| L(s) = 1 | − i·2-s − 4-s + (−2.20 − 0.375i)5-s − 0.496i·7-s + i·8-s + (−0.375 + 2.20i)10-s − 3.54·11-s − 3.71i·13-s − 0.496·14-s + 16-s + 6.87i·17-s − 3.45·19-s + (2.20 + 0.375i)20-s + 3.54i·22-s − 5.34i·23-s + ⋯ |
| L(s) = 1 | − 0.707i·2-s − 0.5·4-s + (−0.985 − 0.168i)5-s − 0.187i·7-s + 0.353i·8-s + (−0.118 + 0.697i)10-s − 1.06·11-s − 1.03i·13-s − 0.132·14-s + 0.250·16-s + 1.66i·17-s − 0.793·19-s + (0.492 + 0.0840i)20-s + 0.755i·22-s − 1.11i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3330 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.985 + 0.168i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3330 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.985 + 0.168i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.7819822960\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.7819822960\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + iT \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (2.20 + 0.375i)T \) |
| 37 | \( 1 + iT \) |
| good | 7 | \( 1 + 0.496iT - 7T^{2} \) |
| 11 | \( 1 + 3.54T + 11T^{2} \) |
| 13 | \( 1 + 3.71iT - 13T^{2} \) |
| 17 | \( 1 - 6.87iT - 17T^{2} \) |
| 19 | \( 1 + 3.45T + 19T^{2} \) |
| 23 | \( 1 + 5.34iT - 23T^{2} \) |
| 29 | \( 1 + 5.00T + 29T^{2} \) |
| 31 | \( 1 + 4.05T + 31T^{2} \) |
| 41 | \( 1 - 7.78T + 41T^{2} \) |
| 43 | \( 1 + 5.91iT - 43T^{2} \) |
| 47 | \( 1 - 9.61iT - 47T^{2} \) |
| 53 | \( 1 - 12.0iT - 53T^{2} \) |
| 59 | \( 1 + 11.4T + 59T^{2} \) |
| 61 | \( 1 - 1.18T + 61T^{2} \) |
| 67 | \( 1 + 6.56iT - 67T^{2} \) |
| 71 | \( 1 - 15.7T + 71T^{2} \) |
| 73 | \( 1 - 0.584iT - 73T^{2} \) |
| 79 | \( 1 - 1.89T + 79T^{2} \) |
| 83 | \( 1 - 3.12iT - 83T^{2} \) |
| 89 | \( 1 + 2.39T + 89T^{2} \) |
| 97 | \( 1 - 9.01iT - 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.551357179133675847962392421125, −7.919010473322780199074364051322, −7.48695444015155865881739298616, −6.21764754988249392844354390276, −5.47475626733727895427863070472, −4.49433994579989929939899361893, −3.90768770106864266400358218956, −3.04476986914475217172440553486, −2.09443488159916877140745770102, −0.69481376279759242384044803524,
0.37312047718024403425734255468, 2.14438927427003753286369405013, 3.23058830618573428480587771982, 4.10214941258541658256734644711, 4.90943503726677713723792685330, 5.54174687668838056193812862279, 6.60070315546980473493225435236, 7.31349409664342290168087697934, 7.67286383015702841609432692999, 8.542399716967116291059285520474