Properties

Label 3328.2.a.bo.1.5
Level $3328$
Weight $2$
Character 3328.1
Self dual yes
Analytic conductor $26.574$
Analytic rank $1$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3328,2,Mod(1,3328)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3328, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3328.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3328 = 2^{8} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3328.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,-8,0,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.5742137927\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.10323968.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 10x^{4} + 25x^{2} - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 1664)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(1.86678\) of defining polynomial
Character \(\chi\) \(=\) 3328.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.86678 q^{3} -1.48486 q^{5} -2.55248 q^{7} +0.484862 q^{9} +1.59083 q^{11} -1.00000 q^{13} -2.77191 q^{15} +4.76491 q^{17} +3.51413 q^{19} -4.76491 q^{21} -3.73356 q^{23} -2.79518 q^{25} -4.69521 q^{27} -2.00000 q^{29} +0.685698 q^{31} +2.96972 q^{33} +3.79008 q^{35} +1.73463 q^{37} -1.86678 q^{39} -7.52982 q^{41} -4.69521 q^{43} -0.719953 q^{45} -5.38090 q^{47} -0.484862 q^{49} +8.89503 q^{51} +5.52982 q^{53} -2.36216 q^{55} +6.56009 q^{57} -10.9812 q^{59} -12.4995 q^{61} -1.23760 q^{63} +1.48486 q^{65} -2.96222 q^{67} -6.96972 q^{69} +11.3910 q^{71} +9.46927 q^{73} -5.21799 q^{75} -4.06055 q^{77} -6.91521 q^{79} -10.2195 q^{81} +4.06603 q^{83} -7.07523 q^{85} -3.73356 q^{87} -0.969724 q^{89} +2.55248 q^{91} +1.28005 q^{93} -5.21799 q^{95} +3.93945 q^{97} +0.771332 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 8 q^{5} + 2 q^{9} - 6 q^{13} - 4 q^{17} + 4 q^{21} + 14 q^{25} - 12 q^{29} + 16 q^{33} - 24 q^{37} + 20 q^{41} - 36 q^{45} - 2 q^{49} - 32 q^{53} - 24 q^{57} - 8 q^{61} + 8 q^{65} - 40 q^{69} - 12 q^{73}+ \cdots + 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.86678 1.07779 0.538893 0.842375i \(-0.318843\pi\)
0.538893 + 0.842375i \(0.318843\pi\)
\(4\) 0 0
\(5\) −1.48486 −0.664050 −0.332025 0.943271i \(-0.607732\pi\)
−0.332025 + 0.943271i \(0.607732\pi\)
\(6\) 0 0
\(7\) −2.55248 −0.964746 −0.482373 0.875966i \(-0.660225\pi\)
−0.482373 + 0.875966i \(0.660225\pi\)
\(8\) 0 0
\(9\) 0.484862 0.161621
\(10\) 0 0
\(11\) 1.59083 0.479653 0.239826 0.970816i \(-0.422909\pi\)
0.239826 + 0.970816i \(0.422909\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) −2.77191 −0.715704
\(16\) 0 0
\(17\) 4.76491 1.15566 0.577830 0.816157i \(-0.303900\pi\)
0.577830 + 0.816157i \(0.303900\pi\)
\(18\) 0 0
\(19\) 3.51413 0.806196 0.403098 0.915157i \(-0.367933\pi\)
0.403098 + 0.915157i \(0.367933\pi\)
\(20\) 0 0
\(21\) −4.76491 −1.03979
\(22\) 0 0
\(23\) −3.73356 −0.778500 −0.389250 0.921132i \(-0.627266\pi\)
−0.389250 + 0.921132i \(0.627266\pi\)
\(24\) 0 0
\(25\) −2.79518 −0.559037
\(26\) 0 0
\(27\) −4.69521 −0.903593
\(28\) 0 0
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) 0.685698 0.123155 0.0615775 0.998102i \(-0.480387\pi\)
0.0615775 + 0.998102i \(0.480387\pi\)
\(32\) 0 0
\(33\) 2.96972 0.516963
\(34\) 0 0
\(35\) 3.79008 0.640640
\(36\) 0 0
\(37\) 1.73463 0.285172 0.142586 0.989782i \(-0.454458\pi\)
0.142586 + 0.989782i \(0.454458\pi\)
\(38\) 0 0
\(39\) −1.86678 −0.298924
\(40\) 0 0
\(41\) −7.52982 −1.17596 −0.587980 0.808875i \(-0.700077\pi\)
−0.587980 + 0.808875i \(0.700077\pi\)
\(42\) 0 0
\(43\) −4.69521 −0.716012 −0.358006 0.933719i \(-0.616543\pi\)
−0.358006 + 0.933719i \(0.616543\pi\)
\(44\) 0 0
\(45\) −0.719953 −0.107324
\(46\) 0 0
\(47\) −5.38090 −0.784886 −0.392443 0.919776i \(-0.628370\pi\)
−0.392443 + 0.919776i \(0.628370\pi\)
\(48\) 0 0
\(49\) −0.484862 −0.0692660
\(50\) 0 0
\(51\) 8.89503 1.24555
\(52\) 0 0
\(53\) 5.52982 0.759579 0.379789 0.925073i \(-0.375996\pi\)
0.379789 + 0.925073i \(0.375996\pi\)
\(54\) 0 0
\(55\) −2.36216 −0.318514
\(56\) 0 0
\(57\) 6.56009 0.868906
\(58\) 0 0
\(59\) −10.9812 −1.42964 −0.714818 0.699311i \(-0.753490\pi\)
−0.714818 + 0.699311i \(0.753490\pi\)
\(60\) 0 0
\(61\) −12.4995 −1.60040 −0.800201 0.599732i \(-0.795274\pi\)
−0.800201 + 0.599732i \(0.795274\pi\)
\(62\) 0 0
\(63\) −1.23760 −0.155923
\(64\) 0 0
\(65\) 1.48486 0.184174
\(66\) 0 0
\(67\) −2.96222 −0.361893 −0.180947 0.983493i \(-0.557916\pi\)
−0.180947 + 0.983493i \(0.557916\pi\)
\(68\) 0 0
\(69\) −6.96972 −0.839056
\(70\) 0 0
\(71\) 11.3910 1.35186 0.675931 0.736965i \(-0.263742\pi\)
0.675931 + 0.736965i \(0.263742\pi\)
\(72\) 0 0
\(73\) 9.46927 1.10829 0.554147 0.832419i \(-0.313045\pi\)
0.554147 + 0.832419i \(0.313045\pi\)
\(74\) 0 0
\(75\) −5.21799 −0.602522
\(76\) 0 0
\(77\) −4.06055 −0.462743
\(78\) 0 0
\(79\) −6.91521 −0.778022 −0.389011 0.921233i \(-0.627183\pi\)
−0.389011 + 0.921233i \(0.627183\pi\)
\(80\) 0 0
\(81\) −10.2195 −1.13550
\(82\) 0 0
\(83\) 4.06603 0.446304 0.223152 0.974784i \(-0.428365\pi\)
0.223152 + 0.974784i \(0.428365\pi\)
\(84\) 0 0
\(85\) −7.07523 −0.767417
\(86\) 0 0
\(87\) −3.73356 −0.400279
\(88\) 0 0
\(89\) −0.969724 −0.102791 −0.0513953 0.998678i \(-0.516367\pi\)
−0.0513953 + 0.998678i \(0.516367\pi\)
\(90\) 0 0
\(91\) 2.55248 0.267572
\(92\) 0 0
\(93\) 1.28005 0.132735
\(94\) 0 0
\(95\) −5.21799 −0.535355
\(96\) 0 0
\(97\) 3.93945 0.399990 0.199995 0.979797i \(-0.435907\pi\)
0.199995 + 0.979797i \(0.435907\pi\)
\(98\) 0 0
\(99\) 0.771332 0.0775218
\(100\) 0 0
\(101\) −18.5601 −1.84680 −0.923399 0.383841i \(-0.874601\pi\)
−0.923399 + 0.383841i \(0.874601\pi\)
\(102\) 0 0
\(103\) −6.47635 −0.638134 −0.319067 0.947732i \(-0.603369\pi\)
−0.319067 + 0.947732i \(0.603369\pi\)
\(104\) 0 0
\(105\) 7.07523 0.690472
\(106\) 0 0
\(107\) −0.0856337 −0.00827852 −0.00413926 0.999991i \(-0.501318\pi\)
−0.00413926 + 0.999991i \(0.501318\pi\)
\(108\) 0 0
\(109\) −8.82546 −0.845326 −0.422663 0.906287i \(-0.638905\pi\)
−0.422663 + 0.906287i \(0.638905\pi\)
\(110\) 0 0
\(111\) 3.23818 0.307354
\(112\) 0 0
\(113\) −15.4693 −1.45523 −0.727613 0.685988i \(-0.759370\pi\)
−0.727613 + 0.685988i \(0.759370\pi\)
\(114\) 0 0
\(115\) 5.54382 0.516964
\(116\) 0 0
\(117\) −0.484862 −0.0448255
\(118\) 0 0
\(119\) −12.1623 −1.11492
\(120\) 0 0
\(121\) −8.46927 −0.769933
\(122\) 0 0
\(123\) −14.0565 −1.26743
\(124\) 0 0
\(125\) 11.5748 1.03528
\(126\) 0 0
\(127\) 7.58015 0.672630 0.336315 0.941750i \(-0.390819\pi\)
0.336315 + 0.941750i \(0.390819\pi\)
\(128\) 0 0
\(129\) −8.76491 −0.771707
\(130\) 0 0
\(131\) 2.33305 0.203839 0.101920 0.994793i \(-0.467502\pi\)
0.101920 + 0.994793i \(0.467502\pi\)
\(132\) 0 0
\(133\) −8.96972 −0.777774
\(134\) 0 0
\(135\) 6.97173 0.600031
\(136\) 0 0
\(137\) 0.0605522 0.00517332 0.00258666 0.999997i \(-0.499177\pi\)
0.00258666 + 0.999997i \(0.499177\pi\)
\(138\) 0 0
\(139\) −6.41983 −0.544523 −0.272262 0.962223i \(-0.587772\pi\)
−0.272262 + 0.962223i \(0.587772\pi\)
\(140\) 0 0
\(141\) −10.0450 −0.845938
\(142\) 0 0
\(143\) −1.59083 −0.133032
\(144\) 0 0
\(145\) 2.96972 0.246622
\(146\) 0 0
\(147\) −0.905130 −0.0746539
\(148\) 0 0
\(149\) −7.93945 −0.650425 −0.325212 0.945641i \(-0.605436\pi\)
−0.325212 + 0.945641i \(0.605436\pi\)
\(150\) 0 0
\(151\) 2.63811 0.214686 0.107343 0.994222i \(-0.465766\pi\)
0.107343 + 0.994222i \(0.465766\pi\)
\(152\) 0 0
\(153\) 2.31032 0.186779
\(154\) 0 0
\(155\) −1.01817 −0.0817812
\(156\) 0 0
\(157\) −11.5298 −0.920180 −0.460090 0.887872i \(-0.652183\pi\)
−0.460090 + 0.887872i \(0.652183\pi\)
\(158\) 0 0
\(159\) 10.3229 0.818663
\(160\) 0 0
\(161\) 9.52982 0.751055
\(162\) 0 0
\(163\) −17.8965 −1.40176 −0.700879 0.713280i \(-0.747209\pi\)
−0.700879 + 0.713280i \(0.747209\pi\)
\(164\) 0 0
\(165\) −4.40963 −0.343289
\(166\) 0 0
\(167\) 19.9054 1.54032 0.770162 0.637848i \(-0.220175\pi\)
0.770162 + 0.637848i \(0.220175\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 1.70387 0.130298
\(172\) 0 0
\(173\) −23.4693 −1.78434 −0.892168 0.451704i \(-0.850816\pi\)
−0.892168 + 0.451704i \(0.850816\pi\)
\(174\) 0 0
\(175\) 7.13464 0.539328
\(176\) 0 0
\(177\) −20.4995 −1.54084
\(178\) 0 0
\(179\) 24.6488 1.84233 0.921167 0.389167i \(-0.127237\pi\)
0.921167 + 0.389167i \(0.127237\pi\)
\(180\) 0 0
\(181\) 18.4995 1.37506 0.687530 0.726156i \(-0.258695\pi\)
0.687530 + 0.726156i \(0.258695\pi\)
\(182\) 0 0
\(183\) −23.3339 −1.72489
\(184\) 0 0
\(185\) −2.57569 −0.189369
\(186\) 0 0
\(187\) 7.58015 0.554316
\(188\) 0 0
\(189\) 11.9844 0.871737
\(190\) 0 0
\(191\) 2.36216 0.170920 0.0854600 0.996342i \(-0.472764\pi\)
0.0854600 + 0.996342i \(0.472764\pi\)
\(192\) 0 0
\(193\) 0.0605522 0.00435864 0.00217932 0.999998i \(-0.499306\pi\)
0.00217932 + 0.999998i \(0.499306\pi\)
\(194\) 0 0
\(195\) 2.77191 0.198500
\(196\) 0 0
\(197\) −15.7952 −1.12536 −0.562680 0.826675i \(-0.690230\pi\)
−0.562680 + 0.826675i \(0.690230\pi\)
\(198\) 0 0
\(199\) 22.5144 1.59600 0.798001 0.602656i \(-0.205891\pi\)
0.798001 + 0.602656i \(0.205891\pi\)
\(200\) 0 0
\(201\) −5.52982 −0.390043
\(202\) 0 0
\(203\) 5.10495 0.358298
\(204\) 0 0
\(205\) 11.1807 0.780897
\(206\) 0 0
\(207\) −1.81026 −0.125822
\(208\) 0 0
\(209\) 5.59037 0.386694
\(210\) 0 0
\(211\) −24.8474 −1.71057 −0.855284 0.518160i \(-0.826617\pi\)
−0.855284 + 0.518160i \(0.826617\pi\)
\(212\) 0 0
\(213\) 21.2645 1.45702
\(214\) 0 0
\(215\) 6.97173 0.475468
\(216\) 0 0
\(217\) −1.75023 −0.118813
\(218\) 0 0
\(219\) 17.6770 1.19450
\(220\) 0 0
\(221\) −4.76491 −0.320522
\(222\) 0 0
\(223\) 15.3232 1.02612 0.513059 0.858353i \(-0.328512\pi\)
0.513059 + 0.858353i \(0.328512\pi\)
\(224\) 0 0
\(225\) −1.35528 −0.0903519
\(226\) 0 0
\(227\) 6.25692 0.415286 0.207643 0.978205i \(-0.433421\pi\)
0.207643 + 0.978205i \(0.433421\pi\)
\(228\) 0 0
\(229\) −21.0752 −1.39269 −0.696345 0.717707i \(-0.745192\pi\)
−0.696345 + 0.717707i \(0.745192\pi\)
\(230\) 0 0
\(231\) −7.58015 −0.498737
\(232\) 0 0
\(233\) 3.01468 0.197498 0.0987491 0.995112i \(-0.468516\pi\)
0.0987491 + 0.995112i \(0.468516\pi\)
\(234\) 0 0
\(235\) 7.98990 0.521204
\(236\) 0 0
\(237\) −12.9092 −0.838541
\(238\) 0 0
\(239\) 18.3062 1.18413 0.592065 0.805890i \(-0.298313\pi\)
0.592065 + 0.805890i \(0.298313\pi\)
\(240\) 0 0
\(241\) 28.0294 1.80553 0.902765 0.430134i \(-0.141534\pi\)
0.902765 + 0.430134i \(0.141534\pi\)
\(242\) 0 0
\(243\) −4.99192 −0.320232
\(244\) 0 0
\(245\) 0.719953 0.0459961
\(246\) 0 0
\(247\) −3.51413 −0.223598
\(248\) 0 0
\(249\) 7.59037 0.481020
\(250\) 0 0
\(251\) 9.85668 0.622148 0.311074 0.950386i \(-0.399311\pi\)
0.311074 + 0.950386i \(0.399311\pi\)
\(252\) 0 0
\(253\) −5.93945 −0.373410
\(254\) 0 0
\(255\) −13.2079 −0.827110
\(256\) 0 0
\(257\) −0.204815 −0.0127760 −0.00638800 0.999980i \(-0.502033\pi\)
−0.00638800 + 0.999980i \(0.502033\pi\)
\(258\) 0 0
\(259\) −4.42761 −0.275118
\(260\) 0 0
\(261\) −0.969724 −0.0600244
\(262\) 0 0
\(263\) 15.2018 0.937385 0.468692 0.883361i \(-0.344725\pi\)
0.468692 + 0.883361i \(0.344725\pi\)
\(264\) 0 0
\(265\) −8.21102 −0.504399
\(266\) 0 0
\(267\) −1.81026 −0.110786
\(268\) 0 0
\(269\) −9.09083 −0.554278 −0.277139 0.960830i \(-0.589386\pi\)
−0.277139 + 0.960830i \(0.589386\pi\)
\(270\) 0 0
\(271\) −4.67445 −0.283952 −0.141976 0.989870i \(-0.545346\pi\)
−0.141976 + 0.989870i \(0.545346\pi\)
\(272\) 0 0
\(273\) 4.76491 0.288385
\(274\) 0 0
\(275\) −4.44666 −0.268144
\(276\) 0 0
\(277\) 2.06055 0.123807 0.0619033 0.998082i \(-0.480283\pi\)
0.0619033 + 0.998082i \(0.480283\pi\)
\(278\) 0 0
\(279\) 0.332469 0.0199044
\(280\) 0 0
\(281\) −17.5904 −1.04935 −0.524677 0.851302i \(-0.675814\pi\)
−0.524677 + 0.851302i \(0.675814\pi\)
\(282\) 0 0
\(283\) 14.5810 0.866750 0.433375 0.901214i \(-0.357322\pi\)
0.433375 + 0.901214i \(0.357322\pi\)
\(284\) 0 0
\(285\) −9.74083 −0.576997
\(286\) 0 0
\(287\) 19.2197 1.13450
\(288\) 0 0
\(289\) 5.70436 0.335550
\(290\) 0 0
\(291\) 7.35408 0.431104
\(292\) 0 0
\(293\) −14.8860 −0.869650 −0.434825 0.900515i \(-0.643190\pi\)
−0.434825 + 0.900515i \(0.643190\pi\)
\(294\) 0 0
\(295\) 16.3056 0.949350
\(296\) 0 0
\(297\) −7.46927 −0.433411
\(298\) 0 0
\(299\) 3.73356 0.215917
\(300\) 0 0
\(301\) 11.9844 0.690770
\(302\) 0 0
\(303\) −34.6476 −1.99045
\(304\) 0 0
\(305\) 18.5601 1.06275
\(306\) 0 0
\(307\) −17.3030 −0.987536 −0.493768 0.869594i \(-0.664381\pi\)
−0.493768 + 0.869594i \(0.664381\pi\)
\(308\) 0 0
\(309\) −12.0899 −0.687771
\(310\) 0 0
\(311\) 4.55305 0.258180 0.129090 0.991633i \(-0.458794\pi\)
0.129090 + 0.991633i \(0.458794\pi\)
\(312\) 0 0
\(313\) −14.5445 −0.822104 −0.411052 0.911612i \(-0.634838\pi\)
−0.411052 + 0.911612i \(0.634838\pi\)
\(314\) 0 0
\(315\) 1.83766 0.103541
\(316\) 0 0
\(317\) −21.0596 −1.18283 −0.591413 0.806368i \(-0.701430\pi\)
−0.591413 + 0.806368i \(0.701430\pi\)
\(318\) 0 0
\(319\) −3.18166 −0.178139
\(320\) 0 0
\(321\) −0.159859 −0.00892247
\(322\) 0 0
\(323\) 16.7445 0.931688
\(324\) 0 0
\(325\) 2.79518 0.155049
\(326\) 0 0
\(327\) −16.4752 −0.911080
\(328\) 0 0
\(329\) 13.7346 0.757215
\(330\) 0 0
\(331\) 17.1900 0.944848 0.472424 0.881372i \(-0.343379\pi\)
0.472424 + 0.881372i \(0.343379\pi\)
\(332\) 0 0
\(333\) 0.841057 0.0460897
\(334\) 0 0
\(335\) 4.39850 0.240315
\(336\) 0 0
\(337\) −4.10551 −0.223641 −0.111821 0.993728i \(-0.535668\pi\)
−0.111821 + 0.993728i \(0.535668\pi\)
\(338\) 0 0
\(339\) −28.8777 −1.56842
\(340\) 0 0
\(341\) 1.09083 0.0590717
\(342\) 0 0
\(343\) 19.1049 1.03157
\(344\) 0 0
\(345\) 10.3491 0.557176
\(346\) 0 0
\(347\) 3.79008 0.203462 0.101731 0.994812i \(-0.467562\pi\)
0.101731 + 0.994812i \(0.467562\pi\)
\(348\) 0 0
\(349\) 35.3931 1.89455 0.947275 0.320422i \(-0.103825\pi\)
0.947275 + 0.320422i \(0.103825\pi\)
\(350\) 0 0
\(351\) 4.69521 0.250612
\(352\) 0 0
\(353\) 7.43991 0.395986 0.197993 0.980203i \(-0.436558\pi\)
0.197993 + 0.980203i \(0.436558\pi\)
\(354\) 0 0
\(355\) −16.9140 −0.897704
\(356\) 0 0
\(357\) −22.7044 −1.20164
\(358\) 0 0
\(359\) 5.63609 0.297462 0.148731 0.988878i \(-0.452481\pi\)
0.148731 + 0.988878i \(0.452481\pi\)
\(360\) 0 0
\(361\) −6.65092 −0.350049
\(362\) 0 0
\(363\) −15.8102 −0.829823
\(364\) 0 0
\(365\) −14.0606 −0.735963
\(366\) 0 0
\(367\) 34.9734 1.82560 0.912799 0.408410i \(-0.133917\pi\)
0.912799 + 0.408410i \(0.133917\pi\)
\(368\) 0 0
\(369\) −3.65092 −0.190059
\(370\) 0 0
\(371\) −14.1147 −0.732800
\(372\) 0 0
\(373\) 21.5904 1.11791 0.558953 0.829199i \(-0.311203\pi\)
0.558953 + 0.829199i \(0.311203\pi\)
\(374\) 0 0
\(375\) 21.6075 1.11581
\(376\) 0 0
\(377\) 2.00000 0.103005
\(378\) 0 0
\(379\) 32.1242 1.65011 0.825055 0.565052i \(-0.191144\pi\)
0.825055 + 0.565052i \(0.191144\pi\)
\(380\) 0 0
\(381\) 14.1505 0.724950
\(382\) 0 0
\(383\) −3.62887 −0.185427 −0.0927134 0.995693i \(-0.529554\pi\)
−0.0927134 + 0.995693i \(0.529554\pi\)
\(384\) 0 0
\(385\) 6.02936 0.307285
\(386\) 0 0
\(387\) −2.27653 −0.115722
\(388\) 0 0
\(389\) 17.9688 0.911055 0.455527 0.890222i \(-0.349451\pi\)
0.455527 + 0.890222i \(0.349451\pi\)
\(390\) 0 0
\(391\) −17.7901 −0.899682
\(392\) 0 0
\(393\) 4.35528 0.219695
\(394\) 0 0
\(395\) 10.2681 0.516646
\(396\) 0 0
\(397\) 30.9991 1.55580 0.777900 0.628388i \(-0.216285\pi\)
0.777900 + 0.628388i \(0.216285\pi\)
\(398\) 0 0
\(399\) −16.7445 −0.838273
\(400\) 0 0
\(401\) 2.00000 0.0998752 0.0499376 0.998752i \(-0.484098\pi\)
0.0499376 + 0.998752i \(0.484098\pi\)
\(402\) 0 0
\(403\) −0.685698 −0.0341571
\(404\) 0 0
\(405\) 15.1745 0.754029
\(406\) 0 0
\(407\) 2.75950 0.136783
\(408\) 0 0
\(409\) 30.9991 1.53281 0.766403 0.642360i \(-0.222045\pi\)
0.766403 + 0.642360i \(0.222045\pi\)
\(410\) 0 0
\(411\) 0.113038 0.00557573
\(412\) 0 0
\(413\) 28.0294 1.37923
\(414\) 0 0
\(415\) −6.03749 −0.296369
\(416\) 0 0
\(417\) −11.9844 −0.586879
\(418\) 0 0
\(419\) −18.7243 −0.914742 −0.457371 0.889276i \(-0.651209\pi\)
−0.457371 + 0.889276i \(0.651209\pi\)
\(420\) 0 0
\(421\) 13.5748 0.661594 0.330797 0.943702i \(-0.392682\pi\)
0.330797 + 0.943702i \(0.392682\pi\)
\(422\) 0 0
\(423\) −2.60900 −0.126854
\(424\) 0 0
\(425\) −13.3188 −0.646057
\(426\) 0 0
\(427\) 31.9048 1.54398
\(428\) 0 0
\(429\) −2.96972 −0.143380
\(430\) 0 0
\(431\) 32.0951 1.54597 0.772983 0.634426i \(-0.218764\pi\)
0.772983 + 0.634426i \(0.218764\pi\)
\(432\) 0 0
\(433\) 20.0450 0.963299 0.481650 0.876364i \(-0.340038\pi\)
0.481650 + 0.876364i \(0.340038\pi\)
\(434\) 0 0
\(435\) 5.54382 0.265806
\(436\) 0 0
\(437\) −13.1202 −0.627624
\(438\) 0 0
\(439\) −35.7514 −1.70632 −0.853160 0.521649i \(-0.825317\pi\)
−0.853160 + 0.521649i \(0.825317\pi\)
\(440\) 0 0
\(441\) −0.235091 −0.0111948
\(442\) 0 0
\(443\) −40.6011 −1.92902 −0.964509 0.264049i \(-0.914942\pi\)
−0.964509 + 0.264049i \(0.914942\pi\)
\(444\) 0 0
\(445\) 1.43991 0.0682581
\(446\) 0 0
\(447\) −14.8212 −0.701018
\(448\) 0 0
\(449\) −23.4986 −1.10897 −0.554484 0.832194i \(-0.687084\pi\)
−0.554484 + 0.832194i \(0.687084\pi\)
\(450\) 0 0
\(451\) −11.9786 −0.564052
\(452\) 0 0
\(453\) 4.92477 0.231386
\(454\) 0 0
\(455\) −3.79008 −0.177681
\(456\) 0 0
\(457\) 32.0294 1.49827 0.749135 0.662417i \(-0.230469\pi\)
0.749135 + 0.662417i \(0.230469\pi\)
\(458\) 0 0
\(459\) −22.3722 −1.04425
\(460\) 0 0
\(461\) −25.7034 −1.19713 −0.598564 0.801075i \(-0.704262\pi\)
−0.598564 + 0.801075i \(0.704262\pi\)
\(462\) 0 0
\(463\) −30.5542 −1.41997 −0.709986 0.704216i \(-0.751299\pi\)
−0.709986 + 0.704216i \(0.751299\pi\)
\(464\) 0 0
\(465\) −1.90069 −0.0881425
\(466\) 0 0
\(467\) −18.9628 −0.877493 −0.438747 0.898611i \(-0.644577\pi\)
−0.438747 + 0.898611i \(0.644577\pi\)
\(468\) 0 0
\(469\) 7.56101 0.349135
\(470\) 0 0
\(471\) −21.5236 −0.991756
\(472\) 0 0
\(473\) −7.46927 −0.343437
\(474\) 0 0
\(475\) −9.82263 −0.450693
\(476\) 0 0
\(477\) 2.68120 0.122764
\(478\) 0 0
\(479\) −33.0002 −1.50782 −0.753910 0.656978i \(-0.771834\pi\)
−0.753910 + 0.656978i \(0.771834\pi\)
\(480\) 0 0
\(481\) −1.73463 −0.0790924
\(482\) 0 0
\(483\) 17.7901 0.809476
\(484\) 0 0
\(485\) −5.84954 −0.265614
\(486\) 0 0
\(487\) 13.3708 0.605889 0.302944 0.953008i \(-0.402030\pi\)
0.302944 + 0.953008i \(0.402030\pi\)
\(488\) 0 0
\(489\) −33.4087 −1.51079
\(490\) 0 0
\(491\) 33.5729 1.51512 0.757562 0.652763i \(-0.226390\pi\)
0.757562 + 0.652763i \(0.226390\pi\)
\(492\) 0 0
\(493\) −9.52982 −0.429201
\(494\) 0 0
\(495\) −1.14532 −0.0514784
\(496\) 0 0
\(497\) −29.0752 −1.30420
\(498\) 0 0
\(499\) −22.5625 −1.01004 −0.505019 0.863108i \(-0.668515\pi\)
−0.505019 + 0.863108i \(0.668515\pi\)
\(500\) 0 0
\(501\) 37.1589 1.66014
\(502\) 0 0
\(503\) −34.9152 −1.55679 −0.778395 0.627774i \(-0.783966\pi\)
−0.778395 + 0.627774i \(0.783966\pi\)
\(504\) 0 0
\(505\) 27.5592 1.22637
\(506\) 0 0
\(507\) 1.86678 0.0829065
\(508\) 0 0
\(509\) −16.9385 −0.750787 −0.375394 0.926865i \(-0.622492\pi\)
−0.375394 + 0.926865i \(0.622492\pi\)
\(510\) 0 0
\(511\) −24.1701 −1.06922
\(512\) 0 0
\(513\) −16.4995 −0.728473
\(514\) 0 0
\(515\) 9.61649 0.423753
\(516\) 0 0
\(517\) −8.56009 −0.376472
\(518\) 0 0
\(519\) −43.8119 −1.92313
\(520\) 0 0
\(521\) −8.10551 −0.355109 −0.177554 0.984111i \(-0.556819\pi\)
−0.177554 + 0.984111i \(0.556819\pi\)
\(522\) 0 0
\(523\) −41.8030 −1.82792 −0.913959 0.405808i \(-0.866990\pi\)
−0.913959 + 0.405808i \(0.866990\pi\)
\(524\) 0 0
\(525\) 13.3188 0.581280
\(526\) 0 0
\(527\) 3.26729 0.142325
\(528\) 0 0
\(529\) −9.06055 −0.393937
\(530\) 0 0
\(531\) −5.32439 −0.231059
\(532\) 0 0
\(533\) 7.52982 0.326153
\(534\) 0 0
\(535\) 0.127154 0.00549736
\(536\) 0 0
\(537\) 46.0138 1.98564
\(538\) 0 0
\(539\) −0.771332 −0.0332236
\(540\) 0 0
\(541\) 22.2654 0.957263 0.478631 0.878016i \(-0.341133\pi\)
0.478631 + 0.878016i \(0.341133\pi\)
\(542\) 0 0
\(543\) 34.5345 1.48202
\(544\) 0 0
\(545\) 13.1046 0.561339
\(546\) 0 0
\(547\) −8.74047 −0.373716 −0.186858 0.982387i \(-0.559830\pi\)
−0.186858 + 0.982387i \(0.559830\pi\)
\(548\) 0 0
\(549\) −6.06055 −0.258658
\(550\) 0 0
\(551\) −7.02825 −0.299414
\(552\) 0 0
\(553\) 17.6509 0.750594
\(554\) 0 0
\(555\) −4.80824 −0.204099
\(556\) 0 0
\(557\) −15.1745 −0.642966 −0.321483 0.946915i \(-0.604181\pi\)
−0.321483 + 0.946915i \(0.604181\pi\)
\(558\) 0 0
\(559\) 4.69521 0.198586
\(560\) 0 0
\(561\) 14.1505 0.597433
\(562\) 0 0
\(563\) 2.41868 0.101935 0.0509676 0.998700i \(-0.483769\pi\)
0.0509676 + 0.998700i \(0.483769\pi\)
\(564\) 0 0
\(565\) 22.9697 0.966344
\(566\) 0 0
\(567\) 26.0850 1.09547
\(568\) 0 0
\(569\) −5.61353 −0.235331 −0.117666 0.993053i \(-0.537541\pi\)
−0.117666 + 0.993053i \(0.537541\pi\)
\(570\) 0 0
\(571\) 23.8293 0.997223 0.498612 0.866825i \(-0.333843\pi\)
0.498612 + 0.866825i \(0.333843\pi\)
\(572\) 0 0
\(573\) 4.40963 0.184215
\(574\) 0 0
\(575\) 10.4360 0.435211
\(576\) 0 0
\(577\) −34.4683 −1.43494 −0.717468 0.696591i \(-0.754699\pi\)
−0.717468 + 0.696591i \(0.754699\pi\)
\(578\) 0 0
\(579\) 0.113038 0.00469768
\(580\) 0 0
\(581\) −10.3784 −0.430570
\(582\) 0 0
\(583\) 8.79699 0.364334
\(584\) 0 0
\(585\) 0.719953 0.0297664
\(586\) 0 0
\(587\) 7.51528 0.310189 0.155094 0.987900i \(-0.450432\pi\)
0.155094 + 0.987900i \(0.450432\pi\)
\(588\) 0 0
\(589\) 2.40963 0.0992871
\(590\) 0 0
\(591\) −29.4861 −1.21290
\(592\) 0 0
\(593\) −24.6812 −1.01354 −0.506768 0.862083i \(-0.669160\pi\)
−0.506768 + 0.862083i \(0.669160\pi\)
\(594\) 0 0
\(595\) 18.0594 0.740362
\(596\) 0 0
\(597\) 42.0294 1.72015
\(598\) 0 0
\(599\) 5.69837 0.232829 0.116415 0.993201i \(-0.462860\pi\)
0.116415 + 0.993201i \(0.462860\pi\)
\(600\) 0 0
\(601\) −46.6732 −1.90384 −0.951919 0.306350i \(-0.900892\pi\)
−0.951919 + 0.306350i \(0.900892\pi\)
\(602\) 0 0
\(603\) −1.43627 −0.0584894
\(604\) 0 0
\(605\) 12.5757 0.511275
\(606\) 0 0
\(607\) 13.3916 0.543547 0.271773 0.962361i \(-0.412390\pi\)
0.271773 + 0.962361i \(0.412390\pi\)
\(608\) 0 0
\(609\) 9.52982 0.386168
\(610\) 0 0
\(611\) 5.38090 0.217688
\(612\) 0 0
\(613\) −28.9385 −1.16882 −0.584408 0.811460i \(-0.698673\pi\)
−0.584408 + 0.811460i \(0.698673\pi\)
\(614\) 0 0
\(615\) 20.8720 0.841639
\(616\) 0 0
\(617\) 7.65092 0.308015 0.154007 0.988070i \(-0.450782\pi\)
0.154007 + 0.988070i \(0.450782\pi\)
\(618\) 0 0
\(619\) 30.4685 1.22463 0.612317 0.790613i \(-0.290238\pi\)
0.612317 + 0.790613i \(0.290238\pi\)
\(620\) 0 0
\(621\) 17.5298 0.703447
\(622\) 0 0
\(623\) 2.47520 0.0991667
\(624\) 0 0
\(625\) −3.21102 −0.128441
\(626\) 0 0
\(627\) 10.4360 0.416773
\(628\) 0 0
\(629\) 8.26537 0.329562
\(630\) 0 0
\(631\) −2.25748 −0.0898688 −0.0449344 0.998990i \(-0.514308\pi\)
−0.0449344 + 0.998990i \(0.514308\pi\)
\(632\) 0 0
\(633\) −46.3846 −1.84362
\(634\) 0 0
\(635\) −11.2555 −0.446660
\(636\) 0 0
\(637\) 0.484862 0.0192109
\(638\) 0 0
\(639\) 5.52306 0.218489
\(640\) 0 0
\(641\) 11.7115 0.462575 0.231288 0.972885i \(-0.425706\pi\)
0.231288 + 0.972885i \(0.425706\pi\)
\(642\) 0 0
\(643\) −22.0106 −0.868015 −0.434008 0.900909i \(-0.642901\pi\)
−0.434008 + 0.900909i \(0.642901\pi\)
\(644\) 0 0
\(645\) 13.0147 0.512453
\(646\) 0 0
\(647\) −15.1603 −0.596013 −0.298007 0.954564i \(-0.596322\pi\)
−0.298007 + 0.954564i \(0.596322\pi\)
\(648\) 0 0
\(649\) −17.4693 −0.685729
\(650\) 0 0
\(651\) −3.26729 −0.128055
\(652\) 0 0
\(653\) 4.15046 0.162420 0.0812101 0.996697i \(-0.474122\pi\)
0.0812101 + 0.996697i \(0.474122\pi\)
\(654\) 0 0
\(655\) −3.46425 −0.135359
\(656\) 0 0
\(657\) 4.59129 0.179123
\(658\) 0 0
\(659\) 17.7627 0.691935 0.345967 0.938247i \(-0.387551\pi\)
0.345967 + 0.938247i \(0.387551\pi\)
\(660\) 0 0
\(661\) 23.9394 0.931137 0.465568 0.885012i \(-0.345850\pi\)
0.465568 + 0.885012i \(0.345850\pi\)
\(662\) 0 0
\(663\) −8.89503 −0.345454
\(664\) 0 0
\(665\) 13.3188 0.516481
\(666\) 0 0
\(667\) 7.46711 0.289128
\(668\) 0 0
\(669\) 28.6050 1.10594
\(670\) 0 0
\(671\) −19.8846 −0.767637
\(672\) 0 0
\(673\) −25.6741 −0.989663 −0.494832 0.868989i \(-0.664770\pi\)
−0.494832 + 0.868989i \(0.664770\pi\)
\(674\) 0 0
\(675\) 13.1240 0.505142
\(676\) 0 0
\(677\) −13.0303 −0.500794 −0.250397 0.968143i \(-0.580561\pi\)
−0.250397 + 0.968143i \(0.580561\pi\)
\(678\) 0 0
\(679\) −10.0553 −0.385889
\(680\) 0 0
\(681\) 11.6803 0.447589
\(682\) 0 0
\(683\) −48.2171 −1.84497 −0.922487 0.386028i \(-0.873847\pi\)
−0.922487 + 0.386028i \(0.873847\pi\)
\(684\) 0 0
\(685\) −0.0899116 −0.00343535
\(686\) 0 0
\(687\) −39.3428 −1.50102
\(688\) 0 0
\(689\) −5.52982 −0.210669
\(690\) 0 0
\(691\) 37.7644 1.43662 0.718312 0.695721i \(-0.244915\pi\)
0.718312 + 0.695721i \(0.244915\pi\)
\(692\) 0 0
\(693\) −1.96881 −0.0747888
\(694\) 0 0
\(695\) 9.53256 0.361591
\(696\) 0 0
\(697\) −35.8789 −1.35901
\(698\) 0 0
\(699\) 5.62774 0.212861
\(700\) 0 0
\(701\) 41.4381 1.56509 0.782547 0.622591i \(-0.213920\pi\)
0.782547 + 0.622591i \(0.213920\pi\)
\(702\) 0 0
\(703\) 6.09572 0.229904
\(704\) 0 0
\(705\) 14.9154 0.561745
\(706\) 0 0
\(707\) 47.3742 1.78169
\(708\) 0 0
\(709\) −5.05964 −0.190019 −0.0950093 0.995476i \(-0.530288\pi\)
−0.0950093 + 0.995476i \(0.530288\pi\)
\(710\) 0 0
\(711\) −3.35292 −0.125744
\(712\) 0 0
\(713\) −2.56009 −0.0958763
\(714\) 0 0
\(715\) 2.36216 0.0883398
\(716\) 0 0
\(717\) 34.1736 1.27624
\(718\) 0 0
\(719\) −50.5726 −1.88604 −0.943019 0.332738i \(-0.892028\pi\)
−0.943019 + 0.332738i \(0.892028\pi\)
\(720\) 0 0
\(721\) 16.5307 0.615637
\(722\) 0 0
\(723\) 52.3246 1.94597
\(724\) 0 0
\(725\) 5.59037 0.207621
\(726\) 0 0
\(727\) 48.3650 1.79376 0.896879 0.442276i \(-0.145829\pi\)
0.896879 + 0.442276i \(0.145829\pi\)
\(728\) 0 0
\(729\) 21.3397 0.790359
\(730\) 0 0
\(731\) −22.3722 −0.827467
\(732\) 0 0
\(733\) 18.1055 0.668742 0.334371 0.942441i \(-0.391476\pi\)
0.334371 + 0.942441i \(0.391476\pi\)
\(734\) 0 0
\(735\) 1.34399 0.0495739
\(736\) 0 0
\(737\) −4.71239 −0.173583
\(738\) 0 0
\(739\) 20.9236 0.769685 0.384843 0.922982i \(-0.374256\pi\)
0.384843 + 0.922982i \(0.374256\pi\)
\(740\) 0 0
\(741\) −6.56009 −0.240991
\(742\) 0 0
\(743\) −23.8941 −0.876591 −0.438295 0.898831i \(-0.644418\pi\)
−0.438295 + 0.898831i \(0.644418\pi\)
\(744\) 0 0
\(745\) 11.7890 0.431915
\(746\) 0 0
\(747\) 1.97146 0.0721320
\(748\) 0 0
\(749\) 0.218578 0.00798667
\(750\) 0 0
\(751\) 48.8754 1.78349 0.891743 0.452541i \(-0.149482\pi\)
0.891743 + 0.452541i \(0.149482\pi\)
\(752\) 0 0
\(753\) 18.4002 0.670542
\(754\) 0 0
\(755\) −3.91723 −0.142563
\(756\) 0 0
\(757\) 26.1505 0.950455 0.475227 0.879863i \(-0.342366\pi\)
0.475227 + 0.879863i \(0.342366\pi\)
\(758\) 0 0
\(759\) −11.0876 −0.402456
\(760\) 0 0
\(761\) 35.9083 1.30167 0.650837 0.759218i \(-0.274418\pi\)
0.650837 + 0.759218i \(0.274418\pi\)
\(762\) 0 0
\(763\) 22.5268 0.815524
\(764\) 0 0
\(765\) −3.43051 −0.124030
\(766\) 0 0
\(767\) 10.9812 0.396510
\(768\) 0 0
\(769\) 17.7115 0.638692 0.319346 0.947638i \(-0.396537\pi\)
0.319346 + 0.947638i \(0.396537\pi\)
\(770\) 0 0
\(771\) −0.382344 −0.0137698
\(772\) 0 0
\(773\) 1.07523 0.0386734 0.0193367 0.999813i \(-0.493845\pi\)
0.0193367 + 0.999813i \(0.493845\pi\)
\(774\) 0 0
\(775\) −1.91665 −0.0688482
\(776\) 0 0
\(777\) −8.26537 −0.296518
\(778\) 0 0
\(779\) −26.4607 −0.948054
\(780\) 0 0
\(781\) 18.1211 0.648424
\(782\) 0 0
\(783\) 9.39041 0.335586
\(784\) 0 0
\(785\) 17.1202 0.611046
\(786\) 0 0
\(787\) −25.6479 −0.914248 −0.457124 0.889403i \(-0.651120\pi\)
−0.457124 + 0.889403i \(0.651120\pi\)
\(788\) 0 0
\(789\) 28.3784 1.01030
\(790\) 0 0
\(791\) 39.4849 1.40392
\(792\) 0 0
\(793\) 12.4995 0.443872
\(794\) 0 0
\(795\) −15.3281 −0.543633
\(796\) 0 0
\(797\) −12.0294 −0.426102 −0.213051 0.977041i \(-0.568340\pi\)
−0.213051 + 0.977041i \(0.568340\pi\)
\(798\) 0 0
\(799\) −25.6395 −0.907061
\(800\) 0 0
\(801\) −0.470182 −0.0166131
\(802\) 0 0
\(803\) 15.0640 0.531596
\(804\) 0 0
\(805\) −14.1505 −0.498738
\(806\) 0 0
\(807\) −16.9706 −0.597392
\(808\) 0 0
\(809\) −24.1055 −0.847505 −0.423752 0.905778i \(-0.639287\pi\)
−0.423752 + 0.905778i \(0.639287\pi\)
\(810\) 0 0
\(811\) 35.4189 1.24373 0.621863 0.783126i \(-0.286376\pi\)
0.621863 + 0.783126i \(0.286376\pi\)
\(812\) 0 0
\(813\) −8.72615 −0.306040
\(814\) 0 0
\(815\) 26.5738 0.930838
\(816\) 0 0
\(817\) −16.4995 −0.577246
\(818\) 0 0
\(819\) 1.23760 0.0432452
\(820\) 0 0
\(821\) 26.8936 0.938592 0.469296 0.883041i \(-0.344508\pi\)
0.469296 + 0.883041i \(0.344508\pi\)
\(822\) 0 0
\(823\) 31.1983 1.08751 0.543753 0.839245i \(-0.317003\pi\)
0.543753 + 0.839245i \(0.317003\pi\)
\(824\) 0 0
\(825\) −8.30093 −0.289001
\(826\) 0 0
\(827\) −39.8007 −1.38401 −0.692003 0.721895i \(-0.743272\pi\)
−0.692003 + 0.721895i \(0.743272\pi\)
\(828\) 0 0
\(829\) −10.0294 −0.348334 −0.174167 0.984716i \(-0.555723\pi\)
−0.174167 + 0.984716i \(0.555723\pi\)
\(830\) 0 0
\(831\) 3.84659 0.133437
\(832\) 0 0
\(833\) −2.31032 −0.0800479
\(834\) 0 0
\(835\) −29.5567 −1.02285
\(836\) 0 0
\(837\) −3.21949 −0.111282
\(838\) 0 0
\(839\) −43.7745 −1.51126 −0.755631 0.654998i \(-0.772670\pi\)
−0.755631 + 0.654998i \(0.772670\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) −32.8373 −1.13098
\(844\) 0 0
\(845\) −1.48486 −0.0510808
\(846\) 0 0
\(847\) 21.6176 0.742790
\(848\) 0 0
\(849\) 27.2195 0.934171
\(850\) 0 0
\(851\) −6.47635 −0.222006
\(852\) 0 0
\(853\) 38.6050 1.32181 0.660906 0.750469i \(-0.270172\pi\)
0.660906 + 0.750469i \(0.270172\pi\)
\(854\) 0 0
\(855\) −2.53001 −0.0865244
\(856\) 0 0
\(857\) −3.93945 −0.134569 −0.0672845 0.997734i \(-0.521434\pi\)
−0.0672845 + 0.997734i \(0.521434\pi\)
\(858\) 0 0
\(859\) −8.65655 −0.295358 −0.147679 0.989035i \(-0.547180\pi\)
−0.147679 + 0.989035i \(0.547180\pi\)
\(860\) 0 0
\(861\) 35.8789 1.22275
\(862\) 0 0
\(863\) 0.361584 0.0123085 0.00615423 0.999981i \(-0.498041\pi\)
0.00615423 + 0.999981i \(0.498041\pi\)
\(864\) 0 0
\(865\) 34.8486 1.18489
\(866\) 0 0
\(867\) 10.6488 0.361651
\(868\) 0 0
\(869\) −11.0009 −0.373181
\(870\) 0 0
\(871\) 2.96222 0.100371
\(872\) 0 0
\(873\) 1.91009 0.0646467
\(874\) 0 0
\(875\) −29.5443 −0.998781
\(876\) 0 0
\(877\) −0.0761486 −0.00257135 −0.00128568 0.999999i \(-0.500409\pi\)
−0.00128568 + 0.999999i \(0.500409\pi\)
\(878\) 0 0
\(879\) −27.7889 −0.937296
\(880\) 0 0
\(881\) 47.3544 1.59541 0.797704 0.603049i \(-0.206047\pi\)
0.797704 + 0.603049i \(0.206047\pi\)
\(882\) 0 0
\(883\) −3.47837 −0.117056 −0.0585282 0.998286i \(-0.518641\pi\)
−0.0585282 + 0.998286i \(0.518641\pi\)
\(884\) 0 0
\(885\) 30.4390 1.02320
\(886\) 0 0
\(887\) −28.5519 −0.958678 −0.479339 0.877630i \(-0.659124\pi\)
−0.479339 + 0.877630i \(0.659124\pi\)
\(888\) 0 0
\(889\) −19.3482 −0.648916
\(890\) 0 0
\(891\) −16.2575 −0.544645
\(892\) 0 0
\(893\) −18.9092 −0.632771
\(894\) 0 0
\(895\) −36.6000 −1.22340
\(896\) 0 0
\(897\) 6.96972 0.232712
\(898\) 0 0
\(899\) −1.37140 −0.0457386
\(900\) 0 0
\(901\) 26.3491 0.877815
\(902\) 0 0
\(903\) 22.3722 0.744501
\(904\) 0 0
\(905\) −27.4693 −0.913109
\(906\) 0 0
\(907\) 16.8284 0.558778 0.279389 0.960178i \(-0.409868\pi\)
0.279389 + 0.960178i \(0.409868\pi\)
\(908\) 0 0
\(909\) −8.99908 −0.298481
\(910\) 0 0
\(911\) 48.1522 1.59535 0.797677 0.603086i \(-0.206062\pi\)
0.797677 + 0.603086i \(0.206062\pi\)
\(912\) 0 0
\(913\) 6.46835 0.214071
\(914\) 0 0
\(915\) 34.6476 1.14541
\(916\) 0 0
\(917\) −5.95504 −0.196653
\(918\) 0 0
\(919\) 37.8292 1.24787 0.623936 0.781476i \(-0.285533\pi\)
0.623936 + 0.781476i \(0.285533\pi\)
\(920\) 0 0
\(921\) −32.3009 −1.06435
\(922\) 0 0
\(923\) −11.3910 −0.374939
\(924\) 0 0
\(925\) −4.84862 −0.159422
\(926\) 0 0
\(927\) −3.14014 −0.103136
\(928\) 0 0
\(929\) −21.9688 −0.720773 −0.360387 0.932803i \(-0.617355\pi\)
−0.360387 + 0.932803i \(0.617355\pi\)
\(930\) 0 0
\(931\) −1.70387 −0.0558419
\(932\) 0 0
\(933\) 8.49954 0.278263
\(934\) 0 0
\(935\) −11.2555 −0.368094
\(936\) 0 0
\(937\) 6.00000 0.196011 0.0980057 0.995186i \(-0.468754\pi\)
0.0980057 + 0.995186i \(0.468754\pi\)
\(938\) 0 0
\(939\) −27.1514 −0.886051
\(940\) 0 0
\(941\) 0.0449558 0.00146552 0.000732759 1.00000i \(-0.499767\pi\)
0.000732759 1.00000i \(0.499767\pi\)
\(942\) 0 0
\(943\) 28.1130 0.915485
\(944\) 0 0
\(945\) −17.7952 −0.578877
\(946\) 0 0
\(947\) 37.7811 1.22772 0.613860 0.789415i \(-0.289616\pi\)
0.613860 + 0.789415i \(0.289616\pi\)
\(948\) 0 0
\(949\) −9.46927 −0.307385
\(950\) 0 0
\(951\) −39.3137 −1.27483
\(952\) 0 0
\(953\) 22.8860 0.741351 0.370675 0.928763i \(-0.379126\pi\)
0.370675 + 0.928763i \(0.379126\pi\)
\(954\) 0 0
\(955\) −3.50748 −0.113499
\(956\) 0 0
\(957\) −5.93945 −0.191995
\(958\) 0 0
\(959\) −0.154558 −0.00499094
\(960\) 0 0
\(961\) −30.5298 −0.984833
\(962\) 0 0
\(963\) −0.0415205 −0.00133798
\(964\) 0 0
\(965\) −0.0899116 −0.00289436
\(966\) 0 0
\(967\) −0.457912 −0.0147255 −0.00736273 0.999973i \(-0.502344\pi\)
−0.00736273 + 0.999973i \(0.502344\pi\)
\(968\) 0 0
\(969\) 31.2582 1.00416
\(970\) 0 0
\(971\) 3.15254 0.101170 0.0505849 0.998720i \(-0.483891\pi\)
0.0505849 + 0.998720i \(0.483891\pi\)
\(972\) 0 0
\(973\) 16.3865 0.525326
\(974\) 0 0
\(975\) 5.21799 0.167109
\(976\) 0 0
\(977\) 9.87890 0.316054 0.158027 0.987435i \(-0.449487\pi\)
0.158027 + 0.987435i \(0.449487\pi\)
\(978\) 0 0
\(979\) −1.54266 −0.0493038
\(980\) 0 0
\(981\) −4.27913 −0.136622
\(982\) 0 0
\(983\) 44.7802 1.42827 0.714133 0.700010i \(-0.246821\pi\)
0.714133 + 0.700010i \(0.246821\pi\)
\(984\) 0 0
\(985\) 23.4537 0.747296
\(986\) 0 0
\(987\) 25.6395 0.816115
\(988\) 0 0
\(989\) 17.5298 0.557416
\(990\) 0 0
\(991\) −12.2878 −0.390334 −0.195167 0.980770i \(-0.562525\pi\)
−0.195167 + 0.980770i \(0.562525\pi\)
\(992\) 0 0
\(993\) 32.0899 1.01834
\(994\) 0 0
\(995\) −33.4307 −1.05983
\(996\) 0 0
\(997\) −23.0908 −0.731294 −0.365647 0.930754i \(-0.619152\pi\)
−0.365647 + 0.930754i \(0.619152\pi\)
\(998\) 0 0
\(999\) −8.14446 −0.257679
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3328.2.a.bo.1.5 6
4.3 odd 2 inner 3328.2.a.bo.1.2 6
8.3 odd 2 3328.2.a.bp.1.5 6
8.5 even 2 3328.2.a.bp.1.2 6
16.3 odd 4 1664.2.b.k.833.4 yes 12
16.5 even 4 1664.2.b.k.833.3 12
16.11 odd 4 1664.2.b.k.833.9 yes 12
16.13 even 4 1664.2.b.k.833.10 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1664.2.b.k.833.3 12 16.5 even 4
1664.2.b.k.833.4 yes 12 16.3 odd 4
1664.2.b.k.833.9 yes 12 16.11 odd 4
1664.2.b.k.833.10 yes 12 16.13 even 4
3328.2.a.bo.1.2 6 4.3 odd 2 inner
3328.2.a.bo.1.5 6 1.1 even 1 trivial
3328.2.a.bp.1.2 6 8.5 even 2
3328.2.a.bp.1.5 6 8.3 odd 2