) 0 0
\(964\) 1.03560 0.0333546
\(965\) 8.01692 33.0267i 0.258074 1.06317i
\(966\) 0 0
\(967\) 20.9828i 0.674762i −0.941368 0.337381i \(-0.890459\pi\)
0.941368 0.337381i \(-0.109541\pi\)
\(968\) 5.18790i 0.166746i
\(969\) 0 0
\(970\) −17.2829 4.19527i −0.554921 0.134702i
\(971\) −6.56444 −0.210663 −0.105331 0.994437i \(-0.533590\pi\)
−0.105331 + 0.994437i \(0.533590\pi\)
\(972\) 0 0
\(973\) 38.4473i 1.23256i
\(974\) −18.9340 −0.606684
\(975\) 0 0
\(976\) −2.14293 −0.0685936
\(977\) 35.6698i 1.14118i −0.821236 0.570589i \(-0.806715\pi\)
0.821236 0.570589i \(-0.193285\pi\)
\(978\) 0 0
\(979\) 10.2961 0.329065
\(980\) −39.0842 9.48734i −1.24850 0.303062i
\(981\) 0 0
\(982\) 38.7713i 1.23724i
\(983\) 3.01990i 0.0963197i −0.998840 0.0481599i \(-0.984664\pi\)
0.998840 0.0481599i \(-0.0153357\pi\)
\(984\) 0 0
\(985\) 3.75548 15.4712i 0.119660 0.492952i
\(986\) −12.5878 −0.400877
\(987\) 0 0
\(988\) 0.994460i 0.0316380i
\(989\) 1.46028 0.0464341
\(990\) 0 0
\(991\) 13.3694 0.424692 0.212346 0.977195i \(-0.431890\pi\)
0.212346 + 0.977195i \(0.431890\pi\)
\(992\) 3.19979i 0.101593i
\(993\) 0 0
\(994\) −12.1604 −0.385704
\(995\) 2.34630 + 0.569542i 0.0743826 + 0.0180557i
\(996\) 0 0
\(997\) 11.1903i 0.354402i −0.984175 0.177201i \(-0.943296\pi\)
0.984175 0.177201i \(-0.0567042\pi\)
\(998\) 40.2106i 1.27284i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3330.2.d.r.1999.1 yes 14
3.2 odd 2 3330.2.d.q.1999.14 yes 14
5.4 even 2 inner 3330.2.d.r.1999.8 yes 14
15.14 odd 2 3330.2.d.q.1999.7 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3330.2.d.q.1999.7 14 15.14 odd 2
3330.2.d.q.1999.14 yes 14 3.2 odd 2
3330.2.d.r.1999.1 yes 14 1.1 even 1 trivial
3330.2.d.r.1999.8 yes 14 5.4 even 2 inner