Properties

Label 3330.2.d.q.1999.1
Level $3330$
Weight $2$
Character 3330.1999
Analytic conductor $26.590$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3330,2,Mod(1999,3330)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3330.1999"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3330, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3330 = 2 \cdot 3^{2} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3330.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,0,-14,-4,0,0,0,0,-6,12,0,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.5901838731\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 20x^{12} + 154x^{10} + 580x^{8} + 1105x^{6} + 960x^{4} + 256x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1999.1
Root \(1.58005i\) of defining polynomial
Character \(\chi\) \(=\) 3330.1999
Dual form 3330.2.d.q.1999.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -1.00000 q^{4} +(-2.20427 - 0.375782i) q^{5} -0.496550i q^{7} +1.00000i q^{8} +(-0.375782 + 2.20427i) q^{10} -3.54201 q^{11} -3.71758i q^{13} -0.496550 q^{14} +1.00000 q^{16} +6.87767i q^{17} -3.45902 q^{19} +(2.20427 + 0.375782i) q^{20} +3.54201i q^{22} -5.34439i q^{23} +(4.71758 + 1.65665i) q^{25} -3.71758 q^{26} +0.496550i q^{28} -5.00638 q^{29} -4.05558 q^{31} -1.00000i q^{32} +6.87767 q^{34} +(-0.186594 + 1.09453i) q^{35} -1.00000i q^{37} +3.45902i q^{38} +(0.375782 - 2.20427i) q^{40} +7.78001 q^{41} -5.91114i q^{43} +3.54201 q^{44} -5.34439 q^{46} +9.61254i q^{47} +6.75344 q^{49} +(1.65665 - 4.71758i) q^{50} +3.71758i q^{52} +12.0867i q^{53} +(7.80754 + 1.33102i) q^{55} +0.496550 q^{56} +5.00638i q^{58} -11.4710 q^{59} +1.18246 q^{61} +4.05558i q^{62} -1.00000 q^{64} +(-1.39700 + 8.19453i) q^{65} -6.56561i q^{67} -6.87767i q^{68} +(1.09453 + 0.186594i) q^{70} +15.7252 q^{71} +0.584892i q^{73} -1.00000 q^{74} +3.45902 q^{76} +1.75879i q^{77} +1.89142 q^{79} +(-2.20427 - 0.375782i) q^{80} -7.78001i q^{82} +3.12508i q^{83} +(2.58450 - 15.1602i) q^{85} -5.91114 q^{86} -3.54201i q^{88} -2.39557 q^{89} -1.84596 q^{91} +5.34439i q^{92} +9.61254 q^{94} +(7.62460 + 1.29984i) q^{95} +9.01936i q^{97} -6.75344i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 14 q^{4} - 4 q^{5} - 6 q^{10} + 12 q^{11} - 12 q^{14} + 14 q^{16} + 4 q^{19} + 4 q^{20} + 10 q^{25} + 4 q^{26} - 16 q^{29} + 12 q^{31} - 12 q^{34} - 8 q^{35} + 6 q^{40} + 56 q^{41} - 12 q^{44} - 8 q^{46}+ \cdots + 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3330\mathbb{Z}\right)^\times\).

\(n\) \(371\) \(631\) \(667\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) −2.20427 0.375782i −0.985778 0.168055i
\(6\) 0 0
\(7\) 0.496550i 0.187678i −0.995587 0.0938391i \(-0.970086\pi\)
0.995587 0.0938391i \(-0.0299139\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) −0.375782 + 2.20427i −0.118833 + 0.697050i
\(11\) −3.54201 −1.06796 −0.533979 0.845498i \(-0.679304\pi\)
−0.533979 + 0.845498i \(0.679304\pi\)
\(12\) 0 0
\(13\) 3.71758i 1.03107i −0.856868 0.515535i \(-0.827593\pi\)
0.856868 0.515535i \(-0.172407\pi\)
\(14\) −0.496550 −0.132709
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 6.87767i 1.66808i 0.551704 + 0.834040i \(0.313978\pi\)
−0.551704 + 0.834040i \(0.686022\pi\)
\(18\) 0 0
\(19\) −3.45902 −0.793554 −0.396777 0.917915i \(-0.629871\pi\)
−0.396777 + 0.917915i \(0.629871\pi\)
\(20\) 2.20427 + 0.375782i 0.492889 + 0.0840273i
\(21\) 0 0
\(22\) 3.54201i 0.755160i
\(23\) 5.34439i 1.11438i −0.830384 0.557191i \(-0.811879\pi\)
0.830384 0.557191i \(-0.188121\pi\)
\(24\) 0 0
\(25\) 4.71758 + 1.65665i 0.943515 + 0.331329i
\(26\) −3.71758 −0.729077
\(27\) 0 0
\(28\) 0.496550i 0.0938391i
\(29\) −5.00638 −0.929662 −0.464831 0.885400i \(-0.653885\pi\)
−0.464831 + 0.885400i \(0.653885\pi\)
\(30\) 0 0
\(31\) −4.05558 −0.728404 −0.364202 0.931320i \(-0.618658\pi\)
−0.364202 + 0.931320i \(0.618658\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) 6.87767 1.17951
\(35\) −0.186594 + 1.09453i −0.0315402 + 0.185009i
\(36\) 0 0
\(37\) 1.00000i 0.164399i
\(38\) 3.45902i 0.561127i
\(39\) 0 0
\(40\) 0.375782 2.20427i 0.0594163 0.348525i
\(41\) 7.78001 1.21503 0.607516 0.794307i \(-0.292166\pi\)
0.607516 + 0.794307i \(0.292166\pi\)
\(42\) 0 0
\(43\) 5.91114i 0.901440i −0.892665 0.450720i \(-0.851167\pi\)
0.892665 0.450720i \(-0.148833\pi\)
\(44\) 3.54201 0.533979
\(45\) 0 0
\(46\) −5.34439 −0.787987
\(47\) 9.61254i 1.40213i 0.713096 + 0.701066i \(0.247292\pi\)
−0.713096 + 0.701066i \(0.752708\pi\)
\(48\) 0 0
\(49\) 6.75344 0.964777
\(50\) 1.65665 4.71758i 0.234285 0.667166i
\(51\) 0 0
\(52\) 3.71758i 0.515535i
\(53\) 12.0867i 1.66024i 0.557586 + 0.830119i \(0.311728\pi\)
−0.557586 + 0.830119i \(0.688272\pi\)
\(54\) 0 0
\(55\) 7.80754 + 1.33102i 1.05277 + 0.179475i
\(56\) 0.496550 0.0663543
\(57\) 0 0
\(58\) 5.00638i 0.657370i
\(59\) −11.4710 −1.49340 −0.746699 0.665162i \(-0.768363\pi\)
−0.746699 + 0.665162i \(0.768363\pi\)
\(60\) 0 0
\(61\) 1.18246 0.151399 0.0756995 0.997131i \(-0.475881\pi\)
0.0756995 + 0.997131i \(0.475881\pi\)
\(62\) 4.05558i 0.515060i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −1.39700 + 8.19453i −0.173276 + 1.01641i
\(66\) 0 0
\(67\) 6.56561i 0.802117i −0.916052 0.401058i \(-0.868642\pi\)
0.916052 0.401058i \(-0.131358\pi\)
\(68\) 6.87767i 0.834040i
\(69\) 0 0
\(70\) 1.09453 + 0.186594i 0.130821 + 0.0223023i
\(71\) 15.7252 1.86624 0.933118 0.359570i \(-0.117077\pi\)
0.933118 + 0.359570i \(0.117077\pi\)
\(72\) 0 0
\(73\) 0.584892i 0.0684564i 0.999414 + 0.0342282i \(0.0108973\pi\)
−0.999414 + 0.0342282i \(0.989103\pi\)
\(74\) −1.00000 −0.116248
\(75\) 0 0
\(76\) 3.45902 0.396777
\(77\) 1.75879i 0.200432i
\(78\) 0 0
\(79\) 1.89142 0.212801 0.106401 0.994323i \(-0.466067\pi\)
0.106401 + 0.994323i \(0.466067\pi\)
\(80\) −2.20427 0.375782i −0.246444 0.0420137i
\(81\) 0 0
\(82\) 7.78001i 0.859158i
\(83\) 3.12508i 0.343022i 0.985182 + 0.171511i \(0.0548648\pi\)
−0.985182 + 0.171511i \(0.945135\pi\)
\(84\) 0 0
\(85\) 2.58450 15.1602i 0.280329 1.64436i
\(86\) −5.91114 −0.637415
\(87\) 0 0
\(88\) 3.54201i 0.377580i
\(89\) −2.39557 −0.253930 −0.126965 0.991907i \(-0.540524\pi\)
−0.126965 + 0.991907i \(0.540524\pi\)
\(90\) 0 0
\(91\) −1.84596 −0.193509
\(92\) 5.34439i 0.557191i
\(93\) 0 0
\(94\) 9.61254 0.991458
\(95\) 7.62460 + 1.29984i 0.782267 + 0.133360i
\(96\) 0 0
\(97\) 9.01936i 0.915777i 0.889010 + 0.457888i \(0.151394\pi\)
−0.889010 + 0.457888i \(0.848606\pi\)
\(98\) 6.75344i 0.682200i
\(99\) 0 0
\(100\) −4.71758 1.65665i −0.471758 0.165665i
\(101\) 14.7627 1.46895 0.734473 0.678638i \(-0.237430\pi\)
0.734473 + 0.678638i \(0.237430\pi\)
\(102\) 0 0
\(103\) 5.94242i 0.585524i 0.956185 + 0.292762i \(0.0945743\pi\)
−0.956185 + 0.292762i \(0.905426\pi\)
\(104\) 3.71758 0.364538
\(105\) 0 0
\(106\) 12.0867 1.17397
\(107\) 18.4010i 1.77889i −0.457040 0.889446i \(-0.651090\pi\)
0.457040 0.889446i \(-0.348910\pi\)
\(108\) 0 0
\(109\) 7.95537 0.761987 0.380993 0.924578i \(-0.375582\pi\)
0.380993 + 0.924578i \(0.375582\pi\)
\(110\) 1.33102 7.80754i 0.126908 0.744420i
\(111\) 0 0
\(112\) 0.496550i 0.0469196i
\(113\) 5.17289i 0.486624i 0.969948 + 0.243312i \(0.0782339\pi\)
−0.969948 + 0.243312i \(0.921766\pi\)
\(114\) 0 0
\(115\) −2.00832 + 11.7805i −0.187277 + 1.09853i
\(116\) 5.00638 0.464831
\(117\) 0 0
\(118\) 11.4710i 1.05599i
\(119\) 3.41511 0.313062
\(120\) 0 0
\(121\) 1.54586 0.140532
\(122\) 1.18246i 0.107055i
\(123\) 0 0
\(124\) 4.05558 0.364202
\(125\) −9.77626 5.42446i −0.874415 0.485179i
\(126\) 0 0
\(127\) 7.96574i 0.706845i 0.935464 + 0.353423i \(0.114982\pi\)
−0.935464 + 0.353423i \(0.885018\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) 8.19453 + 1.39700i 0.718708 + 0.122525i
\(131\) 13.8424 1.20941 0.604707 0.796448i \(-0.293290\pi\)
0.604707 + 0.796448i \(0.293290\pi\)
\(132\) 0 0
\(133\) 1.71758i 0.148933i
\(134\) −6.56561 −0.567182
\(135\) 0 0
\(136\) −6.87767 −0.589755
\(137\) 6.51716i 0.556798i 0.960465 + 0.278399i \(0.0898038\pi\)
−0.960465 + 0.278399i \(0.910196\pi\)
\(138\) 0 0
\(139\) 0.871885 0.0739523 0.0369761 0.999316i \(-0.488227\pi\)
0.0369761 + 0.999316i \(0.488227\pi\)
\(140\) 0.186594 1.09453i 0.0157701 0.0925045i
\(141\) 0 0
\(142\) 15.7252i 1.31963i
\(143\) 13.1677i 1.10114i
\(144\) 0 0
\(145\) 11.0354 + 1.88131i 0.916440 + 0.156234i
\(146\) 0.584892 0.0484060
\(147\) 0 0
\(148\) 1.00000i 0.0821995i
\(149\) −5.91226 −0.484351 −0.242176 0.970232i \(-0.577861\pi\)
−0.242176 + 0.970232i \(0.577861\pi\)
\(150\) 0 0
\(151\) 20.7775 1.69085 0.845423 0.534098i \(-0.179349\pi\)
0.845423 + 0.534098i \(0.179349\pi\)
\(152\) 3.45902i 0.280564i
\(153\) 0 0
\(154\) 1.75879 0.141727
\(155\) 8.93958 + 1.52401i 0.718045 + 0.122412i
\(156\) 0 0
\(157\) 21.5052i 1.71630i −0.513398 0.858151i \(-0.671614\pi\)
0.513398 0.858151i \(-0.328386\pi\)
\(158\) 1.89142i 0.150473i
\(159\) 0 0
\(160\) −0.375782 + 2.20427i −0.0297081 + 0.174263i
\(161\) −2.65376 −0.209145
\(162\) 0 0
\(163\) 0.613583i 0.0480595i −0.999711 0.0240298i \(-0.992350\pi\)
0.999711 0.0240298i \(-0.00764964\pi\)
\(164\) −7.78001 −0.607516
\(165\) 0 0
\(166\) 3.12508 0.242553
\(167\) 6.80339i 0.526462i 0.964733 + 0.263231i \(0.0847882\pi\)
−0.964733 + 0.263231i \(0.915212\pi\)
\(168\) 0 0
\(169\) −0.820374 −0.0631057
\(170\) −15.1602 2.58450i −1.16274 0.198222i
\(171\) 0 0
\(172\) 5.91114i 0.450720i
\(173\) 12.2021i 0.927712i 0.885911 + 0.463856i \(0.153534\pi\)
−0.885911 + 0.463856i \(0.846466\pi\)
\(174\) 0 0
\(175\) 0.822607 2.34251i 0.0621833 0.177077i
\(176\) −3.54201 −0.266989
\(177\) 0 0
\(178\) 2.39557i 0.179556i
\(179\) −6.14040 −0.458955 −0.229478 0.973314i \(-0.573702\pi\)
−0.229478 + 0.973314i \(0.573702\pi\)
\(180\) 0 0
\(181\) 22.7890 1.69389 0.846945 0.531680i \(-0.178439\pi\)
0.846945 + 0.531680i \(0.178439\pi\)
\(182\) 1.84596i 0.136832i
\(183\) 0 0
\(184\) 5.34439 0.393993
\(185\) −0.375782 + 2.20427i −0.0276280 + 0.162061i
\(186\) 0 0
\(187\) 24.3608i 1.78144i
\(188\) 9.61254i 0.701066i
\(189\) 0 0
\(190\) 1.29984 7.62460i 0.0943000 0.553147i
\(191\) −25.8808 −1.87267 −0.936333 0.351112i \(-0.885804\pi\)
−0.936333 + 0.351112i \(0.885804\pi\)
\(192\) 0 0
\(193\) 13.0441i 0.938937i 0.882949 + 0.469468i \(0.155554\pi\)
−0.882949 + 0.469468i \(0.844446\pi\)
\(194\) 9.01936 0.647552
\(195\) 0 0
\(196\) −6.75344 −0.482388
\(197\) 5.19264i 0.369960i −0.982742 0.184980i \(-0.940778\pi\)
0.982742 0.184980i \(-0.0592220\pi\)
\(198\) 0 0
\(199\) 17.0131 1.20602 0.603012 0.797732i \(-0.293967\pi\)
0.603012 + 0.797732i \(0.293967\pi\)
\(200\) −1.65665 + 4.71758i −0.117142 + 0.333583i
\(201\) 0 0
\(202\) 14.7627i 1.03870i
\(203\) 2.48592i 0.174477i
\(204\) 0 0
\(205\) −17.1492 2.92358i −1.19775 0.204192i
\(206\) 5.94242 0.414028
\(207\) 0 0
\(208\) 3.71758i 0.257768i
\(209\) 12.2519 0.847481
\(210\) 0 0
\(211\) 21.0189 1.44700 0.723500 0.690325i \(-0.242532\pi\)
0.723500 + 0.690325i \(0.242532\pi\)
\(212\) 12.0867i 0.830119i
\(213\) 0 0
\(214\) −18.4010 −1.25787
\(215\) −2.22130 + 13.0297i −0.151491 + 0.888620i
\(216\) 0 0
\(217\) 2.01380i 0.136706i
\(218\) 7.95537i 0.538806i
\(219\) 0 0
\(220\) −7.80754 1.33102i −0.526384 0.0897376i
\(221\) 25.5683 1.71991
\(222\) 0 0
\(223\) 20.6518i 1.38295i 0.722401 + 0.691475i \(0.243039\pi\)
−0.722401 + 0.691475i \(0.756961\pi\)
\(224\) −0.496550 −0.0331771
\(225\) 0 0
\(226\) 5.17289 0.344095
\(227\) 12.1125i 0.803933i 0.915654 + 0.401966i \(0.131673\pi\)
−0.915654 + 0.401966i \(0.868327\pi\)
\(228\) 0 0
\(229\) 28.1773 1.86201 0.931005 0.365007i \(-0.118933\pi\)
0.931005 + 0.365007i \(0.118933\pi\)
\(230\) 11.7805 + 2.00832i 0.776780 + 0.132425i
\(231\) 0 0
\(232\) 5.00638i 0.328685i
\(233\) 2.68018i 0.175584i 0.996139 + 0.0877922i \(0.0279812\pi\)
−0.996139 + 0.0877922i \(0.972019\pi\)
\(234\) 0 0
\(235\) 3.61221 21.1886i 0.235635 1.38219i
\(236\) 11.4710 0.746699
\(237\) 0 0
\(238\) 3.41511i 0.221369i
\(239\) 29.2248 1.89040 0.945198 0.326499i \(-0.105869\pi\)
0.945198 + 0.326499i \(0.105869\pi\)
\(240\) 0 0
\(241\) −18.0343 −1.16169 −0.580845 0.814014i \(-0.697278\pi\)
−0.580845 + 0.814014i \(0.697278\pi\)
\(242\) 1.54586i 0.0993714i
\(243\) 0 0
\(244\) −1.18246 −0.0756995
\(245\) −14.8864 2.53782i −0.951056 0.162135i
\(246\) 0 0
\(247\) 12.8592i 0.818209i
\(248\) 4.05558i 0.257530i
\(249\) 0 0
\(250\) −5.42446 + 9.77626i −0.343073 + 0.618305i
\(251\) 0.340971 0.0215219 0.0107610 0.999942i \(-0.496575\pi\)
0.0107610 + 0.999942i \(0.496575\pi\)
\(252\) 0 0
\(253\) 18.9299i 1.19011i
\(254\) 7.96574 0.499815
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 30.0718i 1.87583i −0.346867 0.937914i \(-0.612754\pi\)
0.346867 0.937914i \(-0.387246\pi\)
\(258\) 0 0
\(259\) −0.496550 −0.0308541
\(260\) 1.39700 8.19453i 0.0866381 0.508203i
\(261\) 0 0
\(262\) 13.8424i 0.855185i
\(263\) 24.3337i 1.50048i −0.661167 0.750239i \(-0.729938\pi\)
0.661167 0.750239i \(-0.270062\pi\)
\(264\) 0 0
\(265\) 4.54197 26.6423i 0.279011 1.63663i
\(266\) 1.71758 0.105311
\(267\) 0 0
\(268\) 6.56561i 0.401058i
\(269\) −15.3738 −0.937360 −0.468680 0.883368i \(-0.655270\pi\)
−0.468680 + 0.883368i \(0.655270\pi\)
\(270\) 0 0
\(271\) −4.72205 −0.286844 −0.143422 0.989662i \(-0.545811\pi\)
−0.143422 + 0.989662i \(0.545811\pi\)
\(272\) 6.87767i 0.417020i
\(273\) 0 0
\(274\) 6.51716 0.393716
\(275\) −16.7097 5.86786i −1.00763 0.353845i
\(276\) 0 0
\(277\) 11.8424i 0.711543i 0.934573 + 0.355772i \(0.115782\pi\)
−0.934573 + 0.355772i \(0.884218\pi\)
\(278\) 0.871885i 0.0522922i
\(279\) 0 0
\(280\) −1.09453 0.186594i −0.0654106 0.0111511i
\(281\) −1.19006 −0.0709929 −0.0354964 0.999370i \(-0.511301\pi\)
−0.0354964 + 0.999370i \(0.511301\pi\)
\(282\) 0 0
\(283\) 1.23874i 0.0736357i 0.999322 + 0.0368179i \(0.0117221\pi\)
−0.999322 + 0.0368179i \(0.988278\pi\)
\(284\) −15.7252 −0.933118
\(285\) 0 0
\(286\) 13.1677 0.778623
\(287\) 3.86316i 0.228035i
\(288\) 0 0
\(289\) −30.3024 −1.78249
\(290\) 1.88131 11.0354i 0.110474 0.648021i
\(291\) 0 0
\(292\) 0.584892i 0.0342282i
\(293\) 16.7526i 0.978700i 0.872087 + 0.489350i \(0.162766\pi\)
−0.872087 + 0.489350i \(0.837234\pi\)
\(294\) 0 0
\(295\) 25.2852 + 4.31060i 1.47216 + 0.250973i
\(296\) 1.00000 0.0581238
\(297\) 0 0
\(298\) 5.91226i 0.342488i
\(299\) −19.8682 −1.14901
\(300\) 0 0
\(301\) −2.93518 −0.169181
\(302\) 20.7775i 1.19561i
\(303\) 0 0
\(304\) −3.45902 −0.198388
\(305\) −2.60646 0.444348i −0.149246 0.0254433i
\(306\) 0 0
\(307\) 24.0420i 1.37215i 0.727530 + 0.686075i \(0.240668\pi\)
−0.727530 + 0.686075i \(0.759332\pi\)
\(308\) 1.75879i 0.100216i
\(309\) 0 0
\(310\) 1.52401 8.93958i 0.0865581 0.507734i
\(311\) 1.92653 0.109244 0.0546218 0.998507i \(-0.482605\pi\)
0.0546218 + 0.998507i \(0.482605\pi\)
\(312\) 0 0
\(313\) 5.09813i 0.288163i −0.989566 0.144082i \(-0.953977\pi\)
0.989566 0.144082i \(-0.0460228\pi\)
\(314\) −21.5052 −1.21361
\(315\) 0 0
\(316\) −1.89142 −0.106401
\(317\) 4.16726i 0.234056i −0.993129 0.117028i \(-0.962663\pi\)
0.993129 0.117028i \(-0.0373368\pi\)
\(318\) 0 0
\(319\) 17.7327 0.992839
\(320\) 2.20427 + 0.375782i 0.123222 + 0.0210068i
\(321\) 0 0
\(322\) 2.65376i 0.147888i
\(323\) 23.7900i 1.32371i
\(324\) 0 0
\(325\) 6.15870 17.5380i 0.341623 0.972830i
\(326\) −0.613583 −0.0339832
\(327\) 0 0
\(328\) 7.78001i 0.429579i
\(329\) 4.77311 0.263150
\(330\) 0 0
\(331\) 5.98808 0.329135 0.164567 0.986366i \(-0.447377\pi\)
0.164567 + 0.986366i \(0.447377\pi\)
\(332\) 3.12508i 0.171511i
\(333\) 0 0
\(334\) 6.80339 0.372265
\(335\) −2.46723 + 14.4723i −0.134799 + 0.790709i
\(336\) 0 0
\(337\) 9.11787i 0.496682i 0.968673 + 0.248341i \(0.0798854\pi\)
−0.968673 + 0.248341i \(0.920115\pi\)
\(338\) 0.820374i 0.0446225i
\(339\) 0 0
\(340\) −2.58450 + 15.1602i −0.140164 + 0.822178i
\(341\) 14.3649 0.777904
\(342\) 0 0
\(343\) 6.82927i 0.368746i
\(344\) 5.91114 0.318707
\(345\) 0 0
\(346\) 12.2021 0.655991
\(347\) 2.91755i 0.156622i 0.996929 + 0.0783111i \(0.0249528\pi\)
−0.996929 + 0.0783111i \(0.975047\pi\)
\(348\) 0 0
\(349\) −32.7480 −1.75296 −0.876479 0.481440i \(-0.840114\pi\)
−0.876479 + 0.481440i \(0.840114\pi\)
\(350\) −2.34251 0.822607i −0.125213 0.0439702i
\(351\) 0 0
\(352\) 3.54201i 0.188790i
\(353\) 25.7163i 1.36874i 0.729135 + 0.684370i \(0.239923\pi\)
−0.729135 + 0.684370i \(0.760077\pi\)
\(354\) 0 0
\(355\) −34.6625 5.90923i −1.83969 0.313630i
\(356\) 2.39557 0.126965
\(357\) 0 0
\(358\) 6.14040i 0.324530i
\(359\) −22.2120 −1.17230 −0.586152 0.810201i \(-0.699358\pi\)
−0.586152 + 0.810201i \(0.699358\pi\)
\(360\) 0 0
\(361\) −7.03518 −0.370273
\(362\) 22.7890i 1.19776i
\(363\) 0 0
\(364\) 1.84596 0.0967547
\(365\) 0.219792 1.28926i 0.0115044 0.0674828i
\(366\) 0 0
\(367\) 7.76575i 0.405369i −0.979244 0.202684i \(-0.935033\pi\)
0.979244 0.202684i \(-0.0649666\pi\)
\(368\) 5.34439i 0.278595i
\(369\) 0 0
\(370\) 2.20427 + 0.375782i 0.114594 + 0.0195360i
\(371\) 6.00166 0.311591
\(372\) 0 0
\(373\) 15.0340i 0.778430i 0.921147 + 0.389215i \(0.127254\pi\)
−0.921147 + 0.389215i \(0.872746\pi\)
\(374\) −24.3608 −1.25967
\(375\) 0 0
\(376\) −9.61254 −0.495729
\(377\) 18.6116i 0.958546i
\(378\) 0 0
\(379\) −8.08640 −0.415370 −0.207685 0.978196i \(-0.566593\pi\)
−0.207685 + 0.978196i \(0.566593\pi\)
\(380\) −7.62460 1.29984i −0.391134 0.0666802i
\(381\) 0 0
\(382\) 25.8808i 1.32418i
\(383\) 13.8770i 0.709084i 0.935040 + 0.354542i \(0.115363\pi\)
−0.935040 + 0.354542i \(0.884637\pi\)
\(384\) 0 0
\(385\) 0.660920 3.87683i 0.0336836 0.197582i
\(386\) 13.0441 0.663928
\(387\) 0 0
\(388\) 9.01936i 0.457888i
\(389\) 5.36823 0.272180 0.136090 0.990696i \(-0.456546\pi\)
0.136090 + 0.990696i \(0.456546\pi\)
\(390\) 0 0
\(391\) 36.7569 1.85888
\(392\) 6.75344i 0.341100i
\(393\) 0 0
\(394\) −5.19264 −0.261601
\(395\) −4.16919 0.710760i −0.209775 0.0357622i
\(396\) 0 0
\(397\) 26.3508i 1.32251i 0.750161 + 0.661255i \(0.229976\pi\)
−0.750161 + 0.661255i \(0.770024\pi\)
\(398\) 17.0131i 0.852787i
\(399\) 0 0
\(400\) 4.71758 + 1.65665i 0.235879 + 0.0828323i
\(401\) −18.6718 −0.932425 −0.466212 0.884673i \(-0.654382\pi\)
−0.466212 + 0.884673i \(0.654382\pi\)
\(402\) 0 0
\(403\) 15.0769i 0.751036i
\(404\) −14.7627 −0.734473
\(405\) 0 0
\(406\) 2.48592 0.123374
\(407\) 3.54201i 0.175571i
\(408\) 0 0
\(409\) 4.43008 0.219053 0.109527 0.993984i \(-0.465067\pi\)
0.109527 + 0.993984i \(0.465067\pi\)
\(410\) −2.92358 + 17.1492i −0.144385 + 0.846939i
\(411\) 0 0
\(412\) 5.94242i 0.292762i
\(413\) 5.69593i 0.280279i
\(414\) 0 0
\(415\) 1.17435 6.88850i 0.0576464 0.338143i
\(416\) −3.71758 −0.182269
\(417\) 0 0
\(418\) 12.2519i 0.599260i
\(419\) −39.1429 −1.91225 −0.956127 0.292952i \(-0.905362\pi\)
−0.956127 + 0.292952i \(0.905362\pi\)
\(420\) 0 0
\(421\) −28.0272 −1.36596 −0.682982 0.730436i \(-0.739317\pi\)
−0.682982 + 0.730436i \(0.739317\pi\)
\(422\) 21.0189i 1.02318i
\(423\) 0 0
\(424\) −12.0867 −0.586983
\(425\) −11.3939 + 32.4459i −0.552683 + 1.57386i
\(426\) 0 0
\(427\) 0.587152i 0.0284143i
\(428\) 18.4010i 0.889446i
\(429\) 0 0
\(430\) 13.0297 + 2.22130i 0.628349 + 0.107120i
\(431\) 24.2322 1.16722 0.583611 0.812033i \(-0.301639\pi\)
0.583611 + 0.812033i \(0.301639\pi\)
\(432\) 0 0
\(433\) 10.8428i 0.521071i −0.965464 0.260535i \(-0.916101\pi\)
0.965464 0.260535i \(-0.0838991\pi\)
\(434\) 2.01380 0.0966655
\(435\) 0 0
\(436\) −7.95537 −0.380993
\(437\) 18.4863i 0.884322i
\(438\) 0 0
\(439\) −12.4210 −0.592822 −0.296411 0.955060i \(-0.595790\pi\)
−0.296411 + 0.955060i \(0.595790\pi\)
\(440\) −1.33102 + 7.80754i −0.0634540 + 0.372210i
\(441\) 0 0
\(442\) 25.5683i 1.21616i
\(443\) 22.9845i 1.09203i −0.837777 0.546013i \(-0.816145\pi\)
0.837777 0.546013i \(-0.183855\pi\)
\(444\) 0 0
\(445\) 5.28048 + 0.900213i 0.250319 + 0.0426742i
\(446\) 20.6518 0.977893
\(447\) 0 0
\(448\) 0.496550i 0.0234598i
\(449\) 8.60738 0.406208 0.203104 0.979157i \(-0.434897\pi\)
0.203104 + 0.979157i \(0.434897\pi\)
\(450\) 0 0
\(451\) −27.5569 −1.29760
\(452\) 5.17289i 0.243312i
\(453\) 0 0
\(454\) 12.1125 0.568466
\(455\) 4.06899 + 0.693679i 0.190757 + 0.0325202i
\(456\) 0 0
\(457\) 18.0982i 0.846597i −0.905990 0.423299i \(-0.860872\pi\)
0.905990 0.423299i \(-0.139128\pi\)
\(458\) 28.1773i 1.31664i
\(459\) 0 0
\(460\) 2.00832 11.7805i 0.0936385 0.549266i
\(461\) 34.8960 1.62527 0.812634 0.582774i \(-0.198033\pi\)
0.812634 + 0.582774i \(0.198033\pi\)
\(462\) 0 0
\(463\) 11.7593i 0.546501i 0.961943 + 0.273251i \(0.0880989\pi\)
−0.961943 + 0.273251i \(0.911901\pi\)
\(464\) −5.00638 −0.232415
\(465\) 0 0
\(466\) 2.68018 0.124157
\(467\) 15.0384i 0.695893i 0.937514 + 0.347947i \(0.113121\pi\)
−0.937514 + 0.347947i \(0.886879\pi\)
\(468\) 0 0
\(469\) −3.26015 −0.150540
\(470\) −21.1886 3.61221i −0.977357 0.166619i
\(471\) 0 0
\(472\) 11.4710i 0.527996i
\(473\) 20.9373i 0.962700i
\(474\) 0 0
\(475\) −16.3182 5.73037i −0.748730 0.262927i
\(476\) −3.41511 −0.156531
\(477\) 0 0
\(478\) 29.2248i 1.33671i
\(479\) −5.76027 −0.263193 −0.131597 0.991303i \(-0.542010\pi\)
−0.131597 + 0.991303i \(0.542010\pi\)
\(480\) 0 0
\(481\) −3.71758 −0.169507
\(482\) 18.0343i 0.821439i
\(483\) 0 0
\(484\) −1.54586 −0.0702662
\(485\) 3.38931 19.8811i 0.153901 0.902752i
\(486\) 0 0
\(487\) 35.6982i 1.61764i 0.588056 + 0.808820i \(0.299893\pi\)
−0.588056 + 0.808820i \(0.700107\pi\)
\(488\) 1.18246i 0.0535276i
\(489\) 0 0
\(490\) −2.53782 + 14.8864i −0.114647 + 0.672498i
\(491\) 8.81455 0.397795 0.198898 0.980020i \(-0.436264\pi\)
0.198898 + 0.980020i \(0.436264\pi\)
\(492\) 0 0
\(493\) 34.4322i 1.55075i
\(494\) 12.8592 0.578561
\(495\) 0 0
\(496\) −4.05558 −0.182101
\(497\) 7.80834i 0.350252i
\(498\) 0 0
\(499\) 6.15485 0.275529 0.137764 0.990465i \(-0.456008\pi\)
0.137764 + 0.990465i \(0.456008\pi\)
\(500\) 9.77626 + 5.42446i 0.437207 + 0.242589i
\(501\) 0 0
\(502\) 0.340971i 0.0152183i
\(503\) 28.2064i 1.25766i −0.777542 0.628832i \(-0.783534\pi\)
0.777542 0.628832i \(-0.216466\pi\)
\(504\) 0 0
\(505\) −32.5410 5.54756i −1.44805 0.246863i
\(506\) 18.9299 0.841536
\(507\) 0 0
\(508\) 7.96574i 0.353423i
\(509\) 25.3036 1.12156 0.560782 0.827964i \(-0.310501\pi\)
0.560782 + 0.827964i \(0.310501\pi\)
\(510\) 0 0
\(511\) 0.290428 0.0128478
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −30.0718 −1.32641
\(515\) 2.23305 13.0987i 0.0984000 0.577196i
\(516\) 0 0
\(517\) 34.0477i 1.49742i
\(518\) 0.496550i 0.0218172i
\(519\) 0 0
\(520\) −8.19453 1.39700i −0.359354 0.0612624i
\(521\) −20.4093 −0.894148 −0.447074 0.894497i \(-0.647534\pi\)
−0.447074 + 0.894497i \(0.647534\pi\)
\(522\) 0 0
\(523\) 14.6912i 0.642403i 0.947011 + 0.321201i \(0.104087\pi\)
−0.947011 + 0.321201i \(0.895913\pi\)
\(524\) −13.8424 −0.604707
\(525\) 0 0
\(526\) −24.3337 −1.06100
\(527\) 27.8930i 1.21504i
\(528\) 0 0
\(529\) −5.56248 −0.241847
\(530\) −26.6423 4.54197i −1.15727 0.197290i
\(531\) 0 0
\(532\) 1.71758i 0.0744664i
\(533\) 28.9228i 1.25278i
\(534\) 0 0
\(535\) −6.91476 + 40.5607i −0.298951 + 1.75359i
\(536\) 6.56561 0.283591
\(537\) 0 0
\(538\) 15.3738i 0.662813i
\(539\) −23.9208 −1.03034
\(540\) 0 0
\(541\) −35.0439 −1.50665 −0.753327 0.657647i \(-0.771552\pi\)
−0.753327 + 0.657647i \(0.771552\pi\)
\(542\) 4.72205i 0.202830i
\(543\) 0 0
\(544\) 6.87767 0.294878
\(545\) −17.5358 2.98948i −0.751150 0.128055i
\(546\) 0 0
\(547\) 31.7165i 1.35610i 0.735017 + 0.678049i \(0.237174\pi\)
−0.735017 + 0.678049i \(0.762826\pi\)
\(548\) 6.51716i 0.278399i
\(549\) 0 0
\(550\) −5.86786 + 16.7097i −0.250206 + 0.712505i
\(551\) 17.3172 0.737736
\(552\) 0 0
\(553\) 0.939184i 0.0399382i
\(554\) 11.8424 0.503137
\(555\) 0 0
\(556\) −0.871885 −0.0369761
\(557\) 46.5635i 1.97296i 0.163883 + 0.986480i \(0.447598\pi\)
−0.163883 + 0.986480i \(0.552402\pi\)
\(558\) 0 0
\(559\) −21.9751 −0.929448
\(560\) −0.186594 + 1.09453i −0.00788505 + 0.0462523i
\(561\) 0 0
\(562\) 1.19006i 0.0501995i
\(563\) 29.5886i 1.24701i −0.781819 0.623505i \(-0.785708\pi\)
0.781819 0.623505i \(-0.214292\pi\)
\(564\) 0 0
\(565\) 1.94388 11.4024i 0.0817795 0.479703i
\(566\) 1.23874 0.0520683
\(567\) 0 0
\(568\) 15.7252i 0.659814i
\(569\) 15.6452 0.655879 0.327940 0.944699i \(-0.393646\pi\)
0.327940 + 0.944699i \(0.393646\pi\)
\(570\) 0 0
\(571\) −5.53574 −0.231663 −0.115832 0.993269i \(-0.536953\pi\)
−0.115832 + 0.993269i \(0.536953\pi\)
\(572\) 13.1677i 0.550569i
\(573\) 0 0
\(574\) −3.86316 −0.161245
\(575\) 8.85375 25.2126i 0.369227 1.05144i
\(576\) 0 0
\(577\) 3.19899i 0.133176i 0.997781 + 0.0665878i \(0.0212112\pi\)
−0.997781 + 0.0665878i \(0.978789\pi\)
\(578\) 30.3024i 1.26041i
\(579\) 0 0
\(580\) −11.0354 1.88131i −0.458220 0.0781170i
\(581\) 1.55176 0.0643777
\(582\) 0 0
\(583\) 42.8113i 1.77306i
\(584\) −0.584892 −0.0242030
\(585\) 0 0
\(586\) 16.7526 0.692046
\(587\) 12.4110i 0.512258i 0.966643 + 0.256129i \(0.0824472\pi\)
−0.966643 + 0.256129i \(0.917553\pi\)
\(588\) 0 0
\(589\) 14.0283 0.578028
\(590\) 4.31060 25.2852i 0.177464 1.04097i
\(591\) 0 0
\(592\) 1.00000i 0.0410997i
\(593\) 6.15234i 0.252646i −0.991989 0.126323i \(-0.959682\pi\)
0.991989 0.126323i \(-0.0403176\pi\)
\(594\) 0 0
\(595\) −7.52781 1.28333i −0.308610 0.0526116i
\(596\) 5.91226 0.242176
\(597\) 0 0
\(598\) 19.8682i 0.812470i
\(599\) −23.1885 −0.947456 −0.473728 0.880671i \(-0.657092\pi\)
−0.473728 + 0.880671i \(0.657092\pi\)
\(600\) 0 0
\(601\) −4.72864 −0.192885 −0.0964426 0.995339i \(-0.530746\pi\)
−0.0964426 + 0.995339i \(0.530746\pi\)
\(602\) 2.93518i 0.119629i
\(603\) 0 0
\(604\) −20.7775 −0.845423
\(605\) −3.40748 0.580904i −0.138534 0.0236171i
\(606\) 0 0
\(607\) 22.8973i 0.929374i −0.885475 0.464687i \(-0.846167\pi\)
0.885475 0.464687i \(-0.153833\pi\)
\(608\) 3.45902i 0.140282i
\(609\) 0 0
\(610\) −0.444348 + 2.60646i −0.0179911 + 0.105533i
\(611\) 35.7353 1.44570
\(612\) 0 0
\(613\) 37.1669i 1.50116i −0.660781 0.750579i \(-0.729775\pi\)
0.660781 0.750579i \(-0.270225\pi\)
\(614\) 24.0420 0.970257
\(615\) 0 0
\(616\) −1.75879 −0.0708635
\(617\) 20.4816i 0.824558i −0.911058 0.412279i \(-0.864733\pi\)
0.911058 0.412279i \(-0.135267\pi\)
\(618\) 0 0
\(619\) 6.10796 0.245500 0.122750 0.992438i \(-0.460829\pi\)
0.122750 + 0.992438i \(0.460829\pi\)
\(620\) −8.93958 1.52401i −0.359022 0.0612058i
\(621\) 0 0
\(622\) 1.92653i 0.0772469i
\(623\) 1.18952i 0.0476572i
\(624\) 0 0
\(625\) 19.5111 + 15.6307i 0.780442 + 0.625228i
\(626\) −5.09813 −0.203762
\(627\) 0 0
\(628\) 21.5052i 0.858151i
\(629\) 6.87767 0.274231
\(630\) 0 0
\(631\) −6.11608 −0.243477 −0.121739 0.992562i \(-0.538847\pi\)
−0.121739 + 0.992562i \(0.538847\pi\)
\(632\) 1.89142i 0.0752366i
\(633\) 0 0
\(634\) −4.16726 −0.165503
\(635\) 2.99338 17.5586i 0.118789 0.696792i
\(636\) 0 0
\(637\) 25.1064i 0.994753i
\(638\) 17.7327i 0.702043i
\(639\) 0 0
\(640\) 0.375782 2.20427i 0.0148541 0.0871313i
\(641\) 32.5928 1.28734 0.643670 0.765303i \(-0.277411\pi\)
0.643670 + 0.765303i \(0.277411\pi\)
\(642\) 0 0
\(643\) 5.81189i 0.229199i 0.993412 + 0.114599i \(0.0365584\pi\)
−0.993412 + 0.114599i \(0.963442\pi\)
\(644\) 2.65376 0.104573
\(645\) 0 0
\(646\) −23.7900 −0.936005
\(647\) 2.02466i 0.0795975i −0.999208 0.0397988i \(-0.987328\pi\)
0.999208 0.0397988i \(-0.0126717\pi\)
\(648\) 0 0
\(649\) 40.6305 1.59489
\(650\) −17.5380 6.15870i −0.687895 0.241564i
\(651\) 0 0
\(652\) 0.613583i 0.0240298i
\(653\) 11.7965i 0.461632i 0.972997 + 0.230816i \(0.0741395\pi\)
−0.972997 + 0.230816i \(0.925861\pi\)
\(654\) 0 0
\(655\) −30.5123 5.20171i −1.19221 0.203248i
\(656\) 7.78001 0.303758
\(657\) 0 0
\(658\) 4.77311i 0.186075i
\(659\) 2.97175 0.115763 0.0578816 0.998323i \(-0.481565\pi\)
0.0578816 + 0.998323i \(0.481565\pi\)
\(660\) 0 0
\(661\) 46.6484 1.81441 0.907207 0.420684i \(-0.138210\pi\)
0.907207 + 0.420684i \(0.138210\pi\)
\(662\) 5.98808i 0.232733i
\(663\) 0 0
\(664\) −3.12508 −0.121276
\(665\) 0.645434 3.78600i 0.0250288 0.146815i
\(666\) 0 0
\(667\) 26.7560i 1.03600i
\(668\) 6.80339i 0.263231i
\(669\) 0 0
\(670\) 14.4723 + 2.46723i 0.559116 + 0.0953176i
\(671\) −4.18830 −0.161688
\(672\) 0 0
\(673\) 40.5210i 1.56197i 0.624549 + 0.780986i \(0.285283\pi\)
−0.624549 + 0.780986i \(0.714717\pi\)
\(674\) 9.11787 0.351207
\(675\) 0 0
\(676\) 0.820374 0.0315529
\(677\) 37.5485i 1.44311i 0.692358 + 0.721554i \(0.256572\pi\)
−0.692358 + 0.721554i \(0.743428\pi\)
\(678\) 0 0
\(679\) 4.47856 0.171871
\(680\) 15.1602 + 2.58450i 0.581368 + 0.0991111i
\(681\) 0 0
\(682\) 14.3649i 0.550061i
\(683\) 41.4027i 1.58423i 0.610372 + 0.792115i \(0.291020\pi\)
−0.610372 + 0.792115i \(0.708980\pi\)
\(684\) 0 0
\(685\) 2.44903 14.3656i 0.0935726 0.548879i
\(686\) −6.82927 −0.260743
\(687\) 0 0
\(688\) 5.91114i 0.225360i
\(689\) 44.9333 1.71182
\(690\) 0 0
\(691\) −31.8562 −1.21187 −0.605934 0.795515i \(-0.707200\pi\)
−0.605934 + 0.795515i \(0.707200\pi\)
\(692\) 12.2021i 0.463856i
\(693\) 0 0
\(694\) 2.91755 0.110749
\(695\) −1.92187 0.327638i −0.0729005 0.0124280i
\(696\) 0 0
\(697\) 53.5083i 2.02677i
\(698\) 32.7480i 1.23953i
\(699\) 0 0
\(700\) −0.822607 + 2.34251i −0.0310916 + 0.0885387i
\(701\) −15.2993 −0.577847 −0.288923 0.957352i \(-0.593297\pi\)
−0.288923 + 0.957352i \(0.593297\pi\)
\(702\) 0 0
\(703\) 3.45902i 0.130459i
\(704\) 3.54201 0.133495
\(705\) 0 0
\(706\) 25.7163 0.967845
\(707\) 7.33043i 0.275689i
\(708\) 0 0
\(709\) 32.3797 1.21604 0.608022 0.793920i \(-0.291963\pi\)
0.608022 + 0.793920i \(0.291963\pi\)
\(710\) −5.90923 + 34.6625i −0.221770 + 1.30086i
\(711\) 0 0
\(712\) 2.39557i 0.0897779i
\(713\) 21.6746i 0.811720i
\(714\) 0 0
\(715\) 4.94818 29.0251i 0.185051 1.08548i
\(716\) 6.14040 0.229478
\(717\) 0 0
\(718\) 22.2120i 0.828944i
\(719\) 0.735423 0.0274266 0.0137133 0.999906i \(-0.495635\pi\)
0.0137133 + 0.999906i \(0.495635\pi\)
\(720\) 0 0
\(721\) 2.95071 0.109890
\(722\) 7.03518i 0.261822i
\(723\) 0 0
\(724\) −22.7890 −0.846945
\(725\) −23.6180 8.29380i −0.877150 0.308024i
\(726\) 0 0
\(727\) 0.888125i 0.0329387i 0.999864 + 0.0164694i \(0.00524260\pi\)
−0.999864 + 0.0164694i \(0.994757\pi\)
\(728\) 1.84596i 0.0684159i
\(729\) 0 0
\(730\) −1.28926 0.219792i −0.0477176 0.00813485i
\(731\) 40.6549 1.50367
\(732\) 0 0
\(733\) 42.3706i 1.56499i 0.622655 + 0.782496i \(0.286054\pi\)
−0.622655 + 0.782496i \(0.713946\pi\)
\(734\) −7.76575 −0.286639
\(735\) 0 0
\(736\) −5.34439 −0.196997
\(737\) 23.2555i 0.856626i
\(738\) 0 0
\(739\) −50.2906 −1.84997 −0.924985 0.380004i \(-0.875923\pi\)
−0.924985 + 0.380004i \(0.875923\pi\)
\(740\) 0.375782 2.20427i 0.0138140 0.0810304i
\(741\) 0 0
\(742\) 6.00166i 0.220328i
\(743\) 47.8441i 1.75523i −0.479367 0.877615i \(-0.659134\pi\)
0.479367 0.877615i \(-0.340866\pi\)
\(744\) 0 0
\(745\) 13.0322 + 2.22172i 0.477463 + 0.0813975i
\(746\) 15.0340 0.550433
\(747\) 0 0
\(748\) 24.3608i 0.890719i
\(749\) −9.13702 −0.333859
\(750\) 0 0
\(751\) 1.39619 0.0509475 0.0254738 0.999675i \(-0.491891\pi\)
0.0254738 + 0.999675i \(0.491891\pi\)
\(752\) 9.61254i 0.350533i
\(753\) 0 0
\(754\) 18.6116 0.677795
\(755\) −45.7990 7.80779i −1.66680 0.284154i
\(756\) 0 0
\(757\) 27.0437i 0.982919i −0.870900 0.491460i \(-0.836464\pi\)
0.870900 0.491460i \(-0.163536\pi\)
\(758\) 8.08640i 0.293711i
\(759\) 0 0
\(760\) −1.29984 + 7.62460i −0.0471500 + 0.276573i
\(761\) 33.9022 1.22895 0.614477 0.788935i \(-0.289367\pi\)
0.614477 + 0.788935i \(0.289367\pi\)
\(762\) 0 0
\(763\) 3.95024i 0.143008i
\(764\) 25.8808 0.936333
\(765\) 0 0
\(766\) 13.8770 0.501398
\(767\) 42.6444i 1.53980i
\(768\) 0 0
\(769\) −28.9215 −1.04294 −0.521468 0.853271i \(-0.674615\pi\)
−0.521468 + 0.853271i \(0.674615\pi\)
\(770\) −3.87683 0.660920i −0.139711 0.0238179i
\(771\) 0 0
\(772\) 13.0441i 0.469468i
\(773\) 37.1725i 1.33700i 0.743711 + 0.668502i \(0.233064\pi\)
−0.743711 + 0.668502i \(0.766936\pi\)
\(774\) 0 0
\(775\) −19.1325 6.71866i −0.687260 0.241341i
\(776\) −9.01936 −0.323776
\(777\) 0 0
\(778\) 5.36823i 0.192460i
\(779\) −26.9112 −0.964194
\(780\) 0 0
\(781\) −55.6988 −1.99306
\(782\) 36.7569i 1.31443i
\(783\) 0 0
\(784\) 6.75344 0.241194
\(785\) −8.08125 + 47.4032i −0.288432 + 1.69189i
\(786\) 0 0
\(787\) 23.5117i 0.838100i −0.907963 0.419050i \(-0.862363\pi\)
0.907963 0.419050i \(-0.137637\pi\)
\(788\) 5.19264i 0.184980i
\(789\) 0 0
\(790\) −0.710760 + 4.16919i −0.0252877 + 0.148333i
\(791\) 2.56860 0.0913288
\(792\) 0 0
\(793\) 4.39590i 0.156103i
\(794\) 26.3508 0.935156
\(795\) 0 0
\(796\) −17.0131 −0.603012
\(797\) 19.7198i 0.698512i 0.937027 + 0.349256i \(0.113566\pi\)
−0.937027 + 0.349256i \(0.886434\pi\)
\(798\) 0 0
\(799\) −66.1119 −2.33887
\(800\) 1.65665 4.71758i 0.0585712 0.166792i
\(801\) 0 0
\(802\) 18.6718i 0.659324i
\(803\) 2.07169i 0.0731085i
\(804\) 0 0
\(805\) 5.84958 + 0.997233i 0.206171 + 0.0351478i
\(806\) 15.0769 0.531063
\(807\) 0 0
\(808\) 14.7627i 0.519351i
\(809\) −36.7627 −1.29251 −0.646254 0.763122i \(-0.723665\pi\)
−0.646254 + 0.763122i \(0.723665\pi\)
\(810\) 0 0
\(811\) −8.28861 −0.291052 −0.145526 0.989354i \(-0.546487\pi\)
−0.145526 + 0.989354i \(0.546487\pi\)
\(812\) 2.48592i 0.0872387i
\(813\) 0 0
\(814\) 3.54201 0.124147
\(815\) −0.230573 + 1.35250i −0.00807662 + 0.0473760i
\(816\) 0 0
\(817\) 20.4467i 0.715341i
\(818\) 4.43008i 0.154894i
\(819\) 0 0
\(820\) 17.1492 + 2.92358i 0.598876 + 0.102096i
\(821\) 22.5596 0.787335 0.393668 0.919253i \(-0.371206\pi\)
0.393668 + 0.919253i \(0.371206\pi\)
\(822\) 0 0
\(823\) 6.98917i 0.243627i 0.992553 + 0.121814i \(0.0388710\pi\)
−0.992553 + 0.121814i \(0.961129\pi\)
\(824\) −5.94242 −0.207014
\(825\) 0 0
\(826\) 5.69593 0.198187
\(827\) 21.6447i 0.752660i −0.926486 0.376330i \(-0.877186\pi\)
0.926486 0.376330i \(-0.122814\pi\)
\(828\) 0 0
\(829\) −21.7009 −0.753705 −0.376853 0.926273i \(-0.622994\pi\)
−0.376853 + 0.926273i \(0.622994\pi\)
\(830\) −6.88850 1.17435i −0.239103 0.0407621i
\(831\) 0 0
\(832\) 3.71758i 0.128884i
\(833\) 46.4479i 1.60933i
\(834\) 0 0
\(835\) 2.55659 14.9965i 0.0884744 0.518975i
\(836\) −12.2519 −0.423741
\(837\) 0 0
\(838\) 39.1429i 1.35217i
\(839\) 49.4436 1.70698 0.853492 0.521107i \(-0.174481\pi\)
0.853492 + 0.521107i \(0.174481\pi\)
\(840\) 0 0
\(841\) −3.93615 −0.135729
\(842\) 28.0272i 0.965882i
\(843\) 0 0
\(844\) −21.0189 −0.723500
\(845\) 1.80832 + 0.308282i 0.0622082 + 0.0106052i
\(846\) 0 0
\(847\) 0.767595i 0.0263749i
\(848\) 12.0867i 0.415060i
\(849\) 0 0
\(850\) 32.4459 + 11.3939i 1.11289 + 0.390806i
\(851\) −5.34439 −0.183203
\(852\) 0 0
\(853\) 36.1003i 1.23605i 0.786158 + 0.618026i \(0.212067\pi\)
−0.786158 + 0.618026i \(0.787933\pi\)
\(854\) −0.587152 −0.0200919
\(855\) 0 0
\(856\) 18.4010 0.628933
\(857\) 13.1584i 0.449484i −0.974418 0.224742i \(-0.927846\pi\)
0.974418 0.224742i \(-0.0721539\pi\)
\(858\) 0 0
\(859\) 12.3713 0.422104 0.211052 0.977475i \(-0.432311\pi\)
0.211052 + 0.977475i \(0.432311\pi\)
\(860\) 2.22130 13.0297i 0.0757456 0.444310i
\(861\) 0 0
\(862\) 24.2322i 0.825351i
\(863\) 43.8288i 1.49195i 0.665974 + 0.745975i \(0.268016\pi\)
−0.665974 + 0.745975i \(0.731984\pi\)
\(864\) 0 0
\(865\) 4.58534 26.8968i 0.155906 0.914518i
\(866\) −10.8428 −0.368453
\(867\) 0 0
\(868\) 2.01380i 0.0683528i
\(869\) −6.69943 −0.227263
\(870\) 0 0
\(871\) −24.4082 −0.827039
\(872\) 7.95537i 0.269403i
\(873\) 0 0
\(874\) 18.4863 0.625310
\(875\) −2.69352 + 4.85440i −0.0910575 + 0.164109i
\(876\) 0 0
\(877\) 45.7434i 1.54465i 0.635230 + 0.772323i \(0.280905\pi\)
−0.635230 + 0.772323i \(0.719095\pi\)
\(878\) 12.4210i 0.419189i
\(879\) 0 0
\(880\) 7.80754 + 1.33102i 0.263192 + 0.0448688i
\(881\) −35.0483 −1.18081 −0.590404 0.807108i \(-0.701032\pi\)
−0.590404 + 0.807108i \(0.701032\pi\)
\(882\) 0 0
\(883\) 2.61087i 0.0878628i −0.999035 0.0439314i \(-0.986012\pi\)
0.999035 0.0439314i \(-0.0139883\pi\)
\(884\) −25.5683 −0.859954
\(885\) 0 0
\(886\) −22.9845 −0.772178
\(887\) 39.4227i 1.32368i −0.749643 0.661842i \(-0.769775\pi\)
0.749643 0.661842i \(-0.230225\pi\)
\(888\) 0 0
\(889\) 3.95539 0.132660
\(890\) 0.900213 5.28048i 0.0301752 0.177002i
\(891\) 0 0
\(892\) 20.6518i 0.691475i
\(893\) 33.2500i 1.11267i
\(894\) 0 0
\(895\) 13.5351 + 2.30745i 0.452428 + 0.0771296i
\(896\) 0.496550 0.0165886
\(897\) 0 0
\(898\) 8.60738i 0.287232i
\(899\) 20.3038 0.677169
\(900\) 0 0
\(901\) −83.1285 −2.76941
\(902\) 27.5569i 0.917544i
\(903\) 0 0
\(904\) −5.17289 −0.172048
\(905\) −50.2330 8.56368i −1.66980 0.284666i
\(906\) 0 0
\(907\) 14.8779i 0.494014i −0.969014 0.247007i \(-0.920553\pi\)
0.969014 0.247007i \(-0.0794471\pi\)
\(908\) 12.1125i 0.401966i
\(909\) 0 0
\(910\) 0.693679 4.06899i 0.0229952 0.134886i
\(911\) −15.5279 −0.514462 −0.257231 0.966350i \(-0.582810\pi\)
−0.257231 + 0.966350i \(0.582810\pi\)
\(912\) 0 0
\(913\) 11.0691i 0.366332i
\(914\) −18.0982 −0.598635
\(915\) 0 0
\(916\) −28.1773 −0.931005
\(917\) 6.87343i 0.226981i
\(918\) 0 0
\(919\) −9.50166 −0.313431 −0.156715 0.987644i \(-0.550091\pi\)
−0.156715 + 0.987644i \(0.550091\pi\)
\(920\) −11.7805 2.00832i −0.388390 0.0662124i
\(921\) 0 0
\(922\) 34.8960i 1.14924i
\(923\) 58.4596i 1.92422i
\(924\) 0 0
\(925\) 1.65665 4.71758i 0.0544702 0.155113i
\(926\) 11.7593 0.386435
\(927\) 0 0
\(928\) 5.00638i 0.164343i
\(929\) 3.26639 0.107167 0.0535835 0.998563i \(-0.482936\pi\)
0.0535835 + 0.998563i \(0.482936\pi\)
\(930\) 0 0
\(931\) −23.3603 −0.765602
\(932\) 2.68018i 0.0877922i
\(933\) 0 0
\(934\) 15.0384 0.492071
\(935\) −9.15434 + 53.6977i −0.299379 + 1.75610i
\(936\) 0 0
\(937\) 21.1558i 0.691129i 0.938395 + 0.345564i \(0.112312\pi\)
−0.938395 + 0.345564i \(0.887688\pi\)
\(938\) 3.26015i 0.106448i
\(939\) 0 0
\(940\) −3.61221 + 21.1886i −0.117817 + 0.691096i
\(941\) −44.2693 −1.44314 −0.721569 0.692343i \(-0.756579\pi\)
−0.721569 + 0.692343i \(0.756579\pi\)
\(942\) 0 0
\(943\) 41.5794i 1.35401i
\(944\) −11.4710 −0.373350
\(945\) 0 0
\(946\) 20.9373 0.680731
\(947\) 2.22824i 0.0724081i 0.999344 + 0.0362041i \(0.0115266\pi\)
−0.999344 + 0.0362041i \(0.988473\pi\)
\(948\) 0 0
\(949\) 2.17438 0.0705834
\(950\) −5.73037 + 16.3182i −0.185918 + 0.529432i
\(951\) 0 0
\(952\) 3.41511i 0.110684i
\(953\) 49.2029i 1.59384i −0.604085 0.796920i \(-0.706461\pi\)
0.604085 0.796920i \(-0.293539\pi\)
\(954\) 0 0
\(955\) 57.0481 + 9.72552i 1.84603 + 0.314710i
\(956\) −29.2248 −0.945198
\(957\) 0 0
\(958\) 5.76027i 0.186106i
\(959\) 3.23610 0.104499
\(960\) 0 0
\(961\) −14.5522 −0.469427
\(962\) 3.71758i 0.119859i
\(963\) 0 0
\(964\) 18.0343 0.580845
\(965\) 4.90174 28.7527i 0.157793 0.925583i
\(966\) 0 0
\(967\) 25.7871i 0.829258i −0.909991 0.414629i \(-0.863911\pi\)
0.909991 0.414629i \(-0.136089\pi\)
\(968\) 1.54586i 0.0496857i
\(969\) 0 0
\(970\) −19.8811 3.38931i −0.638342 0.108824i
\(971\) 21.8335 0.700672 0.350336 0.936624i \(-0.386067\pi\)
0.350336 + 0.936624i \(0.386067\pi\)
\(972\) 0 0
\(973\) 0.432934i 0.0138792i
\(974\) 35.6982 1.14384
\(975\) 0 0
\(976\) 1.18246 0.0378497
\(977\) 32.7998i 1.04936i 0.851300 + 0.524679i \(0.175814\pi\)
−0.851300 + 0.524679i \(0.824186\pi\)
\(978\) 0 0
\(979\) 8.48515 0.271187
\(980\) 14.8864 + 2.53782i 0.475528 + 0.0810676i
\(981\) 0 0
\(982\) 8.81455i 0.281284i
\(983\) 11.2017i 0.357277i 0.983915 + 0.178639i \(0.0571693\pi\)
−0.983915 + 0.178639i \(0.942831\pi\)
\(984\) 0 0
\(985\) −1.95130 + 11.4460i −0.0621735 + 0.364698i
\(986\) −34.4322 −1.09655
\(987\) 0 0
\(988\) 12.8592i 0.409105i
\(989\) −31.5914 −1.00455
\(990\) 0 0
\(991\) 47.3642 1.50457 0.752287 0.658835i \(-0.228951\pi\)
0.752287 + 0.658835i \(0.228951\pi\)
\(992\) 4.05558i 0.128765i
\(993\) 0 0
\(994\) −7.80834 −0.247666
\(995\) −37.5013 6.39319i −1.18887 0.202678i
\(996\) 0 0
\(997\) 29.7496i 0.942178i −0.882086 0.471089i \(-0.843861\pi\)
0.882086 0.471089i \(-0.156139\pi\)
\(998\) 6.15485i 0.194828i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3330.2.d.q.1999.1 14
3.2 odd 2 3330.2.d.r.1999.14 yes 14
5.4 even 2 inner 3330.2.d.q.1999.8 yes 14
15.14 odd 2 3330.2.d.r.1999.7 yes 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3330.2.d.q.1999.1 14 1.1 even 1 trivial
3330.2.d.q.1999.8 yes 14 5.4 even 2 inner
3330.2.d.r.1999.7 yes 14 15.14 odd 2
3330.2.d.r.1999.14 yes 14 3.2 odd 2