Properties

Label 3300.2.c.k.1849.3
Level $3300$
Weight $2$
Character 3300.1849
Analytic conductor $26.351$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3300,2,Mod(1849,3300)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3300.1849"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3300, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3300 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3300.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,-4,0,-4,0,0,0,0,0,0,0,-8,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(21)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.3506326670\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{13})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 7x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 660)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1849.3
Root \(-2.30278i\) of defining polynomial
Character \(\chi\) \(=\) 3300.1849
Dual form 3300.2.c.k.1849.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} -4.60555i q^{7} -1.00000 q^{9} -1.00000 q^{11} -0.605551i q^{13} +2.60555i q^{17} -2.00000 q^{19} +4.60555 q^{21} -1.00000i q^{27} +5.21110 q^{29} -9.21110 q^{31} -1.00000i q^{33} -7.21110i q^{37} +0.605551 q^{39} +5.21110 q^{41} +4.60555i q^{43} -5.21110i q^{47} -14.2111 q^{49} -2.60555 q^{51} -6.00000i q^{53} -2.00000i q^{57} -3.21110 q^{61} +4.60555i q^{63} +14.4222i q^{67} -12.0000 q^{71} +4.60555i q^{73} +4.60555i q^{77} -14.0000 q^{79} +1.00000 q^{81} -9.39445i q^{83} +5.21110i q^{87} -16.4222 q^{89} -2.78890 q^{91} -9.21110i q^{93} +10.0000i q^{97} +1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{9} - 4 q^{11} - 8 q^{19} + 4 q^{21} - 8 q^{29} - 8 q^{31} - 12 q^{39} - 8 q^{41} - 28 q^{49} + 4 q^{51} + 16 q^{61} - 48 q^{71} - 56 q^{79} + 4 q^{81} - 8 q^{89} - 40 q^{91} + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3300\mathbb{Z}\right)^\times\).

\(n\) \(1201\) \(1651\) \(2201\) \(2377\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 4.60555i − 1.74073i −0.492403 0.870367i \(-0.663881\pi\)
0.492403 0.870367i \(-0.336119\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) − 0.605551i − 0.167950i −0.996468 0.0839749i \(-0.973238\pi\)
0.996468 0.0839749i \(-0.0267615\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.60555i 0.631939i 0.948769 + 0.315970i \(0.102330\pi\)
−0.948769 + 0.315970i \(0.897670\pi\)
\(18\) 0 0
\(19\) −2.00000 −0.458831 −0.229416 0.973329i \(-0.573682\pi\)
−0.229416 + 0.973329i \(0.573682\pi\)
\(20\) 0 0
\(21\) 4.60555 1.00501
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 1.00000i − 0.192450i
\(28\) 0 0
\(29\) 5.21110 0.967677 0.483839 0.875157i \(-0.339242\pi\)
0.483839 + 0.875157i \(0.339242\pi\)
\(30\) 0 0
\(31\) −9.21110 −1.65436 −0.827181 0.561935i \(-0.810057\pi\)
−0.827181 + 0.561935i \(0.810057\pi\)
\(32\) 0 0
\(33\) − 1.00000i − 0.174078i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 7.21110i − 1.18550i −0.805387 0.592749i \(-0.798043\pi\)
0.805387 0.592749i \(-0.201957\pi\)
\(38\) 0 0
\(39\) 0.605551 0.0969658
\(40\) 0 0
\(41\) 5.21110 0.813837 0.406919 0.913464i \(-0.366603\pi\)
0.406919 + 0.913464i \(0.366603\pi\)
\(42\) 0 0
\(43\) 4.60555i 0.702340i 0.936312 + 0.351170i \(0.114216\pi\)
−0.936312 + 0.351170i \(0.885784\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 5.21110i − 0.760117i −0.924962 0.380059i \(-0.875904\pi\)
0.924962 0.380059i \(-0.124096\pi\)
\(48\) 0 0
\(49\) −14.2111 −2.03016
\(50\) 0 0
\(51\) −2.60555 −0.364850
\(52\) 0 0
\(53\) − 6.00000i − 0.824163i −0.911147 0.412082i \(-0.864802\pi\)
0.911147 0.412082i \(-0.135198\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 2.00000i − 0.264906i
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) −3.21110 −0.411140 −0.205570 0.978642i \(-0.565905\pi\)
−0.205570 + 0.978642i \(0.565905\pi\)
\(62\) 0 0
\(63\) 4.60555i 0.580245i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 14.4222i 1.76195i 0.473160 + 0.880976i \(0.343113\pi\)
−0.473160 + 0.880976i \(0.656887\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −12.0000 −1.42414 −0.712069 0.702109i \(-0.752242\pi\)
−0.712069 + 0.702109i \(0.752242\pi\)
\(72\) 0 0
\(73\) 4.60555i 0.539039i 0.962995 + 0.269520i \(0.0868649\pi\)
−0.962995 + 0.269520i \(0.913135\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 4.60555i 0.524851i
\(78\) 0 0
\(79\) −14.0000 −1.57512 −0.787562 0.616236i \(-0.788657\pi\)
−0.787562 + 0.616236i \(0.788657\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) − 9.39445i − 1.03117i −0.856837 0.515587i \(-0.827574\pi\)
0.856837 0.515587i \(-0.172426\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 5.21110i 0.558689i
\(88\) 0 0
\(89\) −16.4222 −1.74075 −0.870375 0.492389i \(-0.836124\pi\)
−0.870375 + 0.492389i \(0.836124\pi\)
\(90\) 0 0
\(91\) −2.78890 −0.292356
\(92\) 0 0
\(93\) − 9.21110i − 0.955147i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 10.0000i 1.01535i 0.861550 + 0.507673i \(0.169494\pi\)
−0.861550 + 0.507673i \(0.830506\pi\)
\(98\) 0 0
\(99\) 1.00000 0.100504
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) − 9.21110i − 0.907597i −0.891104 0.453798i \(-0.850069\pi\)
0.891104 0.453798i \(-0.149931\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 19.8167i 1.91575i 0.287188 + 0.957874i \(0.407279\pi\)
−0.287188 + 0.957874i \(0.592721\pi\)
\(108\) 0 0
\(109\) −14.0000 −1.34096 −0.670478 0.741929i \(-0.733911\pi\)
−0.670478 + 0.741929i \(0.733911\pi\)
\(110\) 0 0
\(111\) 7.21110 0.684448
\(112\) 0 0
\(113\) − 11.2111i − 1.05465i −0.849663 0.527326i \(-0.823195\pi\)
0.849663 0.527326i \(-0.176805\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0.605551i 0.0559832i
\(118\) 0 0
\(119\) 12.0000 1.10004
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 5.21110i 0.469869i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 9.81665i − 0.871087i −0.900168 0.435544i \(-0.856556\pi\)
0.900168 0.435544i \(-0.143444\pi\)
\(128\) 0 0
\(129\) −4.60555 −0.405496
\(130\) 0 0
\(131\) −17.2111 −1.50374 −0.751871 0.659311i \(-0.770848\pi\)
−0.751871 + 0.659311i \(0.770848\pi\)
\(132\) 0 0
\(133\) 9.21110i 0.798704i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 6.00000i 0.512615i 0.966595 + 0.256307i \(0.0825059\pi\)
−0.966595 + 0.256307i \(0.917494\pi\)
\(138\) 0 0
\(139\) −7.21110 −0.611638 −0.305819 0.952090i \(-0.598930\pi\)
−0.305819 + 0.952090i \(0.598930\pi\)
\(140\) 0 0
\(141\) 5.21110 0.438854
\(142\) 0 0
\(143\) 0.605551i 0.0506387i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 14.2111i − 1.17211i
\(148\) 0 0
\(149\) −12.0000 −0.983078 −0.491539 0.870855i \(-0.663566\pi\)
−0.491539 + 0.870855i \(0.663566\pi\)
\(150\) 0 0
\(151\) −10.0000 −0.813788 −0.406894 0.913475i \(-0.633388\pi\)
−0.406894 + 0.913475i \(0.633388\pi\)
\(152\) 0 0
\(153\) − 2.60555i − 0.210646i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 4.78890i 0.382196i 0.981571 + 0.191098i \(0.0612048\pi\)
−0.981571 + 0.191098i \(0.938795\pi\)
\(158\) 0 0
\(159\) 6.00000 0.475831
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) − 10.7889i − 0.845052i −0.906351 0.422526i \(-0.861144\pi\)
0.906351 0.422526i \(-0.138856\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2.60555i 0.201624i 0.994906 + 0.100812i \(0.0321440\pi\)
−0.994906 + 0.100812i \(0.967856\pi\)
\(168\) 0 0
\(169\) 12.6333 0.971793
\(170\) 0 0
\(171\) 2.00000 0.152944
\(172\) 0 0
\(173\) − 14.6056i − 1.11044i −0.831704 0.555220i \(-0.812634\pi\)
0.831704 0.555220i \(-0.187366\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 22.4222 1.67591 0.837957 0.545736i \(-0.183750\pi\)
0.837957 + 0.545736i \(0.183750\pi\)
\(180\) 0 0
\(181\) 7.21110 0.535997 0.267999 0.963419i \(-0.413638\pi\)
0.267999 + 0.963419i \(0.413638\pi\)
\(182\) 0 0
\(183\) − 3.21110i − 0.237372i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 2.60555i − 0.190537i
\(188\) 0 0
\(189\) −4.60555 −0.335005
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) − 7.39445i − 0.532264i −0.963937 0.266132i \(-0.914254\pi\)
0.963937 0.266132i \(-0.0857457\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 19.8167i − 1.41188i −0.708273 0.705939i \(-0.750525\pi\)
0.708273 0.705939i \(-0.249475\pi\)
\(198\) 0 0
\(199\) −8.00000 −0.567105 −0.283552 0.958957i \(-0.591513\pi\)
−0.283552 + 0.958957i \(0.591513\pi\)
\(200\) 0 0
\(201\) −14.4222 −1.01726
\(202\) 0 0
\(203\) − 24.0000i − 1.68447i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2.00000 0.138343
\(210\) 0 0
\(211\) 2.00000 0.137686 0.0688428 0.997628i \(-0.478069\pi\)
0.0688428 + 0.997628i \(0.478069\pi\)
\(212\) 0 0
\(213\) − 12.0000i − 0.822226i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 42.4222i 2.87981i
\(218\) 0 0
\(219\) −4.60555 −0.311214
\(220\) 0 0
\(221\) 1.57779 0.106134
\(222\) 0 0
\(223\) − 19.6333i − 1.31474i −0.753566 0.657372i \(-0.771668\pi\)
0.753566 0.657372i \(-0.228332\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 19.8167i − 1.31528i −0.753333 0.657639i \(-0.771555\pi\)
0.753333 0.657639i \(-0.228445\pi\)
\(228\) 0 0
\(229\) 8.42221 0.556555 0.278277 0.960501i \(-0.410237\pi\)
0.278277 + 0.960501i \(0.410237\pi\)
\(230\) 0 0
\(231\) −4.60555 −0.303023
\(232\) 0 0
\(233\) 14.6056i 0.956841i 0.878131 + 0.478421i \(0.158791\pi\)
−0.878131 + 0.478421i \(0.841209\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 14.0000i − 0.909398i
\(238\) 0 0
\(239\) −27.6333 −1.78745 −0.893725 0.448615i \(-0.851917\pi\)
−0.893725 + 0.448615i \(0.851917\pi\)
\(240\) 0 0
\(241\) 19.2111 1.23750 0.618748 0.785590i \(-0.287640\pi\)
0.618748 + 0.785590i \(0.287640\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 1.21110i 0.0770606i
\(248\) 0 0
\(249\) 9.39445 0.595349
\(250\) 0 0
\(251\) −24.0000 −1.51487 −0.757433 0.652913i \(-0.773547\pi\)
−0.757433 + 0.652913i \(0.773547\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 11.2111i − 0.699329i −0.936875 0.349665i \(-0.886296\pi\)
0.936875 0.349665i \(-0.113704\pi\)
\(258\) 0 0
\(259\) −33.2111 −2.06364
\(260\) 0 0
\(261\) −5.21110 −0.322559
\(262\) 0 0
\(263\) 2.60555i 0.160665i 0.996768 + 0.0803326i \(0.0255982\pi\)
−0.996768 + 0.0803326i \(0.974402\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 16.4222i − 1.00502i
\(268\) 0 0
\(269\) 4.42221 0.269627 0.134813 0.990871i \(-0.456957\pi\)
0.134813 + 0.990871i \(0.456957\pi\)
\(270\) 0 0
\(271\) 2.00000 0.121491 0.0607457 0.998153i \(-0.480652\pi\)
0.0607457 + 0.998153i \(0.480652\pi\)
\(272\) 0 0
\(273\) − 2.78890i − 0.168792i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0.605551i 0.0363840i 0.999835 + 0.0181920i \(0.00579102\pi\)
−0.999835 + 0.0181920i \(0.994209\pi\)
\(278\) 0 0
\(279\) 9.21110 0.551454
\(280\) 0 0
\(281\) 29.2111 1.74259 0.871294 0.490761i \(-0.163281\pi\)
0.871294 + 0.490761i \(0.163281\pi\)
\(282\) 0 0
\(283\) − 19.3944i − 1.15288i −0.817139 0.576440i \(-0.804441\pi\)
0.817139 0.576440i \(-0.195559\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 24.0000i − 1.41668i
\(288\) 0 0
\(289\) 10.2111 0.600653
\(290\) 0 0
\(291\) −10.0000 −0.586210
\(292\) 0 0
\(293\) 2.60555i 0.152218i 0.997100 + 0.0761090i \(0.0242497\pi\)
−0.997100 + 0.0761090i \(0.975750\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 1.00000i 0.0580259i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 21.2111 1.22259
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 17.8167i 1.01685i 0.861106 + 0.508425i \(0.169772\pi\)
−0.861106 + 0.508425i \(0.830228\pi\)
\(308\) 0 0
\(309\) 9.21110 0.524001
\(310\) 0 0
\(311\) 22.4222 1.27145 0.635723 0.771917i \(-0.280702\pi\)
0.635723 + 0.771917i \(0.280702\pi\)
\(312\) 0 0
\(313\) 19.2111i 1.08588i 0.839773 + 0.542938i \(0.182688\pi\)
−0.839773 + 0.542938i \(0.817312\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 21.6333i − 1.21505i −0.794301 0.607524i \(-0.792163\pi\)
0.794301 0.607524i \(-0.207837\pi\)
\(318\) 0 0
\(319\) −5.21110 −0.291766
\(320\) 0 0
\(321\) −19.8167 −1.10606
\(322\) 0 0
\(323\) − 5.21110i − 0.289954i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 14.0000i − 0.774202i
\(328\) 0 0
\(329\) −24.0000 −1.32316
\(330\) 0 0
\(331\) 25.2111 1.38573 0.692864 0.721069i \(-0.256349\pi\)
0.692864 + 0.721069i \(0.256349\pi\)
\(332\) 0 0
\(333\) 7.21110i 0.395166i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 19.3944i 1.05648i 0.849094 + 0.528241i \(0.177148\pi\)
−0.849094 + 0.528241i \(0.822852\pi\)
\(338\) 0 0
\(339\) 11.2111 0.608904
\(340\) 0 0
\(341\) 9.21110 0.498809
\(342\) 0 0
\(343\) 33.2111i 1.79323i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 4.18335i − 0.224574i −0.993676 0.112287i \(-0.964182\pi\)
0.993676 0.112287i \(-0.0358176\pi\)
\(348\) 0 0
\(349\) −17.6333 −0.943889 −0.471945 0.881628i \(-0.656448\pi\)
−0.471945 + 0.881628i \(0.656448\pi\)
\(350\) 0 0
\(351\) −0.605551 −0.0323219
\(352\) 0 0
\(353\) 30.0000i 1.59674i 0.602168 + 0.798369i \(0.294304\pi\)
−0.602168 + 0.798369i \(0.705696\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 12.0000i 0.635107i
\(358\) 0 0
\(359\) 15.6333 0.825094 0.412547 0.910936i \(-0.364639\pi\)
0.412547 + 0.910936i \(0.364639\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) 0 0
\(363\) 1.00000i 0.0524864i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 14.7889i − 0.771974i −0.922504 0.385987i \(-0.873861\pi\)
0.922504 0.385987i \(-0.126139\pi\)
\(368\) 0 0
\(369\) −5.21110 −0.271279
\(370\) 0 0
\(371\) −27.6333 −1.43465
\(372\) 0 0
\(373\) 6.18335i 0.320162i 0.987104 + 0.160081i \(0.0511755\pi\)
−0.987104 + 0.160081i \(0.948825\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 3.15559i − 0.162521i
\(378\) 0 0
\(379\) 2.42221 0.124420 0.0622102 0.998063i \(-0.480185\pi\)
0.0622102 + 0.998063i \(0.480185\pi\)
\(380\) 0 0
\(381\) 9.81665 0.502922
\(382\) 0 0
\(383\) − 15.6333i − 0.798825i −0.916771 0.399412i \(-0.869214\pi\)
0.916771 0.399412i \(-0.130786\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 4.60555i − 0.234113i
\(388\) 0 0
\(389\) −4.42221 −0.224215 −0.112107 0.993696i \(-0.535760\pi\)
−0.112107 + 0.993696i \(0.535760\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) − 17.2111i − 0.868185i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 22.0000i 1.10415i 0.833795 + 0.552074i \(0.186163\pi\)
−0.833795 + 0.552074i \(0.813837\pi\)
\(398\) 0 0
\(399\) −9.21110 −0.461132
\(400\) 0 0
\(401\) −16.4222 −0.820086 −0.410043 0.912066i \(-0.634486\pi\)
−0.410043 + 0.912066i \(0.634486\pi\)
\(402\) 0 0
\(403\) 5.57779i 0.277850i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 7.21110i 0.357441i
\(408\) 0 0
\(409\) −24.4222 −1.20760 −0.603800 0.797136i \(-0.706348\pi\)
−0.603800 + 0.797136i \(0.706348\pi\)
\(410\) 0 0
\(411\) −6.00000 −0.295958
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 7.21110i − 0.353129i
\(418\) 0 0
\(419\) 1.57779 0.0770803 0.0385402 0.999257i \(-0.487729\pi\)
0.0385402 + 0.999257i \(0.487729\pi\)
\(420\) 0 0
\(421\) −3.21110 −0.156500 −0.0782498 0.996934i \(-0.524933\pi\)
−0.0782498 + 0.996934i \(0.524933\pi\)
\(422\) 0 0
\(423\) 5.21110i 0.253372i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 14.7889i 0.715685i
\(428\) 0 0
\(429\) −0.605551 −0.0292363
\(430\) 0 0
\(431\) 32.8444 1.58206 0.791030 0.611778i \(-0.209545\pi\)
0.791030 + 0.611778i \(0.209545\pi\)
\(432\) 0 0
\(433\) − 10.0000i − 0.480569i −0.970702 0.240285i \(-0.922759\pi\)
0.970702 0.240285i \(-0.0772408\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −31.2111 −1.48962 −0.744812 0.667274i \(-0.767461\pi\)
−0.744812 + 0.667274i \(0.767461\pi\)
\(440\) 0 0
\(441\) 14.2111 0.676719
\(442\) 0 0
\(443\) 27.6333i 1.31290i 0.754370 + 0.656449i \(0.227942\pi\)
−0.754370 + 0.656449i \(0.772058\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 12.0000i − 0.567581i
\(448\) 0 0
\(449\) 7.57779 0.357618 0.178809 0.983884i \(-0.442776\pi\)
0.178809 + 0.983884i \(0.442776\pi\)
\(450\) 0 0
\(451\) −5.21110 −0.245381
\(452\) 0 0
\(453\) − 10.0000i − 0.469841i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 24.6056i 1.15100i 0.817802 + 0.575500i \(0.195192\pi\)
−0.817802 + 0.575500i \(0.804808\pi\)
\(458\) 0 0
\(459\) 2.60555 0.121617
\(460\) 0 0
\(461\) 12.0000 0.558896 0.279448 0.960161i \(-0.409849\pi\)
0.279448 + 0.960161i \(0.409849\pi\)
\(462\) 0 0
\(463\) 25.2111i 1.17166i 0.810434 + 0.585830i \(0.199231\pi\)
−0.810434 + 0.585830i \(0.800769\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 32.8444i − 1.51986i −0.650006 0.759929i \(-0.725234\pi\)
0.650006 0.759929i \(-0.274766\pi\)
\(468\) 0 0
\(469\) 66.4222 3.06709
\(470\) 0 0
\(471\) −4.78890 −0.220661
\(472\) 0 0
\(473\) − 4.60555i − 0.211763i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 6.00000i 0.274721i
\(478\) 0 0
\(479\) 3.63331 0.166010 0.0830050 0.996549i \(-0.473548\pi\)
0.0830050 + 0.996549i \(0.473548\pi\)
\(480\) 0 0
\(481\) −4.36669 −0.199104
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 16.0000i 0.725029i 0.931978 + 0.362515i \(0.118082\pi\)
−0.931978 + 0.362515i \(0.881918\pi\)
\(488\) 0 0
\(489\) 10.7889 0.487891
\(490\) 0 0
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 13.5778i 0.611513i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 55.2666i 2.47905i
\(498\) 0 0
\(499\) −30.4222 −1.36188 −0.680942 0.732337i \(-0.738430\pi\)
−0.680942 + 0.732337i \(0.738430\pi\)
\(500\) 0 0
\(501\) −2.60555 −0.116407
\(502\) 0 0
\(503\) 42.2389i 1.88334i 0.336541 + 0.941669i \(0.390743\pi\)
−0.336541 + 0.941669i \(0.609257\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 12.6333i 0.561065i
\(508\) 0 0
\(509\) 7.57779 0.335880 0.167940 0.985797i \(-0.446289\pi\)
0.167940 + 0.985797i \(0.446289\pi\)
\(510\) 0 0
\(511\) 21.2111 0.938324
\(512\) 0 0
\(513\) 2.00000i 0.0883022i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 5.21110i 0.229184i
\(518\) 0 0
\(519\) 14.6056 0.641113
\(520\) 0 0
\(521\) 7.57779 0.331989 0.165995 0.986127i \(-0.446917\pi\)
0.165995 + 0.986127i \(0.446917\pi\)
\(522\) 0 0
\(523\) − 35.0278i − 1.53166i −0.643045 0.765828i \(-0.722329\pi\)
0.643045 0.765828i \(-0.277671\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 24.0000i − 1.04546i
\(528\) 0 0
\(529\) 23.0000 1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 3.15559i − 0.136684i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 22.4222i 0.967590i
\(538\) 0 0
\(539\) 14.2111 0.612116
\(540\) 0 0
\(541\) −20.4222 −0.878019 −0.439010 0.898482i \(-0.644671\pi\)
−0.439010 + 0.898482i \(0.644671\pi\)
\(542\) 0 0
\(543\) 7.21110i 0.309458i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 24.6056i 1.05206i 0.850467 + 0.526029i \(0.176320\pi\)
−0.850467 + 0.526029i \(0.823680\pi\)
\(548\) 0 0
\(549\) 3.21110 0.137047
\(550\) 0 0
\(551\) −10.4222 −0.444001
\(552\) 0 0
\(553\) 64.4777i 2.74187i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 16.1833i 0.685710i 0.939388 + 0.342855i \(0.111394\pi\)
−0.939388 + 0.342855i \(0.888606\pi\)
\(558\) 0 0
\(559\) 2.78890 0.117958
\(560\) 0 0
\(561\) 2.60555 0.110006
\(562\) 0 0
\(563\) − 23.4500i − 0.988298i −0.869377 0.494149i \(-0.835480\pi\)
0.869377 0.494149i \(-0.164520\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 4.60555i − 0.193415i
\(568\) 0 0
\(569\) 32.8444 1.37691 0.688455 0.725279i \(-0.258289\pi\)
0.688455 + 0.725279i \(0.258289\pi\)
\(570\) 0 0
\(571\) −15.2111 −0.636565 −0.318282 0.947996i \(-0.603106\pi\)
−0.318282 + 0.947996i \(0.603106\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 27.2111i 1.13281i 0.824126 + 0.566407i \(0.191667\pi\)
−0.824126 + 0.566407i \(0.808333\pi\)
\(578\) 0 0
\(579\) 7.39445 0.307303
\(580\) 0 0
\(581\) −43.2666 −1.79500
\(582\) 0 0
\(583\) 6.00000i 0.248495i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 22.4222i − 0.925463i −0.886498 0.462732i \(-0.846869\pi\)
0.886498 0.462732i \(-0.153131\pi\)
\(588\) 0 0
\(589\) 18.4222 0.759074
\(590\) 0 0
\(591\) 19.8167 0.815148
\(592\) 0 0
\(593\) 9.39445i 0.385784i 0.981220 + 0.192892i \(0.0617867\pi\)
−0.981220 + 0.192892i \(0.938213\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 8.00000i − 0.327418i
\(598\) 0 0
\(599\) −20.8444 −0.851680 −0.425840 0.904799i \(-0.640021\pi\)
−0.425840 + 0.904799i \(0.640021\pi\)
\(600\) 0 0
\(601\) −37.6333 −1.53509 −0.767547 0.640992i \(-0.778523\pi\)
−0.767547 + 0.640992i \(0.778523\pi\)
\(602\) 0 0
\(603\) − 14.4222i − 0.587318i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 44.2389i − 1.79560i −0.440404 0.897800i \(-0.645165\pi\)
0.440404 0.897800i \(-0.354835\pi\)
\(608\) 0 0
\(609\) 24.0000 0.972529
\(610\) 0 0
\(611\) −3.15559 −0.127661
\(612\) 0 0
\(613\) − 31.3944i − 1.26801i −0.773329 0.634005i \(-0.781410\pi\)
0.773329 0.634005i \(-0.218590\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 33.6333i − 1.35403i −0.735971 0.677013i \(-0.763274\pi\)
0.735971 0.677013i \(-0.236726\pi\)
\(618\) 0 0
\(619\) −1.21110 −0.0486783 −0.0243392 0.999704i \(-0.507748\pi\)
−0.0243392 + 0.999704i \(0.507748\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 75.6333i 3.03018i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 2.00000i 0.0798723i
\(628\) 0 0
\(629\) 18.7889 0.749162
\(630\) 0 0
\(631\) −2.42221 −0.0964265 −0.0482132 0.998837i \(-0.515353\pi\)
−0.0482132 + 0.998837i \(0.515353\pi\)
\(632\) 0 0
\(633\) 2.00000i 0.0794929i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 8.60555i 0.340964i
\(638\) 0 0
\(639\) 12.0000 0.474713
\(640\) 0 0
\(641\) 40.4222 1.59658 0.798291 0.602273i \(-0.205738\pi\)
0.798291 + 0.602273i \(0.205738\pi\)
\(642\) 0 0
\(643\) − 42.0555i − 1.65851i −0.558872 0.829254i \(-0.688766\pi\)
0.558872 0.829254i \(-0.311234\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 5.21110i 0.204870i 0.994740 + 0.102435i \(0.0326633\pi\)
−0.994740 + 0.102435i \(0.967337\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −42.4222 −1.66266
\(652\) 0 0
\(653\) − 45.6333i − 1.78577i −0.450285 0.892885i \(-0.648678\pi\)
0.450285 0.892885i \(-0.351322\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 4.60555i − 0.179680i
\(658\) 0 0
\(659\) 12.0000 0.467454 0.233727 0.972302i \(-0.424908\pi\)
0.233727 + 0.972302i \(0.424908\pi\)
\(660\) 0 0
\(661\) 24.4222 0.949914 0.474957 0.880009i \(-0.342464\pi\)
0.474957 + 0.880009i \(0.342464\pi\)
\(662\) 0 0
\(663\) 1.57779i 0.0612765i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 19.6333 0.759068
\(670\) 0 0
\(671\) 3.21110 0.123963
\(672\) 0 0
\(673\) 51.0278i 1.96698i 0.180975 + 0.983488i \(0.442075\pi\)
−0.180975 + 0.983488i \(0.557925\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 14.6056i − 0.561337i −0.959805 0.280668i \(-0.909444\pi\)
0.959805 0.280668i \(-0.0905561\pi\)
\(678\) 0 0
\(679\) 46.0555 1.76745
\(680\) 0 0
\(681\) 19.8167 0.759376
\(682\) 0 0
\(683\) 6.78890i 0.259770i 0.991529 + 0.129885i \(0.0414608\pi\)
−0.991529 + 0.129885i \(0.958539\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 8.42221i 0.321327i
\(688\) 0 0
\(689\) −3.63331 −0.138418
\(690\) 0 0
\(691\) 39.2666 1.49377 0.746886 0.664952i \(-0.231548\pi\)
0.746886 + 0.664952i \(0.231548\pi\)
\(692\) 0 0
\(693\) − 4.60555i − 0.174950i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 13.5778i 0.514296i
\(698\) 0 0
\(699\) −14.6056 −0.552433
\(700\) 0 0
\(701\) 27.6333 1.04370 0.521848 0.853039i \(-0.325243\pi\)
0.521848 + 0.853039i \(0.325243\pi\)
\(702\) 0 0
\(703\) 14.4222i 0.543944i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −32.7889 −1.23141 −0.615706 0.787976i \(-0.711129\pi\)
−0.615706 + 0.787976i \(0.711129\pi\)
\(710\) 0 0
\(711\) 14.0000 0.525041
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 27.6333i − 1.03198i
\(718\) 0 0
\(719\) 44.8444 1.67241 0.836207 0.548414i \(-0.184768\pi\)
0.836207 + 0.548414i \(0.184768\pi\)
\(720\) 0 0
\(721\) −42.4222 −1.57989
\(722\) 0 0
\(723\) 19.2111i 0.714469i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 52.8444i − 1.95989i −0.199266 0.979945i \(-0.563856\pi\)
0.199266 0.979945i \(-0.436144\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −12.0000 −0.443836
\(732\) 0 0
\(733\) − 16.2389i − 0.599796i −0.953971 0.299898i \(-0.903047\pi\)
0.953971 0.299898i \(-0.0969526\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 14.4222i − 0.531249i
\(738\) 0 0
\(739\) −8.78890 −0.323305 −0.161652 0.986848i \(-0.551682\pi\)
−0.161652 + 0.986848i \(0.551682\pi\)
\(740\) 0 0
\(741\) −1.21110 −0.0444910
\(742\) 0 0
\(743\) − 30.2389i − 1.10936i −0.832065 0.554678i \(-0.812841\pi\)
0.832065 0.554678i \(-0.187159\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 9.39445i 0.343725i
\(748\) 0 0
\(749\) 91.2666 3.33481
\(750\) 0 0
\(751\) −47.2666 −1.72478 −0.862392 0.506242i \(-0.831034\pi\)
−0.862392 + 0.506242i \(0.831034\pi\)
\(752\) 0 0
\(753\) − 24.0000i − 0.874609i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 4.78890i 0.174055i 0.996206 + 0.0870277i \(0.0277369\pi\)
−0.996206 + 0.0870277i \(0.972263\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 43.2666 1.56841 0.784207 0.620500i \(-0.213070\pi\)
0.784207 + 0.620500i \(0.213070\pi\)
\(762\) 0 0
\(763\) 64.4777i 2.33425i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 3.21110 0.115795 0.0578977 0.998323i \(-0.481560\pi\)
0.0578977 + 0.998323i \(0.481560\pi\)
\(770\) 0 0
\(771\) 11.2111 0.403758
\(772\) 0 0
\(773\) 2.36669i 0.0851240i 0.999094 + 0.0425620i \(0.0135520\pi\)
−0.999094 + 0.0425620i \(0.986448\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 33.2111i − 1.19144i
\(778\) 0 0
\(779\) −10.4222 −0.373414
\(780\) 0 0
\(781\) 12.0000 0.429394
\(782\) 0 0
\(783\) − 5.21110i − 0.186230i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 15.0278i − 0.535682i −0.963463 0.267841i \(-0.913690\pi\)
0.963463 0.267841i \(-0.0863101\pi\)
\(788\) 0 0
\(789\) −2.60555 −0.0927601
\(790\) 0 0
\(791\) −51.6333 −1.83587
\(792\) 0 0
\(793\) 1.94449i 0.0690508i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 23.2111i 0.822179i 0.911595 + 0.411090i \(0.134852\pi\)
−0.911595 + 0.411090i \(0.865148\pi\)
\(798\) 0 0
\(799\) 13.5778 0.480348
\(800\) 0 0
\(801\) 16.4222 0.580250
\(802\) 0 0
\(803\) − 4.60555i − 0.162526i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 4.42221i 0.155669i
\(808\) 0 0
\(809\) −27.6333 −0.971535 −0.485768 0.874088i \(-0.661460\pi\)
−0.485768 + 0.874088i \(0.661460\pi\)
\(810\) 0 0
\(811\) −37.6333 −1.32148 −0.660742 0.750613i \(-0.729758\pi\)
−0.660742 + 0.750613i \(0.729758\pi\)
\(812\) 0 0
\(813\) 2.00000i 0.0701431i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 9.21110i − 0.322256i
\(818\) 0 0
\(819\) 2.78890 0.0974520
\(820\) 0 0
\(821\) 15.6333 0.545606 0.272803 0.962070i \(-0.412049\pi\)
0.272803 + 0.962070i \(0.412049\pi\)
\(822\) 0 0
\(823\) 35.6333i 1.24210i 0.783771 + 0.621050i \(0.213293\pi\)
−0.783771 + 0.621050i \(0.786707\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 54.2389i 1.88607i 0.332694 + 0.943035i \(0.392042\pi\)
−0.332694 + 0.943035i \(0.607958\pi\)
\(828\) 0 0
\(829\) −16.0555 −0.557631 −0.278816 0.960345i \(-0.589942\pi\)
−0.278816 + 0.960345i \(0.589942\pi\)
\(830\) 0 0
\(831\) −0.605551 −0.0210063
\(832\) 0 0
\(833\) − 37.0278i − 1.28294i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 9.21110i 0.318382i
\(838\) 0 0
\(839\) 46.4222 1.60267 0.801336 0.598214i \(-0.204123\pi\)
0.801336 + 0.598214i \(0.204123\pi\)
\(840\) 0 0
\(841\) −1.84441 −0.0636004
\(842\) 0 0
\(843\) 29.2111i 1.00608i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 4.60555i − 0.158249i
\(848\) 0 0
\(849\) 19.3944 0.665616
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 3.02776i 0.103668i 0.998656 + 0.0518342i \(0.0165067\pi\)
−0.998656 + 0.0518342i \(0.983493\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 31.8167i − 1.08684i −0.839462 0.543418i \(-0.817130\pi\)
0.839462 0.543418i \(-0.182870\pi\)
\(858\) 0 0
\(859\) 43.6333 1.48875 0.744375 0.667762i \(-0.232748\pi\)
0.744375 + 0.667762i \(0.232748\pi\)
\(860\) 0 0
\(861\) 24.0000 0.817918
\(862\) 0 0
\(863\) − 15.6333i − 0.532164i −0.963950 0.266082i \(-0.914271\pi\)
0.963950 0.266082i \(-0.0857292\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 10.2111i 0.346787i
\(868\) 0 0
\(869\) 14.0000 0.474917
\(870\) 0 0
\(871\) 8.73338 0.295919
\(872\) 0 0
\(873\) − 10.0000i − 0.338449i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 51.0278i − 1.72308i −0.507686 0.861542i \(-0.669499\pi\)
0.507686 0.861542i \(-0.330501\pi\)
\(878\) 0 0
\(879\) −2.60555 −0.0878831
\(880\) 0 0
\(881\) −4.42221 −0.148988 −0.0744939 0.997221i \(-0.523734\pi\)
−0.0744939 + 0.997221i \(0.523734\pi\)
\(882\) 0 0
\(883\) − 38.4222i − 1.29301i −0.762910 0.646505i \(-0.776230\pi\)
0.762910 0.646505i \(-0.223770\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 45.8722i 1.54024i 0.637901 + 0.770118i \(0.279803\pi\)
−0.637901 + 0.770118i \(0.720197\pi\)
\(888\) 0 0
\(889\) −45.2111 −1.51633
\(890\) 0 0
\(891\) −1.00000 −0.0335013
\(892\) 0 0
\(893\) 10.4222i 0.348766i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −48.0000 −1.60089
\(900\) 0 0
\(901\) 15.6333 0.520821
\(902\) 0 0
\(903\) 21.2111i 0.705861i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 26.7889i − 0.889511i −0.895652 0.444755i \(-0.853291\pi\)
0.895652 0.444755i \(-0.146709\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 9.39445i 0.310911i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 79.2666i 2.61761i
\(918\) 0 0
\(919\) −52.0555 −1.71715 −0.858576 0.512686i \(-0.828651\pi\)
−0.858576 + 0.512686i \(0.828651\pi\)
\(920\) 0 0
\(921\) −17.8167 −0.587079
\(922\) 0 0
\(923\) 7.26662i 0.239184i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 9.21110i 0.302532i
\(928\) 0 0
\(929\) 4.42221 0.145088 0.0725439 0.997365i \(-0.476888\pi\)
0.0725439 + 0.997365i \(0.476888\pi\)
\(930\) 0 0
\(931\) 28.4222 0.931500
\(932\) 0 0
\(933\) 22.4222i 0.734070i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 32.2389i − 1.05320i −0.850114 0.526599i \(-0.823467\pi\)
0.850114 0.526599i \(-0.176533\pi\)
\(938\) 0 0
\(939\) −19.2111 −0.626931
\(940\) 0 0
\(941\) 48.0000 1.56476 0.782378 0.622804i \(-0.214007\pi\)
0.782378 + 0.622804i \(0.214007\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 27.6333i − 0.897962i −0.893541 0.448981i \(-0.851787\pi\)
0.893541 0.448981i \(-0.148213\pi\)
\(948\) 0 0
\(949\) 2.78890 0.0905314
\(950\) 0 0
\(951\) 21.6333 0.701508
\(952\) 0 0
\(953\) 16.1833i 0.524230i 0.965037 + 0.262115i \(0.0844200\pi\)
−0.965037 + 0.262115i \(0.915580\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 5.21110i − 0.168451i
\(958\) 0 0
\(959\) 27.6333 0.892326
\(960\) 0 0
\(961\) 53.8444 1.73692
\(962\) 0 0
\(963\) − 19.8167i − 0.638583i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 24.6056i 0.791261i 0.918410 + 0.395631i \(0.129474\pi\)
−0.918410 + 0.395631i \(0.870526\pi\)
\(968\) 0 0
\(969\) 5.21110 0.167405
\(970\) 0 0
\(971\) −12.0000 −0.385098 −0.192549 0.981287i \(-0.561675\pi\)
−0.192549 + 0.981287i \(0.561675\pi\)
\(972\) 0 0
\(973\) 33.2111i 1.06470i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 18.0000i − 0.575871i −0.957650 0.287936i \(-0.907031\pi\)
0.957650 0.287936i \(-0.0929689\pi\)
\(978\) 0 0
\(979\) 16.4222 0.524856
\(980\) 0 0
\(981\) 14.0000 0.446986
\(982\) 0 0
\(983\) 50.0555i 1.59652i 0.602311 + 0.798261i \(0.294247\pi\)
−0.602311 + 0.798261i \(0.705753\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 24.0000i − 0.763928i
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 35.6333 1.13193 0.565965 0.824430i \(-0.308504\pi\)
0.565965 + 0.824430i \(0.308504\pi\)
\(992\) 0 0
\(993\) 25.2111i 0.800050i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 4.23886i 0.134246i 0.997745 + 0.0671230i \(0.0213820\pi\)
−0.997745 + 0.0671230i \(0.978618\pi\)
\(998\) 0 0
\(999\) −7.21110 −0.228149
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3300.2.c.k.1849.3 4
3.2 odd 2 9900.2.c.v.5149.1 4
5.2 odd 4 660.2.a.f.1.2 2
5.3 odd 4 3300.2.a.t.1.1 2
5.4 even 2 inner 3300.2.c.k.1849.2 4
15.2 even 4 1980.2.a.j.1.2 2
15.8 even 4 9900.2.a.bn.1.1 2
15.14 odd 2 9900.2.c.v.5149.4 4
20.7 even 4 2640.2.a.y.1.1 2
55.32 even 4 7260.2.a.z.1.1 2
60.47 odd 4 7920.2.a.bn.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
660.2.a.f.1.2 2 5.2 odd 4
1980.2.a.j.1.2 2 15.2 even 4
2640.2.a.y.1.1 2 20.7 even 4
3300.2.a.t.1.1 2 5.3 odd 4
3300.2.c.k.1849.2 4 5.4 even 2 inner
3300.2.c.k.1849.3 4 1.1 even 1 trivial
7260.2.a.z.1.1 2 55.32 even 4
7920.2.a.bn.1.1 2 60.47 odd 4
9900.2.a.bn.1.1 2 15.8 even 4
9900.2.c.v.5149.1 4 3.2 odd 2
9900.2.c.v.5149.4 4 15.14 odd 2