Properties

Label 3300.2.x.d.1693.6
Level $3300$
Weight $2$
Character 3300.1693
Analytic conductor $26.351$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3300,2,Mod(1693,3300)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3300, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3300.1693"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3300 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3300.x (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,0,0,0,0,0,0,-24,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.3506326670\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1693.6
Character \(\chi\) \(=\) 3300.1693
Dual form 3300.2.x.d.1957.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 0.707107i) q^{3} +(2.08903 + 2.08903i) q^{7} +1.00000i q^{9} +(2.54632 + 2.12514i) q^{11} +(0.270937 - 0.270937i) q^{13} +(3.69090 + 3.69090i) q^{17} +1.35260 q^{19} -2.95433i q^{21} +(-1.12861 - 1.12861i) q^{23} +(0.707107 - 0.707107i) q^{27} +1.17255 q^{29} +2.59609 q^{31} +(-0.297821 - 3.30323i) q^{33} +(-4.21202 + 4.21202i) q^{37} -0.383162 q^{39} -2.29068i q^{41} +(-4.84567 + 4.84567i) q^{43} +(-2.47244 + 2.47244i) q^{47} +1.72808i q^{49} -5.21972i q^{51} +(-2.56577 - 2.56577i) q^{53} +(-0.956432 - 0.956432i) q^{57} +2.86404i q^{59} +4.07246i q^{61} +(-2.08903 + 2.08903i) q^{63} +(-4.02255 + 4.02255i) q^{67} +1.59609i q^{69} +2.49259 q^{71} +(-1.83275 + 1.83275i) q^{73} +(0.879863 + 9.75883i) q^{77} +1.86149 q^{79} -1.00000 q^{81} +(-0.432439 + 0.432439i) q^{83} +(-0.829118 - 0.829118i) q^{87} +3.35663i q^{89} +1.13199 q^{91} +(-1.83571 - 1.83571i) q^{93} +(-7.77050 + 7.77050i) q^{97} +(-2.12514 + 2.54632i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 24 q^{11} + 16 q^{31} - 32 q^{71} - 32 q^{81} + 80 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3300\mathbb{Z}\right)^\times\).

\(n\) \(1201\) \(1651\) \(2201\) \(2377\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.707107 0.707107i −0.408248 0.408248i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 2.08903 + 2.08903i 0.789578 + 0.789578i 0.981425 0.191846i \(-0.0614476\pi\)
−0.191846 + 0.981425i \(0.561448\pi\)
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) 2.54632 + 2.12514i 0.767746 + 0.640754i
\(12\) 0 0
\(13\) 0.270937 0.270937i 0.0751443 0.0751443i −0.668536 0.743680i \(-0.733079\pi\)
0.743680 + 0.668536i \(0.233079\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.69090 + 3.69090i 0.895175 + 0.895175i 0.995005 0.0998297i \(-0.0318298\pi\)
−0.0998297 + 0.995005i \(0.531830\pi\)
\(18\) 0 0
\(19\) 1.35260 0.310308 0.155154 0.987890i \(-0.450413\pi\)
0.155154 + 0.987890i \(0.450413\pi\)
\(20\) 0 0
\(21\) 2.95433i 0.644688i
\(22\) 0 0
\(23\) −1.12861 1.12861i −0.235331 0.235331i 0.579583 0.814913i \(-0.303216\pi\)
−0.814913 + 0.579583i \(0.803216\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0.707107 0.707107i 0.136083 0.136083i
\(28\) 0 0
\(29\) 1.17255 0.217737 0.108869 0.994056i \(-0.465277\pi\)
0.108869 + 0.994056i \(0.465277\pi\)
\(30\) 0 0
\(31\) 2.59609 0.466272 0.233136 0.972444i \(-0.425101\pi\)
0.233136 + 0.972444i \(0.425101\pi\)
\(32\) 0 0
\(33\) −0.297821 3.30323i −0.0518440 0.575018i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −4.21202 + 4.21202i −0.692451 + 0.692451i −0.962771 0.270320i \(-0.912871\pi\)
0.270320 + 0.962771i \(0.412871\pi\)
\(38\) 0 0
\(39\) −0.383162 −0.0613551
\(40\) 0 0
\(41\) 2.29068i 0.357743i −0.983872 0.178872i \(-0.942755\pi\)
0.983872 0.178872i \(-0.0572447\pi\)
\(42\) 0 0
\(43\) −4.84567 + 4.84567i −0.738958 + 0.738958i −0.972376 0.233418i \(-0.925009\pi\)
0.233418 + 0.972376i \(0.425009\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2.47244 + 2.47244i −0.360643 + 0.360643i −0.864049 0.503407i \(-0.832080\pi\)
0.503407 + 0.864049i \(0.332080\pi\)
\(48\) 0 0
\(49\) 1.72808i 0.246868i
\(50\) 0 0
\(51\) 5.21972i 0.730907i
\(52\) 0 0
\(53\) −2.56577 2.56577i −0.352436 0.352436i 0.508579 0.861015i \(-0.330171\pi\)
−0.861015 + 0.508579i \(0.830171\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −0.956432 0.956432i −0.126683 0.126683i
\(58\) 0 0
\(59\) 2.86404i 0.372866i 0.982468 + 0.186433i \(0.0596928\pi\)
−0.982468 + 0.186433i \(0.940307\pi\)
\(60\) 0 0
\(61\) 4.07246i 0.521425i 0.965417 + 0.260712i \(0.0839574\pi\)
−0.965417 + 0.260712i \(0.916043\pi\)
\(62\) 0 0
\(63\) −2.08903 + 2.08903i −0.263193 + 0.263193i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −4.02255 + 4.02255i −0.491432 + 0.491432i −0.908757 0.417325i \(-0.862968\pi\)
0.417325 + 0.908757i \(0.362968\pi\)
\(68\) 0 0
\(69\) 1.59609i 0.192147i
\(70\) 0 0
\(71\) 2.49259 0.295816 0.147908 0.989001i \(-0.452746\pi\)
0.147908 + 0.989001i \(0.452746\pi\)
\(72\) 0 0
\(73\) −1.83275 + 1.83275i −0.214508 + 0.214508i −0.806179 0.591672i \(-0.798468\pi\)
0.591672 + 0.806179i \(0.298468\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.879863 + 9.75883i 0.100270 + 1.11212i
\(78\) 0 0
\(79\) 1.86149 0.209434 0.104717 0.994502i \(-0.466606\pi\)
0.104717 + 0.994502i \(0.466606\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) −0.432439 + 0.432439i −0.0474664 + 0.0474664i −0.730442 0.682975i \(-0.760686\pi\)
0.682975 + 0.730442i \(0.260686\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −0.829118 0.829118i −0.0888908 0.0888908i
\(88\) 0 0
\(89\) 3.35663i 0.355802i 0.984048 + 0.177901i \(0.0569306\pi\)
−0.984048 + 0.177901i \(0.943069\pi\)
\(90\) 0 0
\(91\) 1.13199 0.118665
\(92\) 0 0
\(93\) −1.83571 1.83571i −0.190355 0.190355i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −7.77050 + 7.77050i −0.788975 + 0.788975i −0.981326 0.192351i \(-0.938389\pi\)
0.192351 + 0.981326i \(0.438389\pi\)
\(98\) 0 0
\(99\) −2.12514 + 2.54632i −0.213585 + 0.255915i
\(100\) 0 0
\(101\) 8.42926i 0.838743i −0.907815 0.419371i \(-0.862251\pi\)
0.907815 0.419371i \(-0.137749\pi\)
\(102\) 0 0
\(103\) 3.86370 + 3.86370i 0.380702 + 0.380702i 0.871355 0.490653i \(-0.163242\pi\)
−0.490653 + 0.871355i \(0.663242\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −6.14407 6.14407i −0.593969 0.593969i 0.344732 0.938701i \(-0.387970\pi\)
−0.938701 + 0.344732i \(0.887970\pi\)
\(108\) 0 0
\(109\) 12.6819 1.21470 0.607352 0.794433i \(-0.292232\pi\)
0.607352 + 0.794433i \(0.292232\pi\)
\(110\) 0 0
\(111\) 5.95669 0.565384
\(112\) 0 0
\(113\) −7.46475 7.46475i −0.702225 0.702225i 0.262663 0.964888i \(-0.415399\pi\)
−0.964888 + 0.262663i \(0.915399\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0.270937 + 0.270937i 0.0250481 + 0.0250481i
\(118\) 0 0
\(119\) 15.4208i 1.41362i
\(120\) 0 0
\(121\) 1.96754 + 10.8226i 0.178867 + 0.983873i
\(122\) 0 0
\(123\) −1.61975 + 1.61975i −0.146048 + 0.146048i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 15.8946 + 15.8946i 1.41042 + 1.41042i 0.756968 + 0.653452i \(0.226680\pi\)
0.653452 + 0.756968i \(0.273320\pi\)
\(128\) 0 0
\(129\) 6.85281 0.603357
\(130\) 0 0
\(131\) 21.5656i 1.88420i −0.335338 0.942098i \(-0.608851\pi\)
0.335338 0.942098i \(-0.391149\pi\)
\(132\) 0 0
\(133\) 2.82562 + 2.82562i 0.245012 + 0.245012i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −0.393683 + 0.393683i −0.0336346 + 0.0336346i −0.723724 0.690089i \(-0.757571\pi\)
0.690089 + 0.723724i \(0.257571\pi\)
\(138\) 0 0
\(139\) 5.90866 0.501166 0.250583 0.968095i \(-0.419378\pi\)
0.250583 + 0.968095i \(0.419378\pi\)
\(140\) 0 0
\(141\) 3.49656 0.294463
\(142\) 0 0
\(143\) 1.26567 0.114114i 0.105841 0.00954268i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 1.22194 1.22194i 0.100784 0.100784i
\(148\) 0 0
\(149\) 18.2157 1.49229 0.746143 0.665786i \(-0.231903\pi\)
0.746143 + 0.665786i \(0.231903\pi\)
\(150\) 0 0
\(151\) 14.8261i 1.20653i −0.797541 0.603265i \(-0.793866\pi\)
0.797541 0.603265i \(-0.206134\pi\)
\(152\) 0 0
\(153\) −3.69090 + 3.69090i −0.298392 + 0.298392i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −12.9719 + 12.9719i −1.03527 + 1.03527i −0.0359146 + 0.999355i \(0.511434\pi\)
−0.999355 + 0.0359146i \(0.988566\pi\)
\(158\) 0 0
\(159\) 3.62855i 0.287763i
\(160\) 0 0
\(161\) 4.71538i 0.371624i
\(162\) 0 0
\(163\) 7.88625 + 7.88625i 0.617699 + 0.617699i 0.944941 0.327242i \(-0.106119\pi\)
−0.327242 + 0.944941i \(0.606119\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 6.12024 + 6.12024i 0.473599 + 0.473599i 0.903077 0.429478i \(-0.141303\pi\)
−0.429478 + 0.903077i \(0.641303\pi\)
\(168\) 0 0
\(169\) 12.8532i 0.988707i
\(170\) 0 0
\(171\) 1.35260i 0.103436i
\(172\) 0 0
\(173\) −10.7292 + 10.7292i −0.815723 + 0.815723i −0.985485 0.169762i \(-0.945700\pi\)
0.169762 + 0.985485i \(0.445700\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 2.02518 2.02518i 0.152222 0.152222i
\(178\) 0 0
\(179\) 8.88489i 0.664088i 0.943264 + 0.332044i \(0.107738\pi\)
−0.943264 + 0.332044i \(0.892262\pi\)
\(180\) 0 0
\(181\) −16.1135 −1.19771 −0.598854 0.800858i \(-0.704377\pi\)
−0.598854 + 0.800858i \(0.704377\pi\)
\(182\) 0 0
\(183\) 2.87966 2.87966i 0.212871 0.212871i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 1.55454 + 17.2419i 0.113680 + 1.26085i
\(188\) 0 0
\(189\) 2.95433 0.214896
\(190\) 0 0
\(191\) 20.2415 1.46462 0.732312 0.680969i \(-0.238441\pi\)
0.732312 + 0.680969i \(0.238441\pi\)
\(192\) 0 0
\(193\) 17.9186 17.9186i 1.28981 1.28981i 0.354904 0.934903i \(-0.384513\pi\)
0.934903 0.354904i \(-0.115487\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −2.45317 2.45317i −0.174781 0.174781i 0.614295 0.789076i \(-0.289440\pi\)
−0.789076 + 0.614295i \(0.789440\pi\)
\(198\) 0 0
\(199\) 9.79621i 0.694435i −0.937785 0.347218i \(-0.887127\pi\)
0.937785 0.347218i \(-0.112873\pi\)
\(200\) 0 0
\(201\) 5.68874 0.401253
\(202\) 0 0
\(203\) 2.44949 + 2.44949i 0.171920 + 0.171920i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 1.12861 1.12861i 0.0784435 0.0784435i
\(208\) 0 0
\(209\) 3.44416 + 2.87447i 0.238237 + 0.198831i
\(210\) 0 0
\(211\) 9.16422i 0.630891i 0.948944 + 0.315446i \(0.102154\pi\)
−0.948944 + 0.315446i \(0.897846\pi\)
\(212\) 0 0
\(213\) −1.76253 1.76253i −0.120766 0.120766i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 5.42331 + 5.42331i 0.368158 + 0.368158i
\(218\) 0 0
\(219\) 2.59190 0.175145
\(220\) 0 0
\(221\) 2.00000 0.134535
\(222\) 0 0
\(223\) −4.74014 4.74014i −0.317423 0.317423i 0.530354 0.847777i \(-0.322059\pi\)
−0.847777 + 0.530354i \(0.822059\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −12.0986 12.0986i −0.803011 0.803011i 0.180554 0.983565i \(-0.442211\pi\)
−0.983565 + 0.180554i \(0.942211\pi\)
\(228\) 0 0
\(229\) 24.5845i 1.62459i 0.583248 + 0.812294i \(0.301782\pi\)
−0.583248 + 0.812294i \(0.698218\pi\)
\(230\) 0 0
\(231\) 6.27838 7.52269i 0.413087 0.494957i
\(232\) 0 0
\(233\) 1.74871 1.74871i 0.114562 0.114562i −0.647502 0.762064i \(-0.724186\pi\)
0.762064 + 0.647502i \(0.224186\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −1.31627 1.31627i −0.0855012 0.0855012i
\(238\) 0 0
\(239\) 10.0042 0.647117 0.323558 0.946208i \(-0.395121\pi\)
0.323558 + 0.946208i \(0.395121\pi\)
\(240\) 0 0
\(241\) 23.7743i 1.53144i 0.643174 + 0.765720i \(0.277617\pi\)
−0.643174 + 0.765720i \(0.722383\pi\)
\(242\) 0 0
\(243\) 0.707107 + 0.707107i 0.0453609 + 0.0453609i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0.366469 0.366469i 0.0233178 0.0233178i
\(248\) 0 0
\(249\) 0.611561 0.0387561
\(250\) 0 0
\(251\) 13.2130 0.833999 0.417000 0.908907i \(-0.363082\pi\)
0.417000 + 0.908907i \(0.363082\pi\)
\(252\) 0 0
\(253\) −0.475350 5.27225i −0.0298850 0.331463i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 13.8483 13.8483i 0.863835 0.863835i −0.127946 0.991781i \(-0.540839\pi\)
0.991781 + 0.127946i \(0.0408386\pi\)
\(258\) 0 0
\(259\) −17.5980 −1.09349
\(260\) 0 0
\(261\) 1.17255i 0.0725790i
\(262\) 0 0
\(263\) 12.4453 12.4453i 0.767408 0.767408i −0.210242 0.977649i \(-0.567425\pi\)
0.977649 + 0.210242i \(0.0674251\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 2.37349 2.37349i 0.145255 0.145255i
\(268\) 0 0
\(269\) 3.13521i 0.191157i −0.995422 0.0955785i \(-0.969530\pi\)
0.995422 0.0955785i \(-0.0304701\pi\)
\(270\) 0 0
\(271\) 11.6479i 0.707560i −0.935329 0.353780i \(-0.884896\pi\)
0.935329 0.353780i \(-0.115104\pi\)
\(272\) 0 0
\(273\) −0.800437 0.800437i −0.0484446 0.0484446i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 12.8020 + 12.8020i 0.769195 + 0.769195i 0.977965 0.208770i \(-0.0669458\pi\)
−0.208770 + 0.977965i \(0.566946\pi\)
\(278\) 0 0
\(279\) 2.59609i 0.155424i
\(280\) 0 0
\(281\) 23.0775i 1.37669i 0.725384 + 0.688345i \(0.241662\pi\)
−0.725384 + 0.688345i \(0.758338\pi\)
\(282\) 0 0
\(283\) 14.5874 14.5874i 0.867133 0.867133i −0.125021 0.992154i \(-0.539900\pi\)
0.992154 + 0.125021i \(0.0398998\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4.78529 4.78529i 0.282467 0.282467i
\(288\) 0 0
\(289\) 10.2455i 0.602676i
\(290\) 0 0
\(291\) 10.9891 0.644195
\(292\) 0 0
\(293\) −21.4837 + 21.4837i −1.25509 + 1.25509i −0.301685 + 0.953408i \(0.597549\pi\)
−0.953408 + 0.301685i \(0.902451\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 3.30323 0.297821i 0.191673 0.0172813i
\(298\) 0 0
\(299\) −0.611561 −0.0353675
\(300\) 0 0
\(301\) −20.2455 −1.16693
\(302\) 0 0
\(303\) −5.96039 + 5.96039i −0.342415 + 0.342415i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 7.44246 + 7.44246i 0.424764 + 0.424764i 0.886840 0.462076i \(-0.152895\pi\)
−0.462076 + 0.886840i \(0.652895\pi\)
\(308\) 0 0
\(309\) 5.46410i 0.310842i
\(310\) 0 0
\(311\) 18.7212 1.06158 0.530791 0.847503i \(-0.321895\pi\)
0.530791 + 0.847503i \(0.321895\pi\)
\(312\) 0 0
\(313\) 5.08283 + 5.08283i 0.287299 + 0.287299i 0.836011 0.548713i \(-0.184882\pi\)
−0.548713 + 0.836011i \(0.684882\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −4.88423 + 4.88423i −0.274326 + 0.274326i −0.830839 0.556513i \(-0.812139\pi\)
0.556513 + 0.830839i \(0.312139\pi\)
\(318\) 0 0
\(319\) 2.98569 + 2.49184i 0.167167 + 0.139516i
\(320\) 0 0
\(321\) 8.68902i 0.484974i
\(322\) 0 0
\(323\) 4.99231 + 4.99231i 0.277780 + 0.277780i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −8.96744 8.96744i −0.495901 0.495901i
\(328\) 0 0
\(329\) −10.3300 −0.569511
\(330\) 0 0
\(331\) −17.3854 −0.955589 −0.477795 0.878472i \(-0.658564\pi\)
−0.477795 + 0.878472i \(0.658564\pi\)
\(332\) 0 0
\(333\) −4.21202 4.21202i −0.230817 0.230817i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −3.87136 3.87136i −0.210886 0.210886i 0.593758 0.804644i \(-0.297644\pi\)
−0.804644 + 0.593758i \(0.797644\pi\)
\(338\) 0 0
\(339\) 10.5568i 0.573364i
\(340\) 0 0
\(341\) 6.61049 + 5.51706i 0.357978 + 0.298766i
\(342\) 0 0
\(343\) 11.0132 11.0132i 0.594657 0.594657i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −1.85972 1.85972i −0.0998350 0.0998350i 0.655425 0.755260i \(-0.272489\pi\)
−0.755260 + 0.655425i \(0.772489\pi\)
\(348\) 0 0
\(349\) −5.90866 −0.316284 −0.158142 0.987416i \(-0.550550\pi\)
−0.158142 + 0.987416i \(0.550550\pi\)
\(350\) 0 0
\(351\) 0.383162i 0.0204517i
\(352\) 0 0
\(353\) −6.82316 6.82316i −0.363160 0.363160i 0.501815 0.864975i \(-0.332666\pi\)
−0.864975 + 0.501815i \(0.832666\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 10.9041 10.9041i 0.577109 0.577109i
\(358\) 0 0
\(359\) 25.3591 1.33840 0.669201 0.743082i \(-0.266637\pi\)
0.669201 + 0.743082i \(0.266637\pi\)
\(360\) 0 0
\(361\) −17.1705 −0.903709
\(362\) 0 0
\(363\) 6.26148 9.04400i 0.328642 0.474687i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −10.3301 + 10.3301i −0.539228 + 0.539228i −0.923302 0.384074i \(-0.874521\pi\)
0.384074 + 0.923302i \(0.374521\pi\)
\(368\) 0 0
\(369\) 2.29068 0.119248
\(370\) 0 0
\(371\) 10.7199i 0.556551i
\(372\) 0 0
\(373\) −5.59782 + 5.59782i −0.289844 + 0.289844i −0.837019 0.547174i \(-0.815703\pi\)
0.547174 + 0.837019i \(0.315703\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0.317687 0.317687i 0.0163617 0.0163617i
\(378\) 0 0
\(379\) 27.8300i 1.42953i −0.699365 0.714765i \(-0.746534\pi\)
0.699365 0.714765i \(-0.253466\pi\)
\(380\) 0 0
\(381\) 22.4784i 1.15160i
\(382\) 0 0
\(383\) 12.1771 + 12.1771i 0.622219 + 0.622219i 0.946098 0.323879i \(-0.104987\pi\)
−0.323879 + 0.946098i \(0.604987\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −4.84567 4.84567i −0.246319 0.246319i
\(388\) 0 0
\(389\) 4.90735i 0.248813i 0.992231 + 0.124406i \(0.0397026\pi\)
−0.992231 + 0.124406i \(0.960297\pi\)
\(390\) 0 0
\(391\) 8.33115i 0.421324i
\(392\) 0 0
\(393\) −15.2492 + 15.2492i −0.769220 + 0.769220i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −2.41606 + 2.41606i −0.121258 + 0.121258i −0.765132 0.643874i \(-0.777326\pi\)
0.643874 + 0.765132i \(0.277326\pi\)
\(398\) 0 0
\(399\) 3.99603i 0.200052i
\(400\) 0 0
\(401\) −24.4918 −1.22306 −0.611532 0.791220i \(-0.709446\pi\)
−0.611532 + 0.791220i \(0.709446\pi\)
\(402\) 0 0
\(403\) 0.703376 0.703376i 0.0350376 0.0350376i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −19.6763 + 1.77403i −0.975318 + 0.0879353i
\(408\) 0 0
\(409\) 4.98910 0.246695 0.123348 0.992364i \(-0.460637\pi\)
0.123348 + 0.992364i \(0.460637\pi\)
\(410\) 0 0
\(411\) 0.556752 0.0274625
\(412\) 0 0
\(413\) −5.98306 + 5.98306i −0.294407 + 0.294407i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −4.17806 4.17806i −0.204600 0.204600i
\(418\) 0 0
\(419\) 34.7334i 1.69684i −0.529327 0.848418i \(-0.677556\pi\)
0.529327 0.848418i \(-0.322444\pi\)
\(420\) 0 0
\(421\) −21.3025 −1.03822 −0.519109 0.854708i \(-0.673736\pi\)
−0.519109 + 0.854708i \(0.673736\pi\)
\(422\) 0 0
\(423\) −2.47244 2.47244i −0.120214 0.120214i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −8.50748 + 8.50748i −0.411706 + 0.411706i
\(428\) 0 0
\(429\) −0.975656 0.814274i −0.0471051 0.0393135i
\(430\) 0 0
\(431\) 3.96534i 0.191004i −0.995429 0.0955019i \(-0.969554\pi\)
0.995429 0.0955019i \(-0.0304456\pi\)
\(432\) 0 0
\(433\) 12.9719 + 12.9719i 0.623389 + 0.623389i 0.946396 0.323007i \(-0.104694\pi\)
−0.323007 + 0.946396i \(0.604694\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1.52655 1.52655i −0.0730249 0.0730249i
\(438\) 0 0
\(439\) −11.6373 −0.555417 −0.277709 0.960665i \(-0.589575\pi\)
−0.277709 + 0.960665i \(0.589575\pi\)
\(440\) 0 0
\(441\) −1.72808 −0.0822895
\(442\) 0 0
\(443\) −10.4870 10.4870i −0.498251 0.498251i 0.412642 0.910893i \(-0.364606\pi\)
−0.910893 + 0.412642i \(0.864606\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −12.8804 12.8804i −0.609223 0.609223i
\(448\) 0 0
\(449\) 30.2487i 1.42752i 0.700388 + 0.713762i \(0.253010\pi\)
−0.700388 + 0.713762i \(0.746990\pi\)
\(450\) 0 0
\(451\) 4.86801 5.83280i 0.229226 0.274656i
\(452\) 0 0
\(453\) −10.4836 + 10.4836i −0.492564 + 0.492564i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −3.15939 3.15939i −0.147790 0.147790i 0.629340 0.777130i \(-0.283325\pi\)
−0.777130 + 0.629340i \(0.783325\pi\)
\(458\) 0 0
\(459\) 5.21972 0.243636
\(460\) 0 0
\(461\) 11.1676i 0.520128i −0.965591 0.260064i \(-0.916256\pi\)
0.965591 0.260064i \(-0.0837437\pi\)
\(462\) 0 0
\(463\) 4.94488 + 4.94488i 0.229808 + 0.229808i 0.812613 0.582804i \(-0.198045\pi\)
−0.582804 + 0.812613i \(0.698045\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 22.4198 22.4198i 1.03746 1.03746i 0.0381939 0.999270i \(-0.487840\pi\)
0.999270 0.0381939i \(-0.0121604\pi\)
\(468\) 0 0
\(469\) −16.8064 −0.776049
\(470\) 0 0
\(471\) 18.3450 0.845294
\(472\) 0 0
\(473\) −22.6364 + 2.04091i −1.04082 + 0.0938413i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 2.56577 2.56577i 0.117479 0.117479i
\(478\) 0 0
\(479\) −30.9458 −1.41395 −0.706975 0.707239i \(-0.749941\pi\)
−0.706975 + 0.707239i \(0.749941\pi\)
\(480\) 0 0
\(481\) 2.28238i 0.104067i
\(482\) 0 0
\(483\) −3.33428 + 3.33428i −0.151715 + 0.151715i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −23.7603 + 23.7603i −1.07668 + 1.07668i −0.0798766 + 0.996805i \(0.525453\pi\)
−0.996805 + 0.0798766i \(0.974547\pi\)
\(488\) 0 0
\(489\) 11.1528i 0.504349i
\(490\) 0 0
\(491\) 3.48841i 0.157430i −0.996897 0.0787148i \(-0.974918\pi\)
0.996897 0.0787148i \(-0.0250816\pi\)
\(492\) 0 0
\(493\) 4.32776 + 4.32776i 0.194913 + 0.194913i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 5.20709 + 5.20709i 0.233570 + 0.233570i
\(498\) 0 0
\(499\) 25.8869i 1.15886i −0.815022 0.579429i \(-0.803275\pi\)
0.815022 0.579429i \(-0.196725\pi\)
\(500\) 0 0
\(501\) 8.65533i 0.386692i
\(502\) 0 0
\(503\) 7.61590 7.61590i 0.339576 0.339576i −0.516632 0.856208i \(-0.672814\pi\)
0.856208 + 0.516632i \(0.172814\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 9.08858 9.08858i 0.403638 0.403638i
\(508\) 0 0
\(509\) 20.3497i 0.901987i −0.892527 0.450993i \(-0.851070\pi\)
0.892527 0.450993i \(-0.148930\pi\)
\(510\) 0 0
\(511\) −7.65735 −0.338741
\(512\) 0 0
\(513\) 0.956432 0.956432i 0.0422275 0.0422275i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −11.5499 + 1.04135i −0.507965 + 0.0457985i
\(518\) 0 0
\(519\) 15.1733 0.666035
\(520\) 0 0
\(521\) −13.7618 −0.602917 −0.301459 0.953479i \(-0.597474\pi\)
−0.301459 + 0.953479i \(0.597474\pi\)
\(522\) 0 0
\(523\) −5.87585 + 5.87585i −0.256933 + 0.256933i −0.823806 0.566872i \(-0.808153\pi\)
0.566872 + 0.823806i \(0.308153\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 9.58191 + 9.58191i 0.417395 + 0.417395i
\(528\) 0 0
\(529\) 20.4525i 0.889239i
\(530\) 0 0
\(531\) −2.86404 −0.124289
\(532\) 0 0
\(533\) −0.620628 0.620628i −0.0268824 0.0268824i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 6.28257 6.28257i 0.271113 0.271113i
\(538\) 0 0
\(539\) −3.67241 + 4.40025i −0.158182 + 0.189532i
\(540\) 0 0
\(541\) 35.7464i 1.53686i 0.639934 + 0.768430i \(0.278962\pi\)
−0.639934 + 0.768430i \(0.721038\pi\)
\(542\) 0 0
\(543\) 11.3940 + 11.3940i 0.488962 + 0.488962i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 1.60781 + 1.60781i 0.0687452 + 0.0687452i 0.740643 0.671898i \(-0.234521\pi\)
−0.671898 + 0.740643i \(0.734521\pi\)
\(548\) 0 0
\(549\) −4.07246 −0.173808
\(550\) 0 0
\(551\) 1.58599 0.0675654
\(552\) 0 0
\(553\) 3.88871 + 3.88871i 0.165365 + 0.165365i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −13.0848 13.0848i −0.554422 0.554422i 0.373292 0.927714i \(-0.378229\pi\)
−0.927714 + 0.373292i \(0.878229\pi\)
\(558\) 0 0
\(559\) 2.62574i 0.111057i
\(560\) 0 0
\(561\) 11.0926 13.2911i 0.468332 0.561151i
\(562\) 0 0
\(563\) 14.8287 14.8287i 0.624955 0.624955i −0.321840 0.946794i \(-0.604301\pi\)
0.946794 + 0.321840i \(0.104301\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −2.08903 2.08903i −0.0877309 0.0877309i
\(568\) 0 0
\(569\) −15.7158 −0.658841 −0.329421 0.944183i \(-0.606853\pi\)
−0.329421 + 0.944183i \(0.606853\pi\)
\(570\) 0 0
\(571\) 42.9824i 1.79876i 0.437170 + 0.899379i \(0.355981\pi\)
−0.437170 + 0.899379i \(0.644019\pi\)
\(572\) 0 0
\(573\) −14.3129 14.3129i −0.597931 0.597931i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 24.1755 24.1755i 1.00644 1.00644i 0.00645868 0.999979i \(-0.497944\pi\)
0.999979 0.00645868i \(-0.00205588\pi\)
\(578\) 0 0
\(579\) −25.3407 −1.05312
\(580\) 0 0
\(581\) −1.80676 −0.0749568
\(582\) 0 0
\(583\) −1.08066 11.9859i −0.0447563 0.496406i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 16.9771 16.9771i 0.700720 0.700720i −0.263845 0.964565i \(-0.584991\pi\)
0.964565 + 0.263845i \(0.0849908\pi\)
\(588\) 0 0
\(589\) 3.51147 0.144688
\(590\) 0 0
\(591\) 3.46930i 0.142708i
\(592\) 0 0
\(593\) 23.8599 23.8599i 0.979810 0.979810i −0.0199904 0.999800i \(-0.506364\pi\)
0.999800 + 0.0199904i \(0.00636356\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −6.92697 + 6.92697i −0.283502 + 0.283502i
\(598\) 0 0
\(599\) 45.1985i 1.84676i −0.383885 0.923381i \(-0.625414\pi\)
0.383885 0.923381i \(-0.374586\pi\)
\(600\) 0 0
\(601\) 21.0028i 0.856722i 0.903608 + 0.428361i \(0.140909\pi\)
−0.903608 + 0.428361i \(0.859091\pi\)
\(602\) 0 0
\(603\) −4.02255 4.02255i −0.163811 0.163811i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 6.66541 + 6.66541i 0.270541 + 0.270541i 0.829318 0.558777i \(-0.188729\pi\)
−0.558777 + 0.829318i \(0.688729\pi\)
\(608\) 0 0
\(609\) 3.46410i 0.140372i
\(610\) 0 0
\(611\) 1.33975i 0.0542005i
\(612\) 0 0
\(613\) −3.02593 + 3.02593i −0.122216 + 0.122216i −0.765570 0.643353i \(-0.777543\pi\)
0.643353 + 0.765570i \(0.277543\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 28.3597 28.3597i 1.14172 1.14172i 0.153581 0.988136i \(-0.450919\pi\)
0.988136 0.153581i \(-0.0490806\pi\)
\(618\) 0 0
\(619\) 34.0955i 1.37041i −0.728349 0.685206i \(-0.759712\pi\)
0.728349 0.685206i \(-0.240288\pi\)
\(620\) 0 0
\(621\) −1.59609 −0.0640489
\(622\) 0 0
\(623\) −7.01209 + 7.01209i −0.280933 + 0.280933i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −0.402833 4.46794i −0.0160876 0.178432i
\(628\) 0 0
\(629\) −31.0923 −1.23973
\(630\) 0 0
\(631\) −16.1251 −0.641930 −0.320965 0.947091i \(-0.604007\pi\)
−0.320965 + 0.947091i \(0.604007\pi\)
\(632\) 0 0
\(633\) 6.48009 6.48009i 0.257560 0.257560i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0.468200 + 0.468200i 0.0185507 + 0.0185507i
\(638\) 0 0
\(639\) 2.49259i 0.0986052i
\(640\) 0 0
\(641\) 24.6202 0.972438 0.486219 0.873837i \(-0.338376\pi\)
0.486219 + 0.873837i \(0.338376\pi\)
\(642\) 0 0
\(643\) 14.5113 + 14.5113i 0.572271 + 0.572271i 0.932763 0.360491i \(-0.117391\pi\)
−0.360491 + 0.932763i \(0.617391\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −7.08489 + 7.08489i −0.278536 + 0.278536i −0.832524 0.553988i \(-0.813105\pi\)
0.553988 + 0.832524i \(0.313105\pi\)
\(648\) 0 0
\(649\) −6.08649 + 7.29277i −0.238916 + 0.286266i
\(650\) 0 0
\(651\) 7.66971i 0.300600i
\(652\) 0 0
\(653\) −23.6106 23.6106i −0.923953 0.923953i 0.0733530 0.997306i \(-0.476630\pi\)
−0.997306 + 0.0733530i \(0.976630\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −1.83275 1.83275i −0.0715025 0.0715025i
\(658\) 0 0
\(659\) −35.4475 −1.38084 −0.690420 0.723409i \(-0.742574\pi\)
−0.690420 + 0.723409i \(0.742574\pi\)
\(660\) 0 0
\(661\) −30.3511 −1.18052 −0.590260 0.807214i \(-0.700975\pi\)
−0.590260 + 0.807214i \(0.700975\pi\)
\(662\) 0 0
\(663\) −1.41421 1.41421i −0.0549235 0.0549235i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −1.32335 1.32335i −0.0512402 0.0512402i
\(668\) 0 0
\(669\) 6.70356i 0.259175i
\(670\) 0 0
\(671\) −8.65455 + 10.3698i −0.334105 + 0.400322i
\(672\) 0 0
\(673\) −12.8801 + 12.8801i −0.496490 + 0.496490i −0.910343 0.413854i \(-0.864183\pi\)
0.413854 + 0.910343i \(0.364183\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −26.4297 26.4297i −1.01578 1.01578i −0.999874 0.0159042i \(-0.994937\pi\)
−0.0159042 0.999874i \(-0.505063\pi\)
\(678\) 0 0
\(679\) −32.4656 −1.24592
\(680\) 0 0
\(681\) 17.1100i 0.655656i
\(682\) 0 0
\(683\) 8.06243 + 8.06243i 0.308500 + 0.308500i 0.844328 0.535827i \(-0.180000\pi\)
−0.535827 + 0.844328i \(0.680000\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 17.3839 17.3839i 0.663235 0.663235i
\(688\) 0 0
\(689\) −1.39032 −0.0529671
\(690\) 0 0
\(691\) 25.0565 0.953195 0.476598 0.879122i \(-0.341870\pi\)
0.476598 + 0.879122i \(0.341870\pi\)
\(692\) 0 0
\(693\) −9.75883 + 0.879863i −0.370707 + 0.0334232i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 8.45466 8.45466i 0.320243 0.320243i
\(698\) 0 0
\(699\) −2.47305 −0.0935395
\(700\) 0 0
\(701\) 12.3407i 0.466102i 0.972465 + 0.233051i \(0.0748709\pi\)
−0.972465 + 0.233051i \(0.925129\pi\)
\(702\) 0 0
\(703\) −5.69717 + 5.69717i −0.214873 + 0.214873i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 17.6090 17.6090i 0.662253 0.662253i
\(708\) 0 0
\(709\) 41.3691i 1.55365i −0.629717 0.776824i \(-0.716829\pi\)
0.629717 0.776824i \(-0.283171\pi\)
\(710\) 0 0
\(711\) 1.86149i 0.0698114i
\(712\) 0 0
\(713\) −2.92996 2.92996i −0.109728 0.109728i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −7.07403 7.07403i −0.264184 0.264184i
\(718\) 0 0
\(719\) 14.5221i 0.541584i 0.962638 + 0.270792i \(0.0872856\pi\)
−0.962638 + 0.270792i \(0.912714\pi\)
\(720\) 0 0
\(721\) 16.1428i 0.601188i
\(722\) 0 0
\(723\) 16.8110 16.8110i 0.625208 0.625208i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 11.2008 11.2008i 0.415413 0.415413i −0.468206 0.883619i \(-0.655099\pi\)
0.883619 + 0.468206i \(0.155099\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) −35.7698 −1.32299
\(732\) 0 0
\(733\) 18.9417 18.9417i 0.699626 0.699626i −0.264704 0.964330i \(-0.585274\pi\)
0.964330 + 0.264704i \(0.0852741\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −18.7912 + 1.69423i −0.692183 + 0.0624077i
\(738\) 0 0
\(739\) −22.0323 −0.810472 −0.405236 0.914212i \(-0.632811\pi\)
−0.405236 + 0.914212i \(0.632811\pi\)
\(740\) 0 0
\(741\) −0.518265 −0.0190389
\(742\) 0 0
\(743\) −15.5007 + 15.5007i −0.568664 + 0.568664i −0.931754 0.363090i \(-0.881722\pi\)
0.363090 + 0.931754i \(0.381722\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −0.432439 0.432439i −0.0158221 0.0158221i
\(748\) 0 0
\(749\) 25.6703i 0.937971i
\(750\) 0 0
\(751\) 9.19218 0.335427 0.167714 0.985836i \(-0.446362\pi\)
0.167714 + 0.985836i \(0.446362\pi\)
\(752\) 0 0
\(753\) −9.34303 9.34303i −0.340479 0.340479i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 1.60255 1.60255i 0.0582456 0.0582456i −0.677384 0.735630i \(-0.736886\pi\)
0.735630 + 0.677384i \(0.236886\pi\)
\(758\) 0 0
\(759\) −3.39192 + 4.06416i −0.123119 + 0.147520i
\(760\) 0 0
\(761\) 23.7052i 0.859311i −0.902993 0.429656i \(-0.858635\pi\)
0.902993 0.429656i \(-0.141365\pi\)
\(762\) 0 0
\(763\) 26.4928 + 26.4928i 0.959104 + 0.959104i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0.775973 + 0.775973i 0.0280188 + 0.0280188i
\(768\) 0 0
\(769\) 29.8422 1.07614 0.538069 0.842901i \(-0.319154\pi\)
0.538069 + 0.842901i \(0.319154\pi\)
\(770\) 0 0
\(771\) −19.5845 −0.705318
\(772\) 0 0
\(773\) −12.6870 12.6870i −0.456321 0.456321i 0.441125 0.897446i \(-0.354580\pi\)
−0.897446 + 0.441125i \(0.854580\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 12.4437 + 12.4437i 0.446415 + 0.446415i
\(778\) 0 0
\(779\) 3.09837i 0.111010i
\(780\) 0 0
\(781\) 6.34694 + 5.29710i 0.227111 + 0.189545i
\(782\) 0 0
\(783\) 0.829118 0.829118i 0.0296303 0.0296303i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 6.77964 + 6.77964i 0.241668 + 0.241668i 0.817540 0.575872i \(-0.195337\pi\)
−0.575872 + 0.817540i \(0.695337\pi\)
\(788\) 0 0
\(789\) −17.6003 −0.626586
\(790\) 0 0
\(791\) 31.1882i 1.10892i
\(792\) 0 0
\(793\) 1.10338 + 1.10338i 0.0391821 + 0.0391821i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 8.96575 8.96575i 0.317583 0.317583i −0.530255 0.847838i \(-0.677904\pi\)
0.847838 + 0.530255i \(0.177904\pi\)
\(798\) 0 0
\(799\) −18.2511 −0.645676
\(800\) 0 0
\(801\) −3.35663 −0.118601
\(802\) 0 0
\(803\) −8.56165 + 0.771924i −0.302134 + 0.0272406i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −2.21693 + 2.21693i −0.0780395 + 0.0780395i
\(808\) 0 0
\(809\) 45.1829 1.58854 0.794272 0.607562i \(-0.207852\pi\)
0.794272 + 0.607562i \(0.207852\pi\)
\(810\) 0 0
\(811\) 47.3482i 1.66262i 0.555808 + 0.831310i \(0.312409\pi\)
−0.555808 + 0.831310i \(0.687591\pi\)
\(812\) 0 0
\(813\) −8.23631 + 8.23631i −0.288860 + 0.288860i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −6.55425 + 6.55425i −0.229304 + 0.229304i
\(818\) 0 0
\(819\) 1.13199i 0.0395549i
\(820\) 0 0
\(821\) 48.7594i 1.70171i 0.525397 + 0.850857i \(0.323917\pi\)
−0.525397 + 0.850857i \(0.676083\pi\)
\(822\) 0 0
\(823\) 4.54786 + 4.54786i 0.158528 + 0.158528i 0.781914 0.623386i \(-0.214243\pi\)
−0.623386 + 0.781914i \(0.714243\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −36.3759 36.3759i −1.26491 1.26491i −0.948681 0.316233i \(-0.897582\pi\)
−0.316233 0.948681i \(-0.602418\pi\)
\(828\) 0 0
\(829\) 4.06492i 0.141180i −0.997505 0.0705902i \(-0.977512\pi\)
0.997505 0.0705902i \(-0.0224883\pi\)
\(830\) 0 0
\(831\) 18.1047i 0.628045i
\(832\) 0 0
\(833\) −6.37817 + 6.37817i −0.220990 + 0.220990i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 1.83571 1.83571i 0.0634515 0.0634515i
\(838\) 0 0
\(839\) 21.1214i 0.729193i 0.931166 + 0.364597i \(0.118793\pi\)
−0.931166 + 0.364597i \(0.881207\pi\)
\(840\) 0 0
\(841\) −27.6251 −0.952591
\(842\) 0 0
\(843\) 16.3183 16.3183i 0.562031 0.562031i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −18.4985 + 26.7190i −0.635615 + 0.918075i
\(848\) 0 0
\(849\) −20.6298 −0.708011
\(850\) 0 0
\(851\) 9.50741 0.325910
\(852\) 0 0
\(853\) 12.7043 12.7043i 0.434986 0.434986i −0.455335 0.890320i \(-0.650480\pi\)
0.890320 + 0.455335i \(0.150480\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −19.2598 19.2598i −0.657902 0.657902i 0.296981 0.954883i \(-0.404020\pi\)
−0.954883 + 0.296981i \(0.904020\pi\)
\(858\) 0 0
\(859\) 53.1473i 1.81336i −0.421818 0.906681i \(-0.638608\pi\)
0.421818 0.906681i \(-0.361392\pi\)
\(860\) 0 0
\(861\) −6.76742 −0.230633
\(862\) 0 0
\(863\) 35.3639 + 35.3639i 1.20380 + 1.20380i 0.973002 + 0.230798i \(0.0741338\pi\)
0.230798 + 0.973002i \(0.425866\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 7.24466 7.24466i 0.246041 0.246041i
\(868\) 0 0
\(869\) 4.73997 + 3.95594i 0.160792 + 0.134196i
\(870\) 0 0
\(871\) 2.17971i 0.0738567i
\(872\) 0 0
\(873\) −7.77050 7.77050i −0.262992 0.262992i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 3.18429 + 3.18429i 0.107526 + 0.107526i 0.758823 0.651297i \(-0.225775\pi\)
−0.651297 + 0.758823i \(0.725775\pi\)
\(878\) 0 0
\(879\) 30.3826 1.02478
\(880\) 0 0
\(881\) −7.48495 −0.252175 −0.126087 0.992019i \(-0.540242\pi\)
−0.126087 + 0.992019i \(0.540242\pi\)
\(882\) 0 0
\(883\) −3.89152 3.89152i −0.130960 0.130960i 0.638588 0.769548i \(-0.279519\pi\)
−0.769548 + 0.638588i \(0.779519\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 29.9858 + 29.9858i 1.00683 + 1.00683i 0.999977 + 0.00684878i \(0.00218005\pi\)
0.00684878 + 0.999977i \(0.497820\pi\)
\(888\) 0 0
\(889\) 66.4086i 2.22727i
\(890\) 0 0
\(891\) −2.54632 2.12514i −0.0853051 0.0711949i
\(892\) 0 0
\(893\) −3.34422 + 3.34422i −0.111910 + 0.111910i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0.432439 + 0.432439i 0.0144387 + 0.0144387i
\(898\) 0 0
\(899\) 3.04404 0.101525
\(900\) 0 0
\(901\) 18.9400i 0.630983i
\(902\) 0 0
\(903\) 14.3157 + 14.3157i 0.476397 + 0.476397i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 27.8553 27.8553i 0.924921 0.924921i −0.0724513 0.997372i \(-0.523082\pi\)
0.997372 + 0.0724513i \(0.0230822\pi\)
\(908\) 0 0
\(909\) 8.42926 0.279581
\(910\) 0 0
\(911\) 13.7561 0.455761 0.227880 0.973689i \(-0.426820\pi\)
0.227880 + 0.973689i \(0.426820\pi\)
\(912\) 0 0
\(913\) −2.02013 + 0.182136i −0.0668564 + 0.00602782i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 45.0512 45.0512i 1.48772 1.48772i
\(918\) 0 0
\(919\) −5.46500 −0.180274 −0.0901369 0.995929i \(-0.528730\pi\)
−0.0901369 + 0.995929i \(0.528730\pi\)
\(920\) 0 0
\(921\) 10.5252i 0.346818i
\(922\) 0 0
\(923\) 0.675333 0.675333i 0.0222289 0.0222289i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −3.86370 + 3.86370i −0.126901 + 0.126901i
\(928\) 0 0
\(929\) 39.9976i 1.31228i −0.754639 0.656140i \(-0.772188\pi\)
0.754639 0.656140i \(-0.227812\pi\)
\(930\) 0 0
\(931\) 2.33740i 0.0766051i
\(932\) 0 0
\(933\) −13.2379 13.2379i −0.433389 0.433389i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −23.9358 23.9358i −0.781949 0.781949i 0.198210 0.980159i \(-0.436487\pi\)
−0.980159 + 0.198210i \(0.936487\pi\)
\(938\) 0 0
\(939\) 7.18821i 0.234578i
\(940\) 0 0
\(941\) 20.8750i 0.680507i −0.940334 0.340253i \(-0.889487\pi\)
0.940334 0.340253i \(-0.110513\pi\)
\(942\) 0 0
\(943\) −2.58527 + 2.58527i −0.0841880 + 0.0841880i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 17.1098 17.1098i 0.555994 0.555994i −0.372171 0.928164i \(-0.621386\pi\)
0.928164 + 0.372171i \(0.121386\pi\)
\(948\) 0 0
\(949\) 0.993120i 0.0322380i
\(950\) 0 0
\(951\) 6.90735 0.223986
\(952\) 0 0
\(953\) 3.46868 3.46868i 0.112362 0.112362i −0.648691 0.761052i \(-0.724683\pi\)
0.761052 + 0.648691i \(0.224683\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −0.349210 3.87320i −0.0112884 0.125203i
\(958\) 0 0
\(959\) −1.64483 −0.0531143
\(960\) 0 0
\(961\) −24.2603 −0.782591
\(962\) 0 0
\(963\) 6.14407 6.14407i 0.197990 0.197990i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −13.7600 13.7600i −0.442491 0.442491i 0.450358 0.892848i \(-0.351297\pi\)
−0.892848 + 0.450358i \(0.851297\pi\)
\(968\) 0 0
\(969\) 7.06019i 0.226806i
\(970\) 0 0
\(971\) 25.2355 0.809845 0.404923 0.914351i \(-0.367298\pi\)
0.404923 + 0.914351i \(0.367298\pi\)
\(972\) 0 0
\(973\) 12.3434 + 12.3434i 0.395710 + 0.395710i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −32.2331 + 32.2331i −1.03123 + 1.03123i −0.0317318 + 0.999496i \(0.510102\pi\)
−0.999496 + 0.0317318i \(0.989898\pi\)
\(978\) 0 0
\(979\) −7.13331 + 8.54706i −0.227982 + 0.273165i
\(980\) 0 0
\(981\) 12.6819i 0.404901i
\(982\) 0 0
\(983\) 3.53326 + 3.53326i 0.112693 + 0.112693i 0.761205 0.648511i \(-0.224608\pi\)
−0.648511 + 0.761205i \(0.724608\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 7.30441 + 7.30441i 0.232502 + 0.232502i
\(988\) 0 0
\(989\) 10.9377 0.347799
\(990\) 0 0
\(991\) −33.1167 −1.05199 −0.525994 0.850488i \(-0.676306\pi\)
−0.525994 + 0.850488i \(0.676306\pi\)
\(992\) 0 0
\(993\) 12.2934 + 12.2934i 0.390118 + 0.390118i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 22.9030 + 22.9030i 0.725345 + 0.725345i 0.969689 0.244343i \(-0.0785724\pi\)
−0.244343 + 0.969689i \(0.578572\pi\)
\(998\) 0 0
\(999\) 5.95669i 0.188461i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3300.2.x.d.1693.6 yes 32
5.2 odd 4 inner 3300.2.x.d.1957.5 yes 32
5.3 odd 4 inner 3300.2.x.d.1957.10 yes 32
5.4 even 2 inner 3300.2.x.d.1693.9 yes 32
11.10 odd 2 inner 3300.2.x.d.1693.5 32
55.32 even 4 inner 3300.2.x.d.1957.6 yes 32
55.43 even 4 inner 3300.2.x.d.1957.9 yes 32
55.54 odd 2 inner 3300.2.x.d.1693.10 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3300.2.x.d.1693.5 32 11.10 odd 2 inner
3300.2.x.d.1693.6 yes 32 1.1 even 1 trivial
3300.2.x.d.1693.9 yes 32 5.4 even 2 inner
3300.2.x.d.1693.10 yes 32 55.54 odd 2 inner
3300.2.x.d.1957.5 yes 32 5.2 odd 4 inner
3300.2.x.d.1957.6 yes 32 55.32 even 4 inner
3300.2.x.d.1957.9 yes 32 55.43 even 4 inner
3300.2.x.d.1957.10 yes 32 5.3 odd 4 inner