Defining parameters
Level: | \( N \) | \(=\) | \( 3328 = 2^{8} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 3328.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 42 \) | ||
Sturm bound: | \(896\) | ||
Trace bound: | \(9\) | ||
Distinguishing \(T_p\): | \(3\), \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(3328))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 472 | 96 | 376 |
Cusp forms | 425 | 96 | 329 |
Eisenstein series | 47 | 0 | 47 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(13\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(22\) |
\(+\) | \(-\) | \(-\) | \(26\) |
\(-\) | \(+\) | \(-\) | \(26\) |
\(-\) | \(-\) | \(+\) | \(22\) |
Plus space | \(+\) | \(44\) | |
Minus space | \(-\) | \(52\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(3328))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(3328))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(3328)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(52))\)\(^{\oplus 7}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(64))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(104))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(128))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(208))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(256))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(416))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(832))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1664))\)\(^{\oplus 2}\)