Properties

Label 3328.2.a.bl
Level $3328$
Weight $2$
Character orbit 3328.a
Self dual yes
Analytic conductor $26.574$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3328,2,Mod(1,3328)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3328, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3328.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3328 = 2^{8} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3328.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,2,0,0,0,14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.5742137927\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.13448.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 7x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 1664)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{3} q^{3} - \beta_{2} q^{5} + \beta_1 q^{7} + ( - \beta_{2} + 3) q^{9} + (\beta_{3} - \beta_1) q^{11} + q^{13} + ( - 3 \beta_{3} + 4 \beta_1) q^{15} + ( - \beta_{2} + 2) q^{17} + ( - \beta_{3} - \beta_1) q^{19}+ \cdots + (7 \beta_{3} - 5 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{5} + 14 q^{9} + 4 q^{13} + 10 q^{17} - 6 q^{21} + 22 q^{25} + 8 q^{29} - 20 q^{33} - 14 q^{37} + 20 q^{41} + 48 q^{45} - 14 q^{49} - 20 q^{53} + 32 q^{57} + 2 q^{65} - 52 q^{69} + 4 q^{73} - 8 q^{77}+ \cdots + 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 7x^{2} + 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 6\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 6\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.546295
2.58874
−2.58874
0.546295
0 −3.11473 0 3.70156 0 −0.546295 0 6.70156 0
1.2 0 −1.81616 0 −2.70156 0 2.58874 0 0.298438 0
1.3 0 1.81616 0 −2.70156 0 −2.58874 0 0.298438 0
1.4 0 3.11473 0 3.70156 0 0.546295 0 6.70156 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(13\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3328.2.a.bl 4
4.b odd 2 1 inner 3328.2.a.bl 4
8.b even 2 1 3328.2.a.bk 4
8.d odd 2 1 3328.2.a.bk 4
16.e even 4 2 1664.2.b.j 8
16.f odd 4 2 1664.2.b.j 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1664.2.b.j 8 16.e even 4 2
1664.2.b.j 8 16.f odd 4 2
3328.2.a.bk 4 8.b even 2 1
3328.2.a.bk 4 8.d odd 2 1
3328.2.a.bl 4 1.a even 1 1 trivial
3328.2.a.bl 4 4.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3328))\):

\( T_{3}^{4} - 13T_{3}^{2} + 32 \) Copy content Toggle raw display
\( T_{5}^{2} - T_{5} - 10 \) Copy content Toggle raw display
\( T_{7}^{4} - 7T_{7}^{2} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 13T^{2} + 32 \) Copy content Toggle raw display
$5$ \( (T^{2} - T - 10)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} - 7T^{2} + 2 \) Copy content Toggle raw display
$11$ \( T^{4} - 14T^{2} + 8 \) Copy content Toggle raw display
$13$ \( (T - 1)^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} - 5 T - 4)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} - 26T^{2} + 128 \) Copy content Toggle raw display
$23$ \( T^{4} - 52T^{2} + 512 \) Copy content Toggle raw display
$29$ \( (T - 2)^{4} \) Copy content Toggle raw display
$31$ \( T^{4} - 58T^{2} + 800 \) Copy content Toggle raw display
$37$ \( (T^{2} + 7 T + 2)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} - 10 T - 16)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} - 261 T^{2} + 16200 \) Copy content Toggle raw display
$47$ \( T^{4} - 167T^{2} + 6962 \) Copy content Toggle raw display
$53$ \( (T^{2} + 10 T - 16)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} - 106T^{2} + 800 \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( T^{4} - 334 T^{2} + 27848 \) Copy content Toggle raw display
$71$ \( T^{4} - 47T^{2} + 50 \) Copy content Toggle raw display
$73$ \( (T^{2} - 2 T - 40)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} - 188T^{2} + 800 \) Copy content Toggle raw display
$83$ \( T^{4} - 94T^{2} + 200 \) Copy content Toggle raw display
$89$ \( (T^{2} - 10 T - 16)^{2} \) Copy content Toggle raw display
$97$ \( (T - 10)^{4} \) Copy content Toggle raw display
show more
show less