Properties

Label 3300.2.c.k
Level $3300$
Weight $2$
Character orbit 3300.c
Analytic conductor $26.351$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3300,2,Mod(1849,3300)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3300.1849"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3300, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3300 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3300.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,-4,0,-4,0,0,0,0,0,0,0,-8,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(21)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.3506326670\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{13})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 7x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 660)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{3} + (\beta_{2} - \beta_1) q^{7} - q^{9} - q^{11} + (\beta_{2} + 3 \beta_1) q^{13} + ( - \beta_{2} - \beta_1) q^{17} - 2 q^{19} + ( - \beta_{3} + 1) q^{21} - \beta_1 q^{27} + ( - 2 \beta_{3} - 2) q^{29}+ \cdots + q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{9} - 4 q^{11} - 8 q^{19} + 4 q^{21} - 8 q^{29} - 8 q^{31} - 12 q^{39} - 8 q^{41} - 28 q^{49} + 4 q^{51} + 16 q^{61} - 48 q^{71} - 56 q^{79} + 4 q^{81} - 8 q^{89} - 40 q^{91} + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 7x^{2} + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} + 4\nu ) / 3 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 10\nu ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 2\nu^{2} + 7 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} - \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} - 7 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -2\beta_{2} + 5\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3300\mathbb{Z}\right)^\times\).

\(n\) \(1201\) \(1651\) \(2201\) \(2377\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1849.1
1.30278i
2.30278i
2.30278i
1.30278i
0 1.00000i 0 0 0 2.60555i 0 −1.00000 0
1849.2 0 1.00000i 0 0 0 4.60555i 0 −1.00000 0
1849.3 0 1.00000i 0 0 0 4.60555i 0 −1.00000 0
1849.4 0 1.00000i 0 0 0 2.60555i 0 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3300.2.c.k 4
3.b odd 2 1 9900.2.c.v 4
5.b even 2 1 inner 3300.2.c.k 4
5.c odd 4 1 660.2.a.f 2
5.c odd 4 1 3300.2.a.t 2
15.d odd 2 1 9900.2.c.v 4
15.e even 4 1 1980.2.a.j 2
15.e even 4 1 9900.2.a.bn 2
20.e even 4 1 2640.2.a.y 2
55.e even 4 1 7260.2.a.z 2
60.l odd 4 1 7920.2.a.bn 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
660.2.a.f 2 5.c odd 4 1
1980.2.a.j 2 15.e even 4 1
2640.2.a.y 2 20.e even 4 1
3300.2.a.t 2 5.c odd 4 1
3300.2.c.k 4 1.a even 1 1 trivial
3300.2.c.k 4 5.b even 2 1 inner
7260.2.a.z 2 55.e even 4 1
7920.2.a.bn 2 60.l odd 4 1
9900.2.a.bn 2 15.e even 4 1
9900.2.c.v 4 3.b odd 2 1
9900.2.c.v 4 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3300, [\chi])\):

\( T_{7}^{4} + 28T_{7}^{2} + 144 \) Copy content Toggle raw display
\( T_{13}^{4} + 44T_{13}^{2} + 16 \) Copy content Toggle raw display
\( T_{17}^{4} + 28T_{17}^{2} + 144 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 28T^{2} + 144 \) Copy content Toggle raw display
$11$ \( (T + 1)^{4} \) Copy content Toggle raw display
$13$ \( T^{4} + 44T^{2} + 16 \) Copy content Toggle raw display
$17$ \( T^{4} + 28T^{2} + 144 \) Copy content Toggle raw display
$19$ \( (T + 2)^{4} \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( (T^{2} + 4 T - 48)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 4 T - 48)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 52)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + 4 T - 48)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + 28T^{2} + 144 \) Copy content Toggle raw display
$47$ \( T^{4} + 112T^{2} + 2304 \) Copy content Toggle raw display
$53$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( (T^{2} - 8 T - 36)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + 208)^{2} \) Copy content Toggle raw display
$71$ \( (T + 12)^{4} \) Copy content Toggle raw display
$73$ \( T^{4} + 28T^{2} + 144 \) Copy content Toggle raw display
$79$ \( (T + 14)^{4} \) Copy content Toggle raw display
$83$ \( T^{4} + 364 T^{2} + 24336 \) Copy content Toggle raw display
$89$ \( (T^{2} + 4 T - 204)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 100)^{2} \) Copy content Toggle raw display
show more
show less