Properties

Label 3300.2.x.d.1693.8
Level $3300$
Weight $2$
Character 3300.1693
Analytic conductor $26.351$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3300,2,Mod(1693,3300)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3300, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3300.1693"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3300 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3300.x (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,0,0,0,0,0,0,-24,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.3506326670\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1693.8
Character \(\chi\) \(=\) 3300.1693
Dual form 3300.2.x.d.1957.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 0.707107i) q^{3} +(0.414559 + 0.414559i) q^{7} +1.00000i q^{9} +(-3.18030 + 0.941114i) q^{11} +(-3.69090 + 3.69090i) q^{13} +(-0.270937 - 0.270937i) q^{17} -7.48511 q^{19} -0.586275i q^{21} +(1.83571 + 1.83571i) q^{23} +(0.707107 - 0.707107i) q^{27} +5.90866 q^{29} -1.59609 q^{31} +(2.91428 + 1.58334i) q^{33} +(6.85097 - 6.85097i) q^{37} +5.21972 q^{39} -9.62710i q^{41} +(8.26564 - 8.26564i) q^{43} +(2.66191 - 2.66191i) q^{47} -6.65628i q^{49} +0.383162i q^{51} +(5.53290 + 5.53290i) q^{53} +(5.29277 + 5.29277i) q^{57} -1.32814i q^{59} +4.30471i q^{61} +(-0.414559 + 0.414559i) q^{63} +(7.04044 - 7.04044i) q^{67} -2.59609i q^{69} -13.1528 q^{71} +(-1.83275 + 1.83275i) q^{73} +(-1.70857 - 0.928275i) q^{77} +7.46438 q^{79} -1.00000 q^{81} +(-9.58191 + 9.58191i) q^{83} +(-4.17806 - 4.17806i) q^{87} -16.4810i q^{89} -3.06019 q^{91} +(1.12861 + 1.12861i) q^{93} +(8.42684 - 8.42684i) q^{97} +(-0.941114 - 3.18030i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 24 q^{11} + 16 q^{31} - 32 q^{71} - 32 q^{81} + 80 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3300\mathbb{Z}\right)^\times\).

\(n\) \(1201\) \(1651\) \(2201\) \(2377\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.707107 0.707107i −0.408248 0.408248i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 0.414559 + 0.414559i 0.156689 + 0.156689i 0.781098 0.624409i \(-0.214660\pi\)
−0.624409 + 0.781098i \(0.714660\pi\)
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) −3.18030 + 0.941114i −0.958896 + 0.283756i
\(12\) 0 0
\(13\) −3.69090 + 3.69090i −1.02367 + 1.02367i −0.0239586 + 0.999713i \(0.507627\pi\)
−0.999713 + 0.0239586i \(0.992373\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.270937 0.270937i −0.0657118 0.0657118i 0.673487 0.739199i \(-0.264796\pi\)
−0.739199 + 0.673487i \(0.764796\pi\)
\(18\) 0 0
\(19\) −7.48511 −1.71720 −0.858601 0.512644i \(-0.828666\pi\)
−0.858601 + 0.512644i \(0.828666\pi\)
\(20\) 0 0
\(21\) 0.586275i 0.127936i
\(22\) 0 0
\(23\) 1.83571 + 1.83571i 0.382773 + 0.382773i 0.872100 0.489328i \(-0.162758\pi\)
−0.489328 + 0.872100i \(0.662758\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0.707107 0.707107i 0.136083 0.136083i
\(28\) 0 0
\(29\) 5.90866 1.09721 0.548606 0.836081i \(-0.315159\pi\)
0.548606 + 0.836081i \(0.315159\pi\)
\(30\) 0 0
\(31\) −1.59609 −0.286666 −0.143333 0.989675i \(-0.545782\pi\)
−0.143333 + 0.989675i \(0.545782\pi\)
\(32\) 0 0
\(33\) 2.91428 + 1.58334i 0.507311 + 0.275625i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 6.85097 6.85097i 1.12629 1.12629i 0.135518 0.990775i \(-0.456730\pi\)
0.990775 0.135518i \(-0.0432700\pi\)
\(38\) 0 0
\(39\) 5.21972 0.835824
\(40\) 0 0
\(41\) 9.62710i 1.50350i −0.659448 0.751750i \(-0.729210\pi\)
0.659448 0.751750i \(-0.270790\pi\)
\(42\) 0 0
\(43\) 8.26564 8.26564i 1.26050 1.26050i 0.309646 0.950852i \(-0.399790\pi\)
0.950852 0.309646i \(-0.100210\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.66191 2.66191i 0.388279 0.388279i −0.485794 0.874073i \(-0.661469\pi\)
0.874073 + 0.485794i \(0.161469\pi\)
\(48\) 0 0
\(49\) 6.65628i 0.950897i
\(50\) 0 0
\(51\) 0.383162i 0.0536534i
\(52\) 0 0
\(53\) 5.53290 + 5.53290i 0.760002 + 0.760002i 0.976322 0.216320i \(-0.0694056\pi\)
−0.216320 + 0.976322i \(0.569406\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 5.29277 + 5.29277i 0.701045 + 0.701045i
\(58\) 0 0
\(59\) 1.32814i 0.172909i −0.996256 0.0864546i \(-0.972446\pi\)
0.996256 0.0864546i \(-0.0275538\pi\)
\(60\) 0 0
\(61\) 4.30471i 0.551161i 0.961278 + 0.275581i \(0.0888701\pi\)
−0.961278 + 0.275581i \(0.911130\pi\)
\(62\) 0 0
\(63\) −0.414559 + 0.414559i −0.0522295 + 0.0522295i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 7.04044 7.04044i 0.860127 0.860127i −0.131226 0.991353i \(-0.541891\pi\)
0.991353 + 0.131226i \(0.0418912\pi\)
\(68\) 0 0
\(69\) 2.59609i 0.312533i
\(70\) 0 0
\(71\) −13.1528 −1.56096 −0.780478 0.625184i \(-0.785024\pi\)
−0.780478 + 0.625184i \(0.785024\pi\)
\(72\) 0 0
\(73\) −1.83275 + 1.83275i −0.214508 + 0.214508i −0.806179 0.591672i \(-0.798468\pi\)
0.591672 + 0.806179i \(0.298468\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1.70857 0.928275i −0.194709 0.105787i
\(78\) 0 0
\(79\) 7.46438 0.839808 0.419904 0.907569i \(-0.362064\pi\)
0.419904 + 0.907569i \(0.362064\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) −9.58191 + 9.58191i −1.05175 + 1.05175i −0.0531655 + 0.998586i \(0.516931\pi\)
−0.998586 + 0.0531655i \(0.983069\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −4.17806 4.17806i −0.447935 0.447935i
\(88\) 0 0
\(89\) 16.4810i 1.74698i −0.486842 0.873490i \(-0.661851\pi\)
0.486842 0.873490i \(-0.338149\pi\)
\(90\) 0 0
\(91\) −3.06019 −0.320795
\(92\) 0 0
\(93\) 1.12861 + 1.12861i 0.117031 + 0.117031i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 8.42684 8.42684i 0.855616 0.855616i −0.135202 0.990818i \(-0.543168\pi\)
0.990818 + 0.135202i \(0.0431684\pi\)
\(98\) 0 0
\(99\) −0.941114 3.18030i −0.0945855 0.319632i
\(100\) 0 0
\(101\) 14.2145i 1.41440i 0.707015 + 0.707199i \(0.250042\pi\)
−0.707015 + 0.707199i \(0.749958\pi\)
\(102\) 0 0
\(103\) 3.86370 + 3.86370i 0.380702 + 0.380702i 0.871355 0.490653i \(-0.163242\pi\)
−0.490653 + 0.871355i \(0.663242\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 10.4804 + 10.4804i 1.01318 + 1.01318i 0.999912 + 0.0132671i \(0.00422318\pi\)
0.0132671 + 0.999912i \(0.495777\pi\)
\(108\) 0 0
\(109\) 12.4496 1.19246 0.596229 0.802815i \(-0.296665\pi\)
0.596229 + 0.802815i \(0.296665\pi\)
\(110\) 0 0
\(111\) −9.68874 −0.919615
\(112\) 0 0
\(113\) 0.633919 + 0.633919i 0.0596341 + 0.0596341i 0.736295 0.676661i \(-0.236574\pi\)
−0.676661 + 0.736295i \(0.736574\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −3.69090 3.69090i −0.341224 0.341224i
\(118\) 0 0
\(119\) 0.224638i 0.0205926i
\(120\) 0 0
\(121\) 9.22861 5.98605i 0.838965 0.544186i
\(122\) 0 0
\(123\) −6.80739 + 6.80739i −0.613801 + 0.613801i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 12.3815 + 12.3815i 1.09868 + 1.09868i 0.994566 + 0.104111i \(0.0331998\pi\)
0.104111 + 0.994566i \(0.466800\pi\)
\(128\) 0 0
\(129\) −11.6894 −1.02919
\(130\) 0 0
\(131\) 10.9944i 0.960581i −0.877109 0.480291i \(-0.840531\pi\)
0.877109 0.480291i \(-0.159469\pi\)
\(132\) 0 0
\(133\) −3.10302 3.10302i −0.269066 0.269066i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 7.70499 7.70499i 0.658281 0.658281i −0.296692 0.954973i \(-0.595883\pi\)
0.954973 + 0.296692i \(0.0958834\pi\)
\(138\) 0 0
\(139\) 1.17255 0.0994544 0.0497272 0.998763i \(-0.484165\pi\)
0.0497272 + 0.998763i \(0.484165\pi\)
\(140\) 0 0
\(141\) −3.76451 −0.317029
\(142\) 0 0
\(143\) 8.26461 15.2117i 0.691122 1.27207i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −4.70670 + 4.70670i −0.388202 + 0.388202i
\(148\) 0 0
\(149\) −22.1035 −1.81079 −0.905396 0.424568i \(-0.860426\pi\)
−0.905396 + 0.424568i \(0.860426\pi\)
\(150\) 0 0
\(151\) 5.12161i 0.416790i −0.978045 0.208395i \(-0.933176\pi\)
0.978045 0.208395i \(-0.0668240\pi\)
\(152\) 0 0
\(153\) 0.270937 0.270937i 0.0219039 0.0219039i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 4.01974 4.01974i 0.320810 0.320810i −0.528268 0.849078i \(-0.677158\pi\)
0.849078 + 0.528268i \(0.177158\pi\)
\(158\) 0 0
\(159\) 7.82470i 0.620539i
\(160\) 0 0
\(161\) 1.52202i 0.119952i
\(162\) 0 0
\(163\) −3.17674 3.17674i −0.248821 0.248821i 0.571665 0.820487i \(-0.306298\pi\)
−0.820487 + 0.571665i \(0.806298\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −14.3018 14.3018i −1.10671 1.10671i −0.993580 0.113129i \(-0.963913\pi\)
−0.113129 0.993580i \(-0.536087\pi\)
\(168\) 0 0
\(169\) 14.2455i 1.09581i
\(170\) 0 0
\(171\) 7.48511i 0.572401i
\(172\) 0 0
\(173\) −3.86706 + 3.86706i −0.294007 + 0.294007i −0.838661 0.544654i \(-0.816661\pi\)
0.544654 + 0.838661i \(0.316661\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −0.939137 + 0.939137i −0.0705899 + 0.0705899i
\(178\) 0 0
\(179\) 6.76054i 0.505306i −0.967557 0.252653i \(-0.918697\pi\)
0.967557 0.252653i \(-0.0813031\pi\)
\(180\) 0 0
\(181\) 6.79300 0.504919 0.252460 0.967607i \(-0.418760\pi\)
0.252460 + 0.967607i \(0.418760\pi\)
\(182\) 0 0
\(183\) 3.04389 3.04389i 0.225011 0.225011i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 1.11664 + 0.606677i 0.0816569 + 0.0443646i
\(188\) 0 0
\(189\) 0.586275 0.0426452
\(190\) 0 0
\(191\) −15.2415 −1.10284 −0.551419 0.834229i \(-0.685913\pi\)
−0.551419 + 0.834229i \(0.685913\pi\)
\(192\) 0 0
\(193\) 2.35567 2.35567i 0.169565 0.169565i −0.617223 0.786788i \(-0.711742\pi\)
0.786788 + 0.617223i \(0.211742\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 10.2095 + 10.2095i 0.727395 + 0.727395i 0.970100 0.242705i \(-0.0780349\pi\)
−0.242705 + 0.970100i \(0.578035\pi\)
\(198\) 0 0
\(199\) 13.9884i 0.991611i −0.868434 0.495806i \(-0.834873\pi\)
0.868434 0.495806i \(-0.165127\pi\)
\(200\) 0 0
\(201\) −9.95669 −0.702291
\(202\) 0 0
\(203\) 2.44949 + 2.44949i 0.171920 + 0.171920i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −1.83571 + 1.83571i −0.127591 + 0.127591i
\(208\) 0 0
\(209\) 23.8049 7.04434i 1.64662 0.487267i
\(210\) 0 0
\(211\) 5.27637i 0.363240i −0.983369 0.181620i \(-0.941866\pi\)
0.983369 0.181620i \(-0.0581341\pi\)
\(212\) 0 0
\(213\) 9.30046 + 9.30046i 0.637257 + 0.637257i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −0.661673 0.661673i −0.0449173 0.0449173i
\(218\) 0 0
\(219\) 2.59190 0.175145
\(220\) 0 0
\(221\) 2.00000 0.134535
\(222\) 0 0
\(223\) −15.8031 15.8031i −1.05826 1.05826i −0.998195 0.0600608i \(-0.980871\pi\)
−0.0600608 0.998195i \(-0.519129\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −8.42120 8.42120i −0.558934 0.558934i 0.370070 0.929004i \(-0.379334\pi\)
−0.929004 + 0.370070i \(0.879334\pi\)
\(228\) 0 0
\(229\) 16.2001i 1.07053i 0.844683 + 0.535267i \(0.179789\pi\)
−0.844683 + 0.535267i \(0.820211\pi\)
\(230\) 0 0
\(231\) 0.551751 + 1.86453i 0.0363026 + 0.122677i
\(232\) 0 0
\(233\) 14.8600 14.8600i 0.973512 0.973512i −0.0261458 0.999658i \(-0.508323\pi\)
0.999658 + 0.0261458i \(0.00832341\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −5.27811 5.27811i −0.342850 0.342850i
\(238\) 0 0
\(239\) 27.0451 1.74940 0.874701 0.484664i \(-0.161058\pi\)
0.874701 + 0.484664i \(0.161058\pi\)
\(240\) 0 0
\(241\) 18.8060i 1.21140i 0.795693 + 0.605700i \(0.207107\pi\)
−0.795693 + 0.605700i \(0.792893\pi\)
\(242\) 0 0
\(243\) 0.707107 + 0.707107i 0.0453609 + 0.0453609i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 27.6268 27.6268i 1.75785 1.75785i
\(248\) 0 0
\(249\) 13.5509 0.858751
\(250\) 0 0
\(251\) −6.62458 −0.418140 −0.209070 0.977901i \(-0.567044\pi\)
−0.209070 + 0.977901i \(0.567044\pi\)
\(252\) 0 0
\(253\) −7.56573 4.11050i −0.475653 0.258425i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 7.91968 7.91968i 0.494016 0.494016i −0.415553 0.909569i \(-0.636412\pi\)
0.909569 + 0.415553i \(0.136412\pi\)
\(258\) 0 0
\(259\) 5.68027 0.352955
\(260\) 0 0
\(261\) 5.90866i 0.365737i
\(262\) 0 0
\(263\) −11.7744 + 11.7744i −0.726042 + 0.726042i −0.969829 0.243786i \(-0.921610\pi\)
0.243786 + 0.969829i \(0.421610\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −11.6538 + 11.6538i −0.713202 + 0.713202i
\(268\) 0 0
\(269\) 26.0417i 1.58779i −0.608054 0.793895i \(-0.708050\pi\)
0.608054 0.793895i \(-0.291950\pi\)
\(270\) 0 0
\(271\) 0.424631i 0.0257945i 0.999917 + 0.0128972i \(0.00410543\pi\)
−0.999917 + 0.0128972i \(0.995895\pi\)
\(272\) 0 0
\(273\) 2.16388 + 2.16388i 0.130964 + 0.130964i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 14.3122 + 14.3122i 0.859937 + 0.859937i 0.991330 0.131393i \(-0.0419450\pi\)
−0.131393 + 0.991330i \(0.541945\pi\)
\(278\) 0 0
\(279\) 1.59609i 0.0955554i
\(280\) 0 0
\(281\) 6.67044i 0.397925i −0.980007 0.198962i \(-0.936243\pi\)
0.980007 0.198962i \(-0.0637572\pi\)
\(282\) 0 0
\(283\) −12.0839 + 12.0839i −0.718310 + 0.718310i −0.968259 0.249949i \(-0.919586\pi\)
0.249949 + 0.968259i \(0.419586\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 3.99100 3.99100i 0.235581 0.235581i
\(288\) 0 0
\(289\) 16.8532i 0.991364i
\(290\) 0 0
\(291\) −11.9174 −0.698607
\(292\) 0 0
\(293\) −3.79769 + 3.79769i −0.221863 + 0.221863i −0.809283 0.587419i \(-0.800144\pi\)
0.587419 + 0.809283i \(0.300144\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −1.58334 + 2.91428i −0.0918749 + 0.169104i
\(298\) 0 0
\(299\) −13.5509 −0.783667
\(300\) 0 0
\(301\) 6.85319 0.395011
\(302\) 0 0
\(303\) 10.0512 10.0512i 0.577426 0.577426i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −12.6952 12.6952i −0.724552 0.724552i 0.244977 0.969529i \(-0.421220\pi\)
−0.969529 + 0.244977i \(0.921220\pi\)
\(308\) 0 0
\(309\) 5.46410i 0.310842i
\(310\) 0 0
\(311\) −4.18530 −0.237327 −0.118663 0.992935i \(-0.537861\pi\)
−0.118663 + 0.992935i \(0.537861\pi\)
\(312\) 0 0
\(313\) −6.77445 6.77445i −0.382914 0.382914i 0.489237 0.872151i \(-0.337275\pi\)
−0.872151 + 0.489237i \(0.837275\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −12.9829 + 12.9829i −0.729193 + 0.729193i −0.970459 0.241266i \(-0.922437\pi\)
0.241266 + 0.970459i \(0.422437\pi\)
\(318\) 0 0
\(319\) −18.7913 + 5.56072i −1.05211 + 0.311341i
\(320\) 0 0
\(321\) 14.8215i 0.827257i
\(322\) 0 0
\(323\) 2.02799 + 2.02799i 0.112840 + 0.112840i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −8.80321 8.80321i −0.486819 0.486819i
\(328\) 0 0
\(329\) 2.20704 0.121678
\(330\) 0 0
\(331\) −2.86329 −0.157380 −0.0786902 0.996899i \(-0.525074\pi\)
−0.0786902 + 0.996899i \(0.525074\pi\)
\(332\) 0 0
\(333\) 6.85097 + 6.85097i 0.375431 + 0.375431i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 10.4657 + 10.4657i 0.570105 + 0.570105i 0.932158 0.362052i \(-0.117924\pi\)
−0.362052 + 0.932158i \(0.617924\pi\)
\(338\) 0 0
\(339\) 0.896498i 0.0486911i
\(340\) 0 0
\(341\) 5.07604 1.50210i 0.274883 0.0813434i
\(342\) 0 0
\(343\) 5.66133 5.66133i 0.305683 0.305683i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 9.86157 + 9.86157i 0.529397 + 0.529397i 0.920392 0.390996i \(-0.127869\pi\)
−0.390996 + 0.920392i \(0.627869\pi\)
\(348\) 0 0
\(349\) −1.17255 −0.0627652 −0.0313826 0.999507i \(-0.509991\pi\)
−0.0313826 + 0.999507i \(0.509991\pi\)
\(350\) 0 0
\(351\) 5.21972i 0.278608i
\(352\) 0 0
\(353\) 9.37418 + 9.37418i 0.498937 + 0.498937i 0.911107 0.412170i \(-0.135229\pi\)
−0.412170 + 0.911107i \(0.635229\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −0.158843 + 0.158843i −0.00840688 + 0.00840688i
\(358\) 0 0
\(359\) −24.6646 −1.30175 −0.650874 0.759186i \(-0.725597\pi\)
−0.650874 + 0.759186i \(0.725597\pi\)
\(360\) 0 0
\(361\) 37.0269 1.94878
\(362\) 0 0
\(363\) −10.7584 2.29284i −0.564669 0.120343i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 12.5901 12.5901i 0.657200 0.657200i −0.297517 0.954717i \(-0.596158\pi\)
0.954717 + 0.297517i \(0.0961583\pi\)
\(368\) 0 0
\(369\) 9.62710 0.501167
\(370\) 0 0
\(371\) 4.58743i 0.238167i
\(372\) 0 0
\(373\) 7.18503 7.18503i 0.372027 0.372027i −0.496188 0.868215i \(-0.665267\pi\)
0.868215 + 0.496188i \(0.165267\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −21.8083 + 21.8083i −1.12318 + 1.12318i
\(378\) 0 0
\(379\) 7.65306i 0.393111i 0.980493 + 0.196556i \(0.0629757\pi\)
−0.980493 + 0.196556i \(0.937024\pi\)
\(380\) 0 0
\(381\) 17.5100i 0.897066i
\(382\) 0 0
\(383\) 10.0070 + 10.0070i 0.511336 + 0.511336i 0.914936 0.403600i \(-0.132241\pi\)
−0.403600 + 0.914936i \(0.632241\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 8.26564 + 8.26564i 0.420166 + 0.420166i
\(388\) 0 0
\(389\) 16.3606i 0.829515i 0.909932 + 0.414758i \(0.136134\pi\)
−0.909932 + 0.414758i \(0.863866\pi\)
\(390\) 0 0
\(391\) 0.994724i 0.0503053i
\(392\) 0 0
\(393\) −7.77418 + 7.77418i −0.392156 + 0.392156i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 14.5756 14.5756i 0.731527 0.731527i −0.239395 0.970922i \(-0.576949\pi\)
0.970922 + 0.239395i \(0.0769492\pi\)
\(398\) 0 0
\(399\) 4.38833i 0.219691i
\(400\) 0 0
\(401\) −27.5607 −1.37632 −0.688158 0.725560i \(-0.741581\pi\)
−0.688158 + 0.725560i \(0.741581\pi\)
\(402\) 0 0
\(403\) 5.89101 5.89101i 0.293452 0.293452i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −15.3406 + 28.2357i −0.760406 + 1.39959i
\(408\) 0 0
\(409\) −8.18246 −0.404596 −0.202298 0.979324i \(-0.564841\pi\)
−0.202298 + 0.979324i \(0.564841\pi\)
\(410\) 0 0
\(411\) −10.8965 −0.537485
\(412\) 0 0
\(413\) 0.550593 0.550593i 0.0270929 0.0270929i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −0.829118 0.829118i −0.0406021 0.0406021i
\(418\) 0 0
\(419\) 2.31920i 0.113301i −0.998394 0.0566503i \(-0.981958\pi\)
0.998394 0.0566503i \(-0.0180420\pi\)
\(420\) 0 0
\(421\) 37.0871 1.80751 0.903757 0.428047i \(-0.140798\pi\)
0.903757 + 0.428047i \(0.140798\pi\)
\(422\) 0 0
\(423\) 2.66191 + 2.66191i 0.129426 + 0.129426i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −1.78456 + 1.78456i −0.0863607 + 0.0863607i
\(428\) 0 0
\(429\) −16.6003 + 4.91235i −0.801469 + 0.237171i
\(430\) 0 0
\(431\) 27.6459i 1.33166i −0.746105 0.665828i \(-0.768078\pi\)
0.746105 0.665828i \(-0.231922\pi\)
\(432\) 0 0
\(433\) −4.01974 4.01974i −0.193176 0.193176i 0.603891 0.797067i \(-0.293616\pi\)
−0.797067 + 0.603891i \(0.793616\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −13.7405 13.7405i −0.657298 0.657298i
\(438\) 0 0
\(439\) −15.7389 −0.751176 −0.375588 0.926787i \(-0.622559\pi\)
−0.375588 + 0.926787i \(0.622559\pi\)
\(440\) 0 0
\(441\) 6.65628 0.316966
\(442\) 0 0
\(443\) −25.8900 25.8900i −1.23007 1.23007i −0.963935 0.266137i \(-0.914252\pi\)
−0.266137 0.963935i \(-0.585748\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 15.6296 + 15.6296i 0.739253 + 0.739253i
\(448\) 0 0
\(449\) 30.2487i 1.42752i 0.700388 + 0.713762i \(0.253010\pi\)
−0.700388 + 0.713762i \(0.746990\pi\)
\(450\) 0 0
\(451\) 9.06019 + 30.6171i 0.426628 + 1.44170i
\(452\) 0 0
\(453\) −3.62152 + 3.62152i −0.170154 + 0.170154i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −26.0331 26.0331i −1.21778 1.21778i −0.968409 0.249366i \(-0.919778\pi\)
−0.249366 0.968409i \(-0.580222\pi\)
\(458\) 0 0
\(459\) −0.383162 −0.0178845
\(460\) 0 0
\(461\) 5.33250i 0.248359i −0.992260 0.124180i \(-0.960370\pi\)
0.992260 0.124180i \(-0.0396299\pi\)
\(462\) 0 0
\(463\) −5.32382 5.32382i −0.247419 0.247419i 0.572492 0.819911i \(-0.305977\pi\)
−0.819911 + 0.572492i \(0.805977\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −15.9035 + 15.9035i −0.735927 + 0.735927i −0.971787 0.235860i \(-0.924209\pi\)
0.235860 + 0.971787i \(0.424209\pi\)
\(468\) 0 0
\(469\) 5.83736 0.269544
\(470\) 0 0
\(471\) −5.68477 −0.261940
\(472\) 0 0
\(473\) −18.5083 + 34.0661i −0.851012 + 1.56636i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −5.53290 + 5.53290i −0.253334 + 0.253334i
\(478\) 0 0
\(479\) 13.2428 0.605077 0.302539 0.953137i \(-0.402166\pi\)
0.302539 + 0.953137i \(0.402166\pi\)
\(480\) 0 0
\(481\) 50.5725i 2.30591i
\(482\) 0 0
\(483\) 1.07623 1.07623i 0.0489703 0.0489703i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 9.42868 9.42868i 0.427254 0.427254i −0.460438 0.887692i \(-0.652308\pi\)
0.887692 + 0.460438i \(0.152308\pi\)
\(488\) 0 0
\(489\) 4.49259i 0.203162i
\(490\) 0 0
\(491\) 9.62092i 0.434186i 0.976151 + 0.217093i \(0.0696575\pi\)
−0.976151 + 0.217093i \(0.930343\pi\)
\(492\) 0 0
\(493\) −1.60087 1.60087i −0.0720997 0.0720997i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −5.45263 5.45263i −0.244584 0.244584i
\(498\) 0 0
\(499\) 40.8869i 1.83035i 0.403055 + 0.915176i \(0.367948\pi\)
−0.403055 + 0.915176i \(0.632052\pi\)
\(500\) 0 0
\(501\) 20.2259i 0.903625i
\(502\) 0 0
\(503\) 11.7420 11.7420i 0.523548 0.523548i −0.395093 0.918641i \(-0.629288\pi\)
0.918641 + 0.395093i \(0.129288\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −10.0731 + 10.0731i −0.447361 + 0.447361i
\(508\) 0 0
\(509\) 14.0100i 0.620982i 0.950576 + 0.310491i \(0.100494\pi\)
−0.950576 + 0.310491i \(0.899506\pi\)
\(510\) 0 0
\(511\) −1.51957 −0.0672217
\(512\) 0 0
\(513\) −5.29277 + 5.29277i −0.233682 + 0.233682i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −5.96051 + 10.9708i −0.262143 + 0.482497i
\(518\) 0 0
\(519\) 5.46885 0.240056
\(520\) 0 0
\(521\) 34.2977 1.50261 0.751306 0.659954i \(-0.229424\pi\)
0.751306 + 0.659954i \(0.229424\pi\)
\(522\) 0 0
\(523\) 20.2265 20.2265i 0.884445 0.884445i −0.109538 0.993983i \(-0.534937\pi\)
0.993983 + 0.109538i \(0.0349370\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0.432439 + 0.432439i 0.0188373 + 0.0188373i
\(528\) 0 0
\(529\) 16.2603i 0.706970i
\(530\) 0 0
\(531\) 1.32814 0.0576364
\(532\) 0 0
\(533\) 35.5327 + 35.5327i 1.53909 + 1.53909i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −4.78042 + 4.78042i −0.206290 + 0.206290i
\(538\) 0 0
\(539\) 6.26432 + 21.1690i 0.269823 + 0.911812i
\(540\) 0 0
\(541\) 2.83923i 0.122068i −0.998136 0.0610340i \(-0.980560\pi\)
0.998136 0.0610340i \(-0.0194398\pi\)
\(542\) 0 0
\(543\) −4.80337 4.80337i −0.206132 0.206132i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −4.35694 4.35694i −0.186289 0.186289i 0.607800 0.794090i \(-0.292052\pi\)
−0.794090 + 0.607800i \(0.792052\pi\)
\(548\) 0 0
\(549\) −4.30471 −0.183720
\(550\) 0 0
\(551\) −44.2270 −1.88413
\(552\) 0 0
\(553\) 3.09442 + 3.09442i 0.131588 + 0.131588i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −21.7856 21.7856i −0.923087 0.923087i 0.0741594 0.997246i \(-0.476373\pi\)
−0.997246 + 0.0741594i \(0.976373\pi\)
\(558\) 0 0
\(559\) 61.0153i 2.58067i
\(560\) 0 0
\(561\) −0.360599 1.21857i −0.0152245 0.0514481i
\(562\) 0 0
\(563\) 9.35660 9.35660i 0.394334 0.394334i −0.481895 0.876229i \(-0.660051\pi\)
0.876229 + 0.481895i \(0.160051\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −0.414559 0.414559i −0.0174098 0.0174098i
\(568\) 0 0
\(569\) 9.93055 0.416310 0.208155 0.978096i \(-0.433254\pi\)
0.208155 + 0.978096i \(0.433254\pi\)
\(570\) 0 0
\(571\) 19.7483i 0.826442i −0.910631 0.413221i \(-0.864404\pi\)
0.910631 0.413221i \(-0.135596\pi\)
\(572\) 0 0
\(573\) 10.7774 + 10.7774i 0.450232 + 0.450232i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 13.9068 13.9068i 0.578946 0.578946i −0.355667 0.934613i \(-0.615746\pi\)
0.934613 + 0.355667i \(0.115746\pi\)
\(578\) 0 0
\(579\) −3.33142 −0.138449
\(580\) 0 0
\(581\) −7.94453 −0.329595
\(582\) 0 0
\(583\) −22.8034 12.3892i −0.944419 0.513108i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 5.91411 5.91411i 0.244102 0.244102i −0.574443 0.818545i \(-0.694781\pi\)
0.818545 + 0.574443i \(0.194781\pi\)
\(588\) 0 0
\(589\) 11.9469 0.492264
\(590\) 0 0
\(591\) 14.4384i 0.593915i
\(592\) 0 0
\(593\) −9.50924 + 9.50924i −0.390498 + 0.390498i −0.874865 0.484367i \(-0.839050\pi\)
0.484367 + 0.874865i \(0.339050\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −9.89129 + 9.89129i −0.404824 + 0.404824i
\(598\) 0 0
\(599\) 15.0310i 0.614148i −0.951686 0.307074i \(-0.900650\pi\)
0.951686 0.307074i \(-0.0993499\pi\)
\(600\) 0 0
\(601\) 35.2583i 1.43822i −0.694899 0.719108i \(-0.744551\pi\)
0.694899 0.719108i \(-0.255449\pi\)
\(602\) 0 0
\(603\) 7.04044 + 7.04044i 0.286709 + 0.286709i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 13.3633 + 13.3633i 0.542399 + 0.542399i 0.924232 0.381832i \(-0.124707\pi\)
−0.381832 + 0.924232i \(0.624707\pi\)
\(608\) 0 0
\(609\) 3.46410i 0.140372i
\(610\) 0 0
\(611\) 19.6497i 0.794941i
\(612\) 0 0
\(613\) 29.8946 29.8946i 1.20743 1.20743i 0.235573 0.971857i \(-0.424303\pi\)
0.971857 0.235573i \(-0.0756968\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1.89362 1.89362i 0.0762344 0.0762344i −0.667961 0.744196i \(-0.732833\pi\)
0.744196 + 0.667961i \(0.232833\pi\)
\(618\) 0 0
\(619\) 47.2006i 1.89715i 0.316550 + 0.948576i \(0.397475\pi\)
−0.316550 + 0.948576i \(0.602525\pi\)
\(620\) 0 0
\(621\) 2.59609 0.104178
\(622\) 0 0
\(623\) 6.83234 6.83234i 0.273732 0.273732i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −21.8137 11.8515i −0.871155 0.473303i
\(628\) 0 0
\(629\) −3.71236 −0.148021
\(630\) 0 0
\(631\) 2.58921 0.103075 0.0515374 0.998671i \(-0.483588\pi\)
0.0515374 + 0.998671i \(0.483588\pi\)
\(632\) 0 0
\(633\) −3.73096 + 3.73096i −0.148292 + 0.148292i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 24.5677 + 24.5677i 0.973407 + 0.973407i
\(638\) 0 0
\(639\) 13.1528i 0.520318i
\(640\) 0 0
\(641\) 36.0734 1.42481 0.712407 0.701766i \(-0.247605\pi\)
0.712407 + 0.701766i \(0.247605\pi\)
\(642\) 0 0
\(643\) −6.02606 6.02606i −0.237645 0.237645i 0.578229 0.815874i \(-0.303744\pi\)
−0.815874 + 0.578229i \(0.803744\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −21.9065 + 21.9065i −0.861233 + 0.861233i −0.991481 0.130249i \(-0.958422\pi\)
0.130249 + 0.991481i \(0.458422\pi\)
\(648\) 0 0
\(649\) 1.24993 + 4.22389i 0.0490641 + 0.165802i
\(650\) 0 0
\(651\) 0.935748i 0.0366748i
\(652\) 0 0
\(653\) 18.4714 + 18.4714i 0.722840 + 0.722840i 0.969183 0.246343i \(-0.0792289\pi\)
−0.246343 + 0.969183i \(0.579229\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −1.83275 1.83275i −0.0715025 0.0715025i
\(658\) 0 0
\(659\) −28.9779 −1.12882 −0.564409 0.825495i \(-0.690896\pi\)
−0.564409 + 0.825495i \(0.690896\pi\)
\(660\) 0 0
\(661\) 36.4228 1.41668 0.708342 0.705869i \(-0.249443\pi\)
0.708342 + 0.705869i \(0.249443\pi\)
\(662\) 0 0
\(663\) −1.41421 1.41421i −0.0549235 0.0549235i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 10.8466 + 10.8466i 0.419982 + 0.419982i
\(668\) 0 0
\(669\) 22.3490i 0.864062i
\(670\) 0 0
\(671\) −4.05122 13.6903i −0.156396 0.528507i
\(672\) 0 0
\(673\) −4.95639 + 4.95639i −0.191055 + 0.191055i −0.796152 0.605097i \(-0.793134\pi\)
0.605097 + 0.796152i \(0.293134\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 2.24446 + 2.24446i 0.0862616 + 0.0862616i 0.748921 0.662659i \(-0.230572\pi\)
−0.662659 + 0.748921i \(0.730572\pi\)
\(678\) 0 0
\(679\) 6.98684 0.268130
\(680\) 0 0
\(681\) 11.9094i 0.456368i
\(682\) 0 0
\(683\) −31.0552 31.0552i −1.18829 1.18829i −0.977539 0.210754i \(-0.932408\pi\)
−0.210754 0.977539i \(-0.567592\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 11.4552 11.4552i 0.437044 0.437044i
\(688\) 0 0
\(689\) −40.8428 −1.55599
\(690\) 0 0
\(691\) 33.4409 1.27215 0.636076 0.771627i \(-0.280557\pi\)
0.636076 + 0.771627i \(0.280557\pi\)
\(692\) 0 0
\(693\) 0.928275 1.70857i 0.0352622 0.0649032i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −2.60833 + 2.60833i −0.0987977 + 0.0987977i
\(698\) 0 0
\(699\) −21.0152 −0.794869
\(700\) 0 0
\(701\) 17.8718i 0.675007i −0.941324 0.337503i \(-0.890418\pi\)
0.941324 0.337503i \(-0.109582\pi\)
\(702\) 0 0
\(703\) −51.2803 + 51.2803i −1.93407 + 1.93407i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −5.89276 + 5.89276i −0.221620 + 0.221620i
\(708\) 0 0
\(709\) 32.9847i 1.23877i −0.785088 0.619384i \(-0.787382\pi\)
0.785088 0.619384i \(-0.212618\pi\)
\(710\) 0 0
\(711\) 7.46438i 0.279936i
\(712\) 0 0
\(713\) −2.92996 2.92996i −0.109728 0.109728i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −19.1238 19.1238i −0.714190 0.714190i
\(718\) 0 0
\(719\) 14.5221i 0.541584i −0.962638 0.270792i \(-0.912714\pi\)
0.962638 0.270792i \(-0.0872856\pi\)
\(720\) 0 0
\(721\) 3.20347i 0.119303i
\(722\) 0 0
\(723\) 13.2978 13.2978i 0.494552 0.494552i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 11.9951 11.9951i 0.444872 0.444872i −0.448774 0.893646i \(-0.648139\pi\)
0.893646 + 0.448774i \(0.148139\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) −4.47893 −0.165659
\(732\) 0 0
\(733\) −0.254628 + 0.254628i −0.00940492 + 0.00940492i −0.711794 0.702389i \(-0.752117\pi\)
0.702389 + 0.711794i \(0.252117\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −15.7649 + 29.0166i −0.580706 + 1.06884i
\(738\) 0 0
\(739\) 0.441437 0.0162385 0.00811926 0.999967i \(-0.497416\pi\)
0.00811926 + 0.999967i \(0.497416\pi\)
\(740\) 0 0
\(741\) −39.0702 −1.43528
\(742\) 0 0
\(743\) −4.34828 + 4.34828i −0.159523 + 0.159523i −0.782355 0.622832i \(-0.785982\pi\)
0.622832 + 0.782355i \(0.285982\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −9.58191 9.58191i −0.350584 0.350584i
\(748\) 0 0
\(749\) 8.68949i 0.317507i
\(750\) 0 0
\(751\) 0.807820 0.0294778 0.0147389 0.999891i \(-0.495308\pi\)
0.0147389 + 0.999891i \(0.495308\pi\)
\(752\) 0 0
\(753\) 4.68428 + 4.68428i 0.170705 + 0.170705i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −25.6578 + 25.6578i −0.932548 + 0.932548i −0.997865 0.0653167i \(-0.979194\pi\)
0.0653167 + 0.997865i \(0.479194\pi\)
\(758\) 0 0
\(759\) 2.44322 + 8.25634i 0.0886831 + 0.299686i
\(760\) 0 0
\(761\) 45.8975i 1.66378i 0.554938 + 0.831892i \(0.312742\pi\)
−0.554938 + 0.831892i \(0.687258\pi\)
\(762\) 0 0
\(763\) 5.16110 + 5.16110i 0.186844 + 0.186844i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 4.90204 + 4.90204i 0.177002 + 0.177002i
\(768\) 0 0
\(769\) −25.9544 −0.935938 −0.467969 0.883745i \(-0.655014\pi\)
−0.467969 + 0.883745i \(0.655014\pi\)
\(770\) 0 0
\(771\) −11.2001 −0.403363
\(772\) 0 0
\(773\) 5.68034 + 5.68034i 0.204308 + 0.204308i 0.801843 0.597535i \(-0.203853\pi\)
−0.597535 + 0.801843i \(0.703853\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −4.01655 4.01655i −0.144093 0.144093i
\(778\) 0 0
\(779\) 72.0599i 2.58181i
\(780\) 0 0
\(781\) 41.8300 12.3783i 1.49679 0.442931i
\(782\) 0 0
\(783\) 4.17806 4.17806i 0.149312 0.149312i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −1.59271 1.59271i −0.0567740 0.0567740i 0.678150 0.734924i \(-0.262782\pi\)
−0.734924 + 0.678150i \(0.762782\pi\)
\(788\) 0 0
\(789\) 16.6516 0.592811
\(790\) 0 0
\(791\) 0.525594i 0.0186880i
\(792\) 0 0
\(793\) −15.8882 15.8882i −0.564208 0.564208i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 8.96575 8.96575i 0.317583 0.317583i −0.530255 0.847838i \(-0.677904\pi\)
0.847838 + 0.530255i \(0.177904\pi\)
\(798\) 0 0
\(799\) −1.44242 −0.0510291
\(800\) 0 0
\(801\) 16.4810 0.582327
\(802\) 0 0
\(803\) 4.10388 7.55353i 0.144823 0.266558i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −18.4143 + 18.4143i −0.648213 + 0.648213i
\(808\) 0 0
\(809\) 29.0087 1.01989 0.509946 0.860206i \(-0.329665\pi\)
0.509946 + 0.860206i \(0.329665\pi\)
\(810\) 0 0
\(811\) 46.3995i 1.62931i −0.579948 0.814654i \(-0.696927\pi\)
0.579948 0.814654i \(-0.303073\pi\)
\(812\) 0 0
\(813\) 0.300259 0.300259i 0.0105306 0.0105306i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −61.8692 + 61.8692i −2.16453 + 2.16453i
\(818\) 0 0
\(819\) 3.06019i 0.106932i
\(820\) 0 0
\(821\) 26.9824i 0.941691i 0.882216 + 0.470846i \(0.156051\pi\)
−0.882216 + 0.470846i \(0.843949\pi\)
\(822\) 0 0
\(823\) 9.68221 + 9.68221i 0.337501 + 0.337501i 0.855426 0.517925i \(-0.173295\pi\)
−0.517925 + 0.855426i \(0.673295\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −31.3525 31.3525i −1.09023 1.09023i −0.995503 0.0947309i \(-0.969801\pi\)
−0.0947309 0.995503i \(-0.530199\pi\)
\(828\) 0 0
\(829\) 10.4572i 0.363194i 0.983373 + 0.181597i \(0.0581267\pi\)
−0.983373 + 0.181597i \(0.941873\pi\)
\(830\) 0 0
\(831\) 20.2405i 0.702136i
\(832\) 0 0
\(833\) −1.80343 + 1.80343i −0.0624852 + 0.0624852i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −1.12861 + 1.12861i −0.0390103 + 0.0390103i
\(838\) 0 0
\(839\) 14.9837i 0.517294i 0.965972 + 0.258647i \(0.0832766\pi\)
−0.965972 + 0.258647i \(0.916723\pi\)
\(840\) 0 0
\(841\) 5.91231 0.203873
\(842\) 0 0
\(843\) −4.71671 + 4.71671i −0.162452 + 0.162452i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 6.30737 + 1.34423i 0.216724 + 0.0461884i
\(848\) 0 0
\(849\) 17.0891 0.586498
\(850\) 0 0
\(851\) 25.1528 0.862228
\(852\) 0 0
\(853\) −26.6297 + 26.6297i −0.911782 + 0.911782i −0.996412 0.0846302i \(-0.973029\pi\)
0.0846302 + 0.996412i \(0.473029\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0.998060 + 0.998060i 0.0340931 + 0.0340931i 0.723948 0.689855i \(-0.242326\pi\)
−0.689855 + 0.723948i \(0.742326\pi\)
\(858\) 0 0
\(859\) 9.43445i 0.321899i 0.986963 + 0.160950i \(0.0514557\pi\)
−0.986963 + 0.160950i \(0.948544\pi\)
\(860\) 0 0
\(861\) −5.64413 −0.192351
\(862\) 0 0
\(863\) −25.0854 25.0854i −0.853918 0.853918i 0.136695 0.990613i \(-0.456352\pi\)
−0.990613 + 0.136695i \(0.956352\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −11.9170 + 11.9170i −0.404723 + 0.404723i
\(868\) 0 0
\(869\) −23.7390 + 7.02483i −0.805289 + 0.238301i
\(870\) 0 0
\(871\) 51.9711i 1.76098i
\(872\) 0 0
\(873\) 8.42684 + 8.42684i 0.285205 + 0.285205i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −1.10600 1.10600i −0.0373468 0.0373468i 0.688187 0.725534i \(-0.258407\pi\)
−0.725534 + 0.688187i \(0.758407\pi\)
\(878\) 0 0
\(879\) 5.37074 0.181151
\(880\) 0 0
\(881\) 3.96829 0.133695 0.0668476 0.997763i \(-0.478706\pi\)
0.0668476 + 0.997763i \(0.478706\pi\)
\(882\) 0 0
\(883\) −9.02587 9.02587i −0.303745 0.303745i 0.538732 0.842477i \(-0.318903\pi\)
−0.842477 + 0.538732i \(0.818903\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 18.3848 + 18.3848i 0.617300 + 0.617300i 0.944838 0.327538i \(-0.106219\pi\)
−0.327538 + 0.944838i \(0.606219\pi\)
\(888\) 0 0
\(889\) 10.2657i 0.344300i
\(890\) 0 0
\(891\) 3.18030 0.941114i 0.106544 0.0315285i
\(892\) 0 0
\(893\) −19.9247 + 19.9247i −0.666754 + 0.666754i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 9.58191 + 9.58191i 0.319931 + 0.319931i
\(898\) 0 0
\(899\) −9.43076 −0.314533
\(900\) 0 0
\(901\) 2.99813i 0.0998822i
\(902\) 0 0
\(903\) −4.84593 4.84593i −0.161263 0.161263i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 29.4439 29.4439i 0.977668 0.977668i −0.0220876 0.999756i \(-0.507031\pi\)
0.999756 + 0.0220876i \(0.00703129\pi\)
\(908\) 0 0
\(909\) −14.2145 −0.471466
\(910\) 0 0
\(911\) 29.4016 0.974117 0.487058 0.873369i \(-0.338070\pi\)
0.487058 + 0.873369i \(0.338070\pi\)
\(912\) 0 0
\(913\) 21.4557 39.4910i 0.710079 1.30696i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 4.55781 4.55781i 0.150512 0.150512i
\(918\) 0 0
\(919\) −34.1762 −1.12737 −0.563684 0.825991i \(-0.690616\pi\)
−0.563684 + 0.825991i \(0.690616\pi\)
\(920\) 0 0
\(921\) 17.9537i 0.591594i
\(922\) 0 0
\(923\) 48.5458 48.5458i 1.59791 1.59791i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −3.86370 + 3.86370i −0.126901 + 0.126901i
\(928\) 0 0
\(929\) 20.1600i 0.661429i −0.943731 0.330715i \(-0.892710\pi\)
0.943731 0.330715i \(-0.107290\pi\)
\(930\) 0 0
\(931\) 49.8230i 1.63288i
\(932\) 0 0
\(933\) 2.95945 + 2.95945i 0.0968882 + 0.0968882i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −24.5487 24.5487i −0.801972 0.801972i 0.181432 0.983404i \(-0.441927\pi\)
−0.983404 + 0.181432i \(0.941927\pi\)
\(938\) 0 0
\(939\) 9.58051i 0.312648i
\(940\) 0 0
\(941\) 17.4702i 0.569512i −0.958600 0.284756i \(-0.908087\pi\)
0.958600 0.284756i \(-0.0919126\pi\)
\(942\) 0 0
\(943\) 17.6726 17.6726i 0.575499 0.575499i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 3.87677 3.87677i 0.125978 0.125978i −0.641307 0.767285i \(-0.721607\pi\)
0.767285 + 0.641307i \(0.221607\pi\)
\(948\) 0 0
\(949\) 13.5290i 0.439171i
\(950\) 0 0
\(951\) 18.3606 0.595383
\(952\) 0 0
\(953\) −19.8977 + 19.8977i −0.644549 + 0.644549i −0.951670 0.307122i \(-0.900634\pi\)
0.307122 + 0.951670i \(0.400634\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 17.2195 + 9.35545i 0.556627 + 0.302419i
\(958\) 0 0
\(959\) 6.38834 0.206290
\(960\) 0 0
\(961\) −28.4525 −0.917822
\(962\) 0 0
\(963\) −10.4804 + 10.4804i −0.337726 + 0.337726i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −1.26156 1.26156i −0.0405689 0.0405689i 0.686531 0.727100i \(-0.259132\pi\)
−0.727100 + 0.686531i \(0.759132\pi\)
\(968\) 0 0
\(969\) 2.86801i 0.0921338i
\(970\) 0 0
\(971\) 32.4966 1.04286 0.521432 0.853293i \(-0.325398\pi\)
0.521432 + 0.853293i \(0.325398\pi\)
\(972\) 0 0
\(973\) 0.486091 + 0.486091i 0.0155834 + 0.0155834i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −26.3045 + 26.3045i −0.841554 + 0.841554i −0.989061 0.147507i \(-0.952875\pi\)
0.147507 + 0.989061i \(0.452875\pi\)
\(978\) 0 0
\(979\) 15.5105 + 52.4145i 0.495717 + 1.67517i
\(980\) 0 0
\(981\) 12.4496i 0.397486i
\(982\) 0 0
\(983\) −15.6284 15.6284i −0.498469 0.498469i 0.412492 0.910961i \(-0.364658\pi\)
−0.910961 + 0.412492i \(0.864658\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −1.56061 1.56061i −0.0496748 0.0496748i
\(988\) 0 0
\(989\) 30.3467 0.964968
\(990\) 0 0
\(991\) −37.3089 −1.18516 −0.592578 0.805513i \(-0.701890\pi\)
−0.592578 + 0.805513i \(0.701890\pi\)
\(992\) 0 0
\(993\) 2.02465 + 2.02465i 0.0642503 + 0.0642503i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −27.4191 27.4191i −0.868371 0.868371i 0.123921 0.992292i \(-0.460453\pi\)
−0.992292 + 0.123921i \(0.960453\pi\)
\(998\) 0 0
\(999\) 9.68874i 0.306538i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3300.2.x.d.1693.8 yes 32
5.2 odd 4 inner 3300.2.x.d.1957.7 yes 32
5.3 odd 4 inner 3300.2.x.d.1957.12 yes 32
5.4 even 2 inner 3300.2.x.d.1693.11 yes 32
11.10 odd 2 inner 3300.2.x.d.1693.7 32
55.32 even 4 inner 3300.2.x.d.1957.8 yes 32
55.43 even 4 inner 3300.2.x.d.1957.11 yes 32
55.54 odd 2 inner 3300.2.x.d.1693.12 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3300.2.x.d.1693.7 32 11.10 odd 2 inner
3300.2.x.d.1693.8 yes 32 1.1 even 1 trivial
3300.2.x.d.1693.11 yes 32 5.4 even 2 inner
3300.2.x.d.1693.12 yes 32 55.54 odd 2 inner
3300.2.x.d.1957.7 yes 32 5.2 odd 4 inner
3300.2.x.d.1957.8 yes 32 55.32 even 4 inner
3300.2.x.d.1957.11 yes 32 55.43 even 4 inner
3300.2.x.d.1957.12 yes 32 5.3 odd 4 inner