Properties

Label 3300.2.c.f.1849.1
Level $3300$
Weight $2$
Character 3300.1849
Analytic conductor $26.351$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3300,2,Mod(1849,3300)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3300, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3300.1849"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3300 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3300.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0,0,0,0,-2,0,-2,0,0,0,0,0,0,0,14,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(21)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.3506326670\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1849.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 3300.1849
Dual form 3300.2.c.f.1849.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{3} +3.00000i q^{7} -1.00000 q^{9} -1.00000 q^{11} -4.00000i q^{13} -1.00000i q^{17} +7.00000 q^{19} +3.00000 q^{21} -3.00000i q^{23} +1.00000i q^{27} -10.0000 q^{29} +1.00000i q^{33} +1.00000i q^{37} -4.00000 q^{39} +5.00000 q^{41} +5.00000i q^{47} -2.00000 q^{49} -1.00000 q^{51} -6.00000i q^{53} -7.00000i q^{57} -3.00000 q^{59} +6.00000 q^{61} -3.00000i q^{63} -14.0000i q^{67} -3.00000 q^{69} +15.0000 q^{71} +6.00000i q^{73} -3.00000i q^{77} +13.0000 q^{79} +1.00000 q^{81} -4.00000i q^{83} +10.0000i q^{87} +14.0000 q^{89} +12.0000 q^{91} -13.0000i q^{97} +1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{9} - 2 q^{11} + 14 q^{19} + 6 q^{21} - 20 q^{29} - 8 q^{39} + 10 q^{41} - 4 q^{49} - 2 q^{51} - 6 q^{59} + 12 q^{61} - 6 q^{69} + 30 q^{71} + 26 q^{79} + 2 q^{81} + 28 q^{89} + 24 q^{91} + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3300\mathbb{Z}\right)^\times\).

\(n\) \(1201\) \(1651\) \(2201\) \(2377\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 1.00000i − 0.577350i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 3.00000i 1.13389i 0.823754 + 0.566947i \(0.191875\pi\)
−0.823754 + 0.566947i \(0.808125\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) − 4.00000i − 1.10940i −0.832050 0.554700i \(-0.812833\pi\)
0.832050 0.554700i \(-0.187167\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 1.00000i − 0.242536i −0.992620 0.121268i \(-0.961304\pi\)
0.992620 0.121268i \(-0.0386960\pi\)
\(18\) 0 0
\(19\) 7.00000 1.60591 0.802955 0.596040i \(-0.203260\pi\)
0.802955 + 0.596040i \(0.203260\pi\)
\(20\) 0 0
\(21\) 3.00000 0.654654
\(22\) 0 0
\(23\) − 3.00000i − 0.625543i −0.949828 0.312772i \(-0.898743\pi\)
0.949828 0.312772i \(-0.101257\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) −10.0000 −1.85695 −0.928477 0.371391i \(-0.878881\pi\)
−0.928477 + 0.371391i \(0.878881\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) 1.00000i 0.174078i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 1.00000i 0.164399i 0.996616 + 0.0821995i \(0.0261945\pi\)
−0.996616 + 0.0821995i \(0.973806\pi\)
\(38\) 0 0
\(39\) −4.00000 −0.640513
\(40\) 0 0
\(41\) 5.00000 0.780869 0.390434 0.920631i \(-0.372325\pi\)
0.390434 + 0.920631i \(0.372325\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 5.00000i 0.729325i 0.931140 + 0.364662i \(0.118816\pi\)
−0.931140 + 0.364662i \(0.881184\pi\)
\(48\) 0 0
\(49\) −2.00000 −0.285714
\(50\) 0 0
\(51\) −1.00000 −0.140028
\(52\) 0 0
\(53\) − 6.00000i − 0.824163i −0.911147 0.412082i \(-0.864802\pi\)
0.911147 0.412082i \(-0.135198\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 7.00000i − 0.927173i
\(58\) 0 0
\(59\) −3.00000 −0.390567 −0.195283 0.980747i \(-0.562563\pi\)
−0.195283 + 0.980747i \(0.562563\pi\)
\(60\) 0 0
\(61\) 6.00000 0.768221 0.384111 0.923287i \(-0.374508\pi\)
0.384111 + 0.923287i \(0.374508\pi\)
\(62\) 0 0
\(63\) − 3.00000i − 0.377964i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 14.0000i − 1.71037i −0.518321 0.855186i \(-0.673443\pi\)
0.518321 0.855186i \(-0.326557\pi\)
\(68\) 0 0
\(69\) −3.00000 −0.361158
\(70\) 0 0
\(71\) 15.0000 1.78017 0.890086 0.455792i \(-0.150644\pi\)
0.890086 + 0.455792i \(0.150644\pi\)
\(72\) 0 0
\(73\) 6.00000i 0.702247i 0.936329 + 0.351123i \(0.114200\pi\)
−0.936329 + 0.351123i \(0.885800\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 3.00000i − 0.341882i
\(78\) 0 0
\(79\) 13.0000 1.46261 0.731307 0.682048i \(-0.238911\pi\)
0.731307 + 0.682048i \(0.238911\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) − 4.00000i − 0.439057i −0.975606 0.219529i \(-0.929548\pi\)
0.975606 0.219529i \(-0.0704519\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 10.0000i 1.07211i
\(88\) 0 0
\(89\) 14.0000 1.48400 0.741999 0.670402i \(-0.233878\pi\)
0.741999 + 0.670402i \(0.233878\pi\)
\(90\) 0 0
\(91\) 12.0000 1.25794
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 13.0000i − 1.31995i −0.751288 0.659975i \(-0.770567\pi\)
0.751288 0.659975i \(-0.229433\pi\)
\(98\) 0 0
\(99\) 1.00000 0.100504
\(100\) 0 0
\(101\) 3.00000 0.298511 0.149256 0.988799i \(-0.452312\pi\)
0.149256 + 0.988799i \(0.452312\pi\)
\(102\) 0 0
\(103\) − 12.0000i − 1.18240i −0.806527 0.591198i \(-0.798655\pi\)
0.806527 0.591198i \(-0.201345\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 6.00000i − 0.580042i −0.957020 0.290021i \(-0.906338\pi\)
0.957020 0.290021i \(-0.0936623\pi\)
\(108\) 0 0
\(109\) −2.00000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) 0 0
\(111\) 1.00000 0.0949158
\(112\) 0 0
\(113\) − 10.0000i − 0.940721i −0.882474 0.470360i \(-0.844124\pi\)
0.882474 0.470360i \(-0.155876\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 4.00000i 0.369800i
\(118\) 0 0
\(119\) 3.00000 0.275010
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) − 5.00000i − 0.450835i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 19.0000i − 1.68598i −0.537931 0.842989i \(-0.680794\pi\)
0.537931 0.842989i \(-0.319206\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 4.00000 0.349482 0.174741 0.984614i \(-0.444091\pi\)
0.174741 + 0.984614i \(0.444091\pi\)
\(132\) 0 0
\(133\) 21.0000i 1.82093i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 6.00000i 0.512615i 0.966595 + 0.256307i \(0.0825059\pi\)
−0.966595 + 0.256307i \(0.917494\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 0 0
\(141\) 5.00000 0.421076
\(142\) 0 0
\(143\) 4.00000i 0.334497i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 2.00000i 0.164957i
\(148\) 0 0
\(149\) −21.0000 −1.72039 −0.860194 0.509968i \(-0.829657\pi\)
−0.860194 + 0.509968i \(0.829657\pi\)
\(150\) 0 0
\(151\) 20.0000 1.62758 0.813788 0.581161i \(-0.197401\pi\)
0.813788 + 0.581161i \(0.197401\pi\)
\(152\) 0 0
\(153\) 1.00000i 0.0808452i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 10.0000i 0.798087i 0.916932 + 0.399043i \(0.130658\pi\)
−0.916932 + 0.399043i \(0.869342\pi\)
\(158\) 0 0
\(159\) −6.00000 −0.475831
\(160\) 0 0
\(161\) 9.00000 0.709299
\(162\) 0 0
\(163\) − 4.00000i − 0.313304i −0.987654 0.156652i \(-0.949930\pi\)
0.987654 0.156652i \(-0.0500701\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2.00000i 0.154765i 0.997001 + 0.0773823i \(0.0246562\pi\)
−0.997001 + 0.0773823i \(0.975344\pi\)
\(168\) 0 0
\(169\) −3.00000 −0.230769
\(170\) 0 0
\(171\) −7.00000 −0.535303
\(172\) 0 0
\(173\) 13.0000i 0.988372i 0.869356 + 0.494186i \(0.164534\pi\)
−0.869356 + 0.494186i \(0.835466\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 3.00000i 0.225494i
\(178\) 0 0
\(179\) −11.0000 −0.822179 −0.411089 0.911595i \(-0.634852\pi\)
−0.411089 + 0.911595i \(0.634852\pi\)
\(180\) 0 0
\(181\) 7.00000 0.520306 0.260153 0.965567i \(-0.416227\pi\)
0.260153 + 0.965567i \(0.416227\pi\)
\(182\) 0 0
\(183\) − 6.00000i − 0.443533i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 1.00000i 0.0731272i
\(188\) 0 0
\(189\) −3.00000 −0.218218
\(190\) 0 0
\(191\) −21.0000 −1.51951 −0.759753 0.650211i \(-0.774680\pi\)
−0.759753 + 0.650211i \(0.774680\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 21.0000i − 1.49619i −0.663593 0.748094i \(-0.730969\pi\)
0.663593 0.748094i \(-0.269031\pi\)
\(198\) 0 0
\(199\) −8.00000 −0.567105 −0.283552 0.958957i \(-0.591513\pi\)
−0.283552 + 0.958957i \(0.591513\pi\)
\(200\) 0 0
\(201\) −14.0000 −0.987484
\(202\) 0 0
\(203\) − 30.0000i − 2.10559i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 3.00000i 0.208514i
\(208\) 0 0
\(209\) −7.00000 −0.484200
\(210\) 0 0
\(211\) 20.0000 1.37686 0.688428 0.725304i \(-0.258301\pi\)
0.688428 + 0.725304i \(0.258301\pi\)
\(212\) 0 0
\(213\) − 15.0000i − 1.02778i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 6.00000 0.405442
\(220\) 0 0
\(221\) −4.00000 −0.269069
\(222\) 0 0
\(223\) − 8.00000i − 0.535720i −0.963458 0.267860i \(-0.913684\pi\)
0.963458 0.267860i \(-0.0863164\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 6.00000i − 0.398234i −0.979976 0.199117i \(-0.936193\pi\)
0.979976 0.199117i \(-0.0638074\pi\)
\(228\) 0 0
\(229\) −7.00000 −0.462573 −0.231287 0.972886i \(-0.574293\pi\)
−0.231287 + 0.972886i \(0.574293\pi\)
\(230\) 0 0
\(231\) −3.00000 −0.197386
\(232\) 0 0
\(233\) 11.0000i 0.720634i 0.932830 + 0.360317i \(0.117331\pi\)
−0.932830 + 0.360317i \(0.882669\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 13.0000i − 0.844441i
\(238\) 0 0
\(239\) −6.00000 −0.388108 −0.194054 0.980991i \(-0.562164\pi\)
−0.194054 + 0.980991i \(0.562164\pi\)
\(240\) 0 0
\(241\) 28.0000 1.80364 0.901819 0.432113i \(-0.142232\pi\)
0.901819 + 0.432113i \(0.142232\pi\)
\(242\) 0 0
\(243\) − 1.00000i − 0.0641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 28.0000i − 1.78160i
\(248\) 0 0
\(249\) −4.00000 −0.253490
\(250\) 0 0
\(251\) −24.0000 −1.51487 −0.757433 0.652913i \(-0.773547\pi\)
−0.757433 + 0.652913i \(0.773547\pi\)
\(252\) 0 0
\(253\) 3.00000i 0.188608i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 22.0000i − 1.37232i −0.727450 0.686161i \(-0.759294\pi\)
0.727450 0.686161i \(-0.240706\pi\)
\(258\) 0 0
\(259\) −3.00000 −0.186411
\(260\) 0 0
\(261\) 10.0000 0.618984
\(262\) 0 0
\(263\) − 22.0000i − 1.35658i −0.734795 0.678289i \(-0.762722\pi\)
0.734795 0.678289i \(-0.237278\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 14.0000i − 0.856786i
\(268\) 0 0
\(269\) 16.0000 0.975537 0.487769 0.872973i \(-0.337811\pi\)
0.487769 + 0.872973i \(0.337811\pi\)
\(270\) 0 0
\(271\) −25.0000 −1.51864 −0.759321 0.650716i \(-0.774469\pi\)
−0.759321 + 0.650716i \(0.774469\pi\)
\(272\) 0 0
\(273\) − 12.0000i − 0.726273i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 10.0000i 0.600842i 0.953807 + 0.300421i \(0.0971271\pi\)
−0.953807 + 0.300421i \(0.902873\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 17.0000 1.01413 0.507067 0.861906i \(-0.330729\pi\)
0.507067 + 0.861906i \(0.330729\pi\)
\(282\) 0 0
\(283\) 21.0000i 1.24832i 0.781296 + 0.624160i \(0.214559\pi\)
−0.781296 + 0.624160i \(0.785441\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 15.0000i 0.885422i
\(288\) 0 0
\(289\) 16.0000 0.941176
\(290\) 0 0
\(291\) −13.0000 −0.762073
\(292\) 0 0
\(293\) − 25.0000i − 1.46052i −0.683172 0.730258i \(-0.739400\pi\)
0.683172 0.730258i \(-0.260600\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 1.00000i − 0.0580259i
\(298\) 0 0
\(299\) −12.0000 −0.693978
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) − 3.00000i − 0.172345i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 4.00000i − 0.228292i −0.993464 0.114146i \(-0.963587\pi\)
0.993464 0.114146i \(-0.0364132\pi\)
\(308\) 0 0
\(309\) −12.0000 −0.682656
\(310\) 0 0
\(311\) −8.00000 −0.453638 −0.226819 0.973937i \(-0.572833\pi\)
−0.226819 + 0.973937i \(0.572833\pi\)
\(312\) 0 0
\(313\) 29.0000i 1.63918i 0.572953 + 0.819588i \(0.305798\pi\)
−0.572953 + 0.819588i \(0.694202\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 12.0000i 0.673987i 0.941507 + 0.336994i \(0.109410\pi\)
−0.941507 + 0.336994i \(0.890590\pi\)
\(318\) 0 0
\(319\) 10.0000 0.559893
\(320\) 0 0
\(321\) −6.00000 −0.334887
\(322\) 0 0
\(323\) − 7.00000i − 0.389490i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 2.00000i 0.110600i
\(328\) 0 0
\(329\) −15.0000 −0.826977
\(330\) 0 0
\(331\) −2.00000 −0.109930 −0.0549650 0.998488i \(-0.517505\pi\)
−0.0549650 + 0.998488i \(0.517505\pi\)
\(332\) 0 0
\(333\) − 1.00000i − 0.0547997i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 18.0000i 0.980522i 0.871576 + 0.490261i \(0.163099\pi\)
−0.871576 + 0.490261i \(0.836901\pi\)
\(338\) 0 0
\(339\) −10.0000 −0.543125
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 15.0000i 0.809924i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 12.0000i − 0.644194i −0.946707 0.322097i \(-0.895612\pi\)
0.946707 0.322097i \(-0.104388\pi\)
\(348\) 0 0
\(349\) −14.0000 −0.749403 −0.374701 0.927146i \(-0.622255\pi\)
−0.374701 + 0.927146i \(0.622255\pi\)
\(350\) 0 0
\(351\) 4.00000 0.213504
\(352\) 0 0
\(353\) 24.0000i 1.27739i 0.769460 + 0.638696i \(0.220526\pi\)
−0.769460 + 0.638696i \(0.779474\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 3.00000i − 0.158777i
\(358\) 0 0
\(359\) 36.0000 1.90001 0.950004 0.312239i \(-0.101079\pi\)
0.950004 + 0.312239i \(0.101079\pi\)
\(360\) 0 0
\(361\) 30.0000 1.57895
\(362\) 0 0
\(363\) − 1.00000i − 0.0524864i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 6.00000i − 0.313197i −0.987662 0.156599i \(-0.949947\pi\)
0.987662 0.156599i \(-0.0500529\pi\)
\(368\) 0 0
\(369\) −5.00000 −0.260290
\(370\) 0 0
\(371\) 18.0000 0.934513
\(372\) 0 0
\(373\) 10.0000i 0.517780i 0.965907 + 0.258890i \(0.0833568\pi\)
−0.965907 + 0.258890i \(0.916643\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 40.0000i 2.06010i
\(378\) 0 0
\(379\) −4.00000 −0.205466 −0.102733 0.994709i \(-0.532759\pi\)
−0.102733 + 0.994709i \(0.532759\pi\)
\(380\) 0 0
\(381\) −19.0000 −0.973399
\(382\) 0 0
\(383\) − 12.0000i − 0.613171i −0.951843 0.306586i \(-0.900813\pi\)
0.951843 0.306586i \(-0.0991866\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −28.0000 −1.41966 −0.709828 0.704375i \(-0.751227\pi\)
−0.709828 + 0.704375i \(0.751227\pi\)
\(390\) 0 0
\(391\) −3.00000 −0.151717
\(392\) 0 0
\(393\) − 4.00000i − 0.201773i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 14.0000i 0.702640i 0.936255 + 0.351320i \(0.114267\pi\)
−0.936255 + 0.351320i \(0.885733\pi\)
\(398\) 0 0
\(399\) 21.0000 1.05131
\(400\) 0 0
\(401\) 8.00000 0.399501 0.199750 0.979847i \(-0.435987\pi\)
0.199750 + 0.979847i \(0.435987\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 1.00000i − 0.0495682i
\(408\) 0 0
\(409\) 18.0000 0.890043 0.445021 0.895520i \(-0.353196\pi\)
0.445021 + 0.895520i \(0.353196\pi\)
\(410\) 0 0
\(411\) 6.00000 0.295958
\(412\) 0 0
\(413\) − 9.00000i − 0.442861i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 4.00000i 0.195881i
\(418\) 0 0
\(419\) 23.0000 1.12362 0.561812 0.827265i \(-0.310105\pi\)
0.561812 + 0.827265i \(0.310105\pi\)
\(420\) 0 0
\(421\) −15.0000 −0.731055 −0.365528 0.930800i \(-0.619111\pi\)
−0.365528 + 0.930800i \(0.619111\pi\)
\(422\) 0 0
\(423\) − 5.00000i − 0.243108i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 18.0000i 0.871081i
\(428\) 0 0
\(429\) 4.00000 0.193122
\(430\) 0 0
\(431\) 8.00000 0.385346 0.192673 0.981263i \(-0.438284\pi\)
0.192673 + 0.981263i \(0.438284\pi\)
\(432\) 0 0
\(433\) 34.0000i 1.63394i 0.576683 + 0.816968i \(0.304347\pi\)
−0.576683 + 0.816968i \(0.695653\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 21.0000i − 1.00457i
\(438\) 0 0
\(439\) 17.0000 0.811366 0.405683 0.914014i \(-0.367034\pi\)
0.405683 + 0.914014i \(0.367034\pi\)
\(440\) 0 0
\(441\) 2.00000 0.0952381
\(442\) 0 0
\(443\) 9.00000i 0.427603i 0.976877 + 0.213801i \(0.0685846\pi\)
−0.976877 + 0.213801i \(0.931415\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 21.0000i 0.993266i
\(448\) 0 0
\(449\) 2.00000 0.0943858 0.0471929 0.998886i \(-0.484972\pi\)
0.0471929 + 0.998886i \(0.484972\pi\)
\(450\) 0 0
\(451\) −5.00000 −0.235441
\(452\) 0 0
\(453\) − 20.0000i − 0.939682i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 2.00000i − 0.0935561i −0.998905 0.0467780i \(-0.985105\pi\)
0.998905 0.0467780i \(-0.0148953\pi\)
\(458\) 0 0
\(459\) 1.00000 0.0466760
\(460\) 0 0
\(461\) −18.0000 −0.838344 −0.419172 0.907907i \(-0.637680\pi\)
−0.419172 + 0.907907i \(0.637680\pi\)
\(462\) 0 0
\(463\) 38.0000i 1.76601i 0.469364 + 0.883005i \(0.344483\pi\)
−0.469364 + 0.883005i \(0.655517\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 28.0000i − 1.29569i −0.761774 0.647843i \(-0.775671\pi\)
0.761774 0.647843i \(-0.224329\pi\)
\(468\) 0 0
\(469\) 42.0000 1.93938
\(470\) 0 0
\(471\) 10.0000 0.460776
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 6.00000i 0.274721i
\(478\) 0 0
\(479\) 12.0000 0.548294 0.274147 0.961688i \(-0.411605\pi\)
0.274147 + 0.961688i \(0.411605\pi\)
\(480\) 0 0
\(481\) 4.00000 0.182384
\(482\) 0 0
\(483\) − 9.00000i − 0.409514i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 34.0000i − 1.54069i −0.637629 0.770344i \(-0.720085\pi\)
0.637629 0.770344i \(-0.279915\pi\)
\(488\) 0 0
\(489\) −4.00000 −0.180886
\(490\) 0 0
\(491\) −6.00000 −0.270776 −0.135388 0.990793i \(-0.543228\pi\)
−0.135388 + 0.990793i \(0.543228\pi\)
\(492\) 0 0
\(493\) 10.0000i 0.450377i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 45.0000i 2.01853i
\(498\) 0 0
\(499\) −6.00000 −0.268597 −0.134298 0.990941i \(-0.542878\pi\)
−0.134298 + 0.990941i \(0.542878\pi\)
\(500\) 0 0
\(501\) 2.00000 0.0893534
\(502\) 0 0
\(503\) − 10.0000i − 0.445878i −0.974832 0.222939i \(-0.928435\pi\)
0.974832 0.222939i \(-0.0715651\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 3.00000i 0.133235i
\(508\) 0 0
\(509\) −34.0000 −1.50702 −0.753512 0.657434i \(-0.771642\pi\)
−0.753512 + 0.657434i \(0.771642\pi\)
\(510\) 0 0
\(511\) −18.0000 −0.796273
\(512\) 0 0
\(513\) 7.00000i 0.309058i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 5.00000i − 0.219900i
\(518\) 0 0
\(519\) 13.0000 0.570637
\(520\) 0 0
\(521\) −22.0000 −0.963837 −0.481919 0.876216i \(-0.660060\pi\)
−0.481919 + 0.876216i \(0.660060\pi\)
\(522\) 0 0
\(523\) 3.00000i 0.131181i 0.997847 + 0.0655904i \(0.0208931\pi\)
−0.997847 + 0.0655904i \(0.979107\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 14.0000 0.608696
\(530\) 0 0
\(531\) 3.00000 0.130189
\(532\) 0 0
\(533\) − 20.0000i − 0.866296i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 11.0000i 0.474685i
\(538\) 0 0
\(539\) 2.00000 0.0861461
\(540\) 0 0
\(541\) 4.00000 0.171973 0.0859867 0.996296i \(-0.472596\pi\)
0.0859867 + 0.996296i \(0.472596\pi\)
\(542\) 0 0
\(543\) − 7.00000i − 0.300399i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 23.0000i − 0.983409i −0.870762 0.491704i \(-0.836374\pi\)
0.870762 0.491704i \(-0.163626\pi\)
\(548\) 0 0
\(549\) −6.00000 −0.256074
\(550\) 0 0
\(551\) −70.0000 −2.98210
\(552\) 0 0
\(553\) 39.0000i 1.65845i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 18.0000i 0.762684i 0.924434 + 0.381342i \(0.124538\pi\)
−0.924434 + 0.381342i \(0.875462\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 1.00000 0.0422200
\(562\) 0 0
\(563\) 24.0000i 1.01148i 0.862686 + 0.505740i \(0.168780\pi\)
−0.862686 + 0.505740i \(0.831220\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 3.00000i 0.125988i
\(568\) 0 0
\(569\) 5.00000 0.209611 0.104805 0.994493i \(-0.466578\pi\)
0.104805 + 0.994493i \(0.466578\pi\)
\(570\) 0 0
\(571\) 24.0000 1.00437 0.502184 0.864761i \(-0.332530\pi\)
0.502184 + 0.864761i \(0.332530\pi\)
\(572\) 0 0
\(573\) 21.0000i 0.877288i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 33.0000i 1.37381i 0.726748 + 0.686904i \(0.241031\pi\)
−0.726748 + 0.686904i \(0.758969\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 12.0000 0.497844
\(582\) 0 0
\(583\) 6.00000i 0.248495i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 7.00000i 0.288921i 0.989511 + 0.144460i \(0.0461446\pi\)
−0.989511 + 0.144460i \(0.953855\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) −21.0000 −0.863825
\(592\) 0 0
\(593\) − 26.0000i − 1.06769i −0.845582 0.533846i \(-0.820746\pi\)
0.845582 0.533846i \(-0.179254\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 8.00000i 0.327418i
\(598\) 0 0
\(599\) −5.00000 −0.204294 −0.102147 0.994769i \(-0.532571\pi\)
−0.102147 + 0.994769i \(0.532571\pi\)
\(600\) 0 0
\(601\) −4.00000 −0.163163 −0.0815817 0.996667i \(-0.525997\pi\)
−0.0815817 + 0.996667i \(0.525997\pi\)
\(602\) 0 0
\(603\) 14.0000i 0.570124i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 24.0000i − 0.974130i −0.873366 0.487065i \(-0.838067\pi\)
0.873366 0.487065i \(-0.161933\pi\)
\(608\) 0 0
\(609\) −30.0000 −1.21566
\(610\) 0 0
\(611\) 20.0000 0.809113
\(612\) 0 0
\(613\) − 18.0000i − 0.727013i −0.931592 0.363507i \(-0.881579\pi\)
0.931592 0.363507i \(-0.118421\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 12.0000i 0.483102i 0.970388 + 0.241551i \(0.0776561\pi\)
−0.970388 + 0.241551i \(0.922344\pi\)
\(618\) 0 0
\(619\) 8.00000 0.321547 0.160774 0.986991i \(-0.448601\pi\)
0.160774 + 0.986991i \(0.448601\pi\)
\(620\) 0 0
\(621\) 3.00000 0.120386
\(622\) 0 0
\(623\) 42.0000i 1.68269i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 7.00000i 0.279553i
\(628\) 0 0
\(629\) 1.00000 0.0398726
\(630\) 0 0
\(631\) −8.00000 −0.318475 −0.159237 0.987240i \(-0.550904\pi\)
−0.159237 + 0.987240i \(0.550904\pi\)
\(632\) 0 0
\(633\) − 20.0000i − 0.794929i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 8.00000i 0.316972i
\(638\) 0 0
\(639\) −15.0000 −0.593391
\(640\) 0 0
\(641\) −26.0000 −1.02694 −0.513469 0.858108i \(-0.671640\pi\)
−0.513469 + 0.858108i \(0.671640\pi\)
\(642\) 0 0
\(643\) − 28.0000i − 1.10421i −0.833774 0.552106i \(-0.813824\pi\)
0.833774 0.552106i \(-0.186176\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 37.0000i 1.45462i 0.686309 + 0.727310i \(0.259230\pi\)
−0.686309 + 0.727310i \(0.740770\pi\)
\(648\) 0 0
\(649\) 3.00000 0.117760
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 48.0000i 1.87839i 0.343391 + 0.939193i \(0.388424\pi\)
−0.343391 + 0.939193i \(0.611576\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 6.00000i − 0.234082i
\(658\) 0 0
\(659\) 12.0000 0.467454 0.233727 0.972302i \(-0.424908\pi\)
0.233727 + 0.972302i \(0.424908\pi\)
\(660\) 0 0
\(661\) −33.0000 −1.28355 −0.641776 0.766892i \(-0.721802\pi\)
−0.641776 + 0.766892i \(0.721802\pi\)
\(662\) 0 0
\(663\) 4.00000i 0.155347i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 30.0000i 1.16160i
\(668\) 0 0
\(669\) −8.00000 −0.309298
\(670\) 0 0
\(671\) −6.00000 −0.231627
\(672\) 0 0
\(673\) − 34.0000i − 1.31060i −0.755367 0.655302i \(-0.772541\pi\)
0.755367 0.655302i \(-0.227459\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 22.0000i 0.845529i 0.906240 + 0.422764i \(0.138940\pi\)
−0.906240 + 0.422764i \(0.861060\pi\)
\(678\) 0 0
\(679\) 39.0000 1.49668
\(680\) 0 0
\(681\) −6.00000 −0.229920
\(682\) 0 0
\(683\) − 37.0000i − 1.41577i −0.706330 0.707883i \(-0.749650\pi\)
0.706330 0.707883i \(-0.250350\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 7.00000i 0.267067i
\(688\) 0 0
\(689\) −24.0000 −0.914327
\(690\) 0 0
\(691\) 14.0000 0.532585 0.266293 0.963892i \(-0.414201\pi\)
0.266293 + 0.963892i \(0.414201\pi\)
\(692\) 0 0
\(693\) 3.00000i 0.113961i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 5.00000i − 0.189389i
\(698\) 0 0
\(699\) 11.0000 0.416058
\(700\) 0 0
\(701\) −27.0000 −1.01978 −0.509888 0.860241i \(-0.670313\pi\)
−0.509888 + 0.860241i \(0.670313\pi\)
\(702\) 0 0
\(703\) 7.00000i 0.264010i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 9.00000i 0.338480i
\(708\) 0 0
\(709\) −3.00000 −0.112667 −0.0563337 0.998412i \(-0.517941\pi\)
−0.0563337 + 0.998412i \(0.517941\pi\)
\(710\) 0 0
\(711\) −13.0000 −0.487538
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 6.00000i 0.224074i
\(718\) 0 0
\(719\) 20.0000 0.745874 0.372937 0.927857i \(-0.378351\pi\)
0.372937 + 0.927857i \(0.378351\pi\)
\(720\) 0 0
\(721\) 36.0000 1.34071
\(722\) 0 0
\(723\) − 28.0000i − 1.04133i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 28.0000i 1.03846i 0.854634 + 0.519231i \(0.173782\pi\)
−0.854634 + 0.519231i \(0.826218\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 26.0000i 0.960332i 0.877178 + 0.480166i \(0.159424\pi\)
−0.877178 + 0.480166i \(0.840576\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 14.0000i 0.515697i
\(738\) 0 0
\(739\) 9.00000 0.331070 0.165535 0.986204i \(-0.447065\pi\)
0.165535 + 0.986204i \(0.447065\pi\)
\(740\) 0 0
\(741\) −28.0000 −1.02861
\(742\) 0 0
\(743\) − 8.00000i − 0.293492i −0.989174 0.146746i \(-0.953120\pi\)
0.989174 0.146746i \(-0.0468799\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 4.00000i 0.146352i
\(748\) 0 0
\(749\) 18.0000 0.657706
\(750\) 0 0
\(751\) −40.0000 −1.45962 −0.729810 0.683650i \(-0.760392\pi\)
−0.729810 + 0.683650i \(0.760392\pi\)
\(752\) 0 0
\(753\) 24.0000i 0.874609i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 22.0000i 0.799604i 0.916602 + 0.399802i \(0.130921\pi\)
−0.916602 + 0.399802i \(0.869079\pi\)
\(758\) 0 0
\(759\) 3.00000 0.108893
\(760\) 0 0
\(761\) 6.00000 0.217500 0.108750 0.994069i \(-0.465315\pi\)
0.108750 + 0.994069i \(0.465315\pi\)
\(762\) 0 0
\(763\) − 6.00000i − 0.217215i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 12.0000i 0.433295i
\(768\) 0 0
\(769\) 6.00000 0.216366 0.108183 0.994131i \(-0.465497\pi\)
0.108183 + 0.994131i \(0.465497\pi\)
\(770\) 0 0
\(771\) −22.0000 −0.792311
\(772\) 0 0
\(773\) − 18.0000i − 0.647415i −0.946157 0.323708i \(-0.895071\pi\)
0.946157 0.323708i \(-0.104929\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 3.00000i 0.107624i
\(778\) 0 0
\(779\) 35.0000 1.25401
\(780\) 0 0
\(781\) −15.0000 −0.536742
\(782\) 0 0
\(783\) − 10.0000i − 0.357371i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 47.0000i − 1.67537i −0.546154 0.837685i \(-0.683909\pi\)
0.546154 0.837685i \(-0.316091\pi\)
\(788\) 0 0
\(789\) −22.0000 −0.783221
\(790\) 0 0
\(791\) 30.0000 1.06668
\(792\) 0 0
\(793\) − 24.0000i − 0.852265i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 44.0000i − 1.55856i −0.626676 0.779280i \(-0.715585\pi\)
0.626676 0.779280i \(-0.284415\pi\)
\(798\) 0 0
\(799\) 5.00000 0.176887
\(800\) 0 0
\(801\) −14.0000 −0.494666
\(802\) 0 0
\(803\) − 6.00000i − 0.211735i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 16.0000i − 0.563227i
\(808\) 0 0
\(809\) −51.0000 −1.79306 −0.896532 0.442978i \(-0.853922\pi\)
−0.896532 + 0.442978i \(0.853922\pi\)
\(810\) 0 0
\(811\) −7.00000 −0.245803 −0.122902 0.992419i \(-0.539220\pi\)
−0.122902 + 0.992419i \(0.539220\pi\)
\(812\) 0 0
\(813\) 25.0000i 0.876788i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) −12.0000 −0.419314
\(820\) 0 0
\(821\) −30.0000 −1.04701 −0.523504 0.852023i \(-0.675375\pi\)
−0.523504 + 0.852023i \(0.675375\pi\)
\(822\) 0 0
\(823\) 22.0000i 0.766872i 0.923567 + 0.383436i \(0.125259\pi\)
−0.923567 + 0.383436i \(0.874741\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 56.0000i 1.94731i 0.228024 + 0.973655i \(0.426773\pi\)
−0.228024 + 0.973655i \(0.573227\pi\)
\(828\) 0 0
\(829\) −6.00000 −0.208389 −0.104194 0.994557i \(-0.533226\pi\)
−0.104194 + 0.994557i \(0.533226\pi\)
\(830\) 0 0
\(831\) 10.0000 0.346896
\(832\) 0 0
\(833\) 2.00000i 0.0692959i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 4.00000 0.138095 0.0690477 0.997613i \(-0.478004\pi\)
0.0690477 + 0.997613i \(0.478004\pi\)
\(840\) 0 0
\(841\) 71.0000 2.44828
\(842\) 0 0
\(843\) − 17.0000i − 0.585511i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 3.00000i 0.103081i
\(848\) 0 0
\(849\) 21.0000 0.720718
\(850\) 0 0
\(851\) 3.00000 0.102839
\(852\) 0 0
\(853\) − 22.0000i − 0.753266i −0.926363 0.376633i \(-0.877082\pi\)
0.926363 0.376633i \(-0.122918\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 9.00000i − 0.307434i −0.988115 0.153717i \(-0.950876\pi\)
0.988115 0.153717i \(-0.0491244\pi\)
\(858\) 0 0
\(859\) 40.0000 1.36478 0.682391 0.730987i \(-0.260940\pi\)
0.682391 + 0.730987i \(0.260940\pi\)
\(860\) 0 0
\(861\) 15.0000 0.511199
\(862\) 0 0
\(863\) 48.0000i 1.63394i 0.576681 + 0.816970i \(0.304348\pi\)
−0.576681 + 0.816970i \(0.695652\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 16.0000i − 0.543388i
\(868\) 0 0
\(869\) −13.0000 −0.440995
\(870\) 0 0
\(871\) −56.0000 −1.89749
\(872\) 0 0
\(873\) 13.0000i 0.439983i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 8.00000i − 0.270141i −0.990836 0.135070i \(-0.956874\pi\)
0.990836 0.135070i \(-0.0431261\pi\)
\(878\) 0 0
\(879\) −25.0000 −0.843229
\(880\) 0 0
\(881\) −52.0000 −1.75192 −0.875962 0.482380i \(-0.839773\pi\)
−0.875962 + 0.482380i \(0.839773\pi\)
\(882\) 0 0
\(883\) 56.0000i 1.88455i 0.334840 + 0.942275i \(0.391318\pi\)
−0.334840 + 0.942275i \(0.608682\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 20.0000i 0.671534i 0.941945 + 0.335767i \(0.108996\pi\)
−0.941945 + 0.335767i \(0.891004\pi\)
\(888\) 0 0
\(889\) 57.0000 1.91172
\(890\) 0 0
\(891\) −1.00000 −0.0335013
\(892\) 0 0
\(893\) 35.0000i 1.17123i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 12.0000i 0.400668i
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) −6.00000 −0.199889
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 6.00000i − 0.199227i −0.995026 0.0996134i \(-0.968239\pi\)
0.995026 0.0996134i \(-0.0317606\pi\)
\(908\) 0 0
\(909\) −3.00000 −0.0995037
\(910\) 0 0
\(911\) −33.0000 −1.09334 −0.546669 0.837349i \(-0.684105\pi\)
−0.546669 + 0.837349i \(0.684105\pi\)
\(912\) 0 0
\(913\) 4.00000i 0.132381i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 12.0000i 0.396275i
\(918\) 0 0
\(919\) 9.00000 0.296883 0.148441 0.988921i \(-0.452574\pi\)
0.148441 + 0.988921i \(0.452574\pi\)
\(920\) 0 0
\(921\) −4.00000 −0.131804
\(922\) 0 0
\(923\) − 60.0000i − 1.97492i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 12.0000i 0.394132i
\(928\) 0 0
\(929\) −38.0000 −1.24674 −0.623370 0.781927i \(-0.714237\pi\)
−0.623370 + 0.781927i \(0.714237\pi\)
\(930\) 0 0
\(931\) −14.0000 −0.458831
\(932\) 0 0
\(933\) 8.00000i 0.261908i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 12.0000i − 0.392023i −0.980602 0.196011i \(-0.937201\pi\)
0.980602 0.196011i \(-0.0627990\pi\)
\(938\) 0 0
\(939\) 29.0000 0.946379
\(940\) 0 0
\(941\) 15.0000 0.488986 0.244493 0.969651i \(-0.421378\pi\)
0.244493 + 0.969651i \(0.421378\pi\)
\(942\) 0 0
\(943\) − 15.0000i − 0.488467i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 57.0000i − 1.85225i −0.377215 0.926126i \(-0.623118\pi\)
0.377215 0.926126i \(-0.376882\pi\)
\(948\) 0 0
\(949\) 24.0000 0.779073
\(950\) 0 0
\(951\) 12.0000 0.389127
\(952\) 0 0
\(953\) 57.0000i 1.84641i 0.384307 + 0.923206i \(0.374441\pi\)
−0.384307 + 0.923206i \(0.625559\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 10.0000i − 0.323254i
\(958\) 0 0
\(959\) −18.0000 −0.581250
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) 6.00000i 0.193347i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 16.0000i 0.514525i 0.966342 + 0.257263i \(0.0828206\pi\)
−0.966342 + 0.257263i \(0.917179\pi\)
\(968\) 0 0
\(969\) −7.00000 −0.224872
\(970\) 0 0
\(971\) −15.0000 −0.481373 −0.240686 0.970603i \(-0.577373\pi\)
−0.240686 + 0.970603i \(0.577373\pi\)
\(972\) 0 0
\(973\) − 12.0000i − 0.384702i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 60.0000i − 1.91957i −0.280736 0.959785i \(-0.590579\pi\)
0.280736 0.959785i \(-0.409421\pi\)
\(978\) 0 0
\(979\) −14.0000 −0.447442
\(980\) 0 0
\(981\) 2.00000 0.0638551
\(982\) 0 0
\(983\) 35.0000i 1.11633i 0.829731 + 0.558163i \(0.188494\pi\)
−0.829731 + 0.558163i \(0.811506\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 15.0000i 0.477455i
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −46.0000 −1.46124 −0.730619 0.682785i \(-0.760768\pi\)
−0.730619 + 0.682785i \(0.760768\pi\)
\(992\) 0 0
\(993\) 2.00000i 0.0634681i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 10.0000i 0.316703i 0.987383 + 0.158352i \(0.0506179\pi\)
−0.987383 + 0.158352i \(0.949382\pi\)
\(998\) 0 0
\(999\) −1.00000 −0.0316386
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3300.2.c.f.1849.1 2
3.2 odd 2 9900.2.c.o.5149.2 2
5.2 odd 4 3300.2.a.a.1.1 1
5.3 odd 4 3300.2.a.r.1.1 yes 1
5.4 even 2 inner 3300.2.c.f.1849.2 2
15.2 even 4 9900.2.a.c.1.1 1
15.8 even 4 9900.2.a.bb.1.1 1
15.14 odd 2 9900.2.c.o.5149.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3300.2.a.a.1.1 1 5.2 odd 4
3300.2.a.r.1.1 yes 1 5.3 odd 4
3300.2.c.f.1849.1 2 1.1 even 1 trivial
3300.2.c.f.1849.2 2 5.4 even 2 inner
9900.2.a.c.1.1 1 15.2 even 4
9900.2.a.bb.1.1 1 15.8 even 4
9900.2.c.o.5149.1 2 15.14 odd 2
9900.2.c.o.5149.2 2 3.2 odd 2