Properties

Label 2-3300-5.4-c1-0-20
Degree $2$
Conductor $3300$
Sign $0.447 + 0.894i$
Analytic cond. $26.3506$
Root an. cond. $5.13328$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·3-s + 3i·7-s − 9-s − 11-s − 4i·13-s i·17-s + 7·19-s + 3·21-s − 3i·23-s + i·27-s − 10·29-s + i·33-s + i·37-s − 4·39-s + 5·41-s + ⋯
L(s)  = 1  − 0.577i·3-s + 1.13i·7-s − 0.333·9-s − 0.301·11-s − 1.10i·13-s − 0.242i·17-s + 1.60·19-s + 0.654·21-s − 0.625i·23-s + 0.192i·27-s − 1.85·29-s + 0.174i·33-s + 0.164i·37-s − 0.640·39-s + 0.780·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3300 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3300\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 11\)
Sign: $0.447 + 0.894i$
Analytic conductor: \(26.3506\)
Root analytic conductor: \(5.13328\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3300} (1849, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3300,\ (\ :1/2),\ 0.447 + 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.624371073\)
\(L(\frac12)\) \(\approx\) \(1.624371073\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + iT \)
5 \( 1 \)
11 \( 1 + T \)
good7 \( 1 - 3iT - 7T^{2} \)
13 \( 1 + 4iT - 13T^{2} \)
17 \( 1 + iT - 17T^{2} \)
19 \( 1 - 7T + 19T^{2} \)
23 \( 1 + 3iT - 23T^{2} \)
29 \( 1 + 10T + 29T^{2} \)
31 \( 1 + 31T^{2} \)
37 \( 1 - iT - 37T^{2} \)
41 \( 1 - 5T + 41T^{2} \)
43 \( 1 - 43T^{2} \)
47 \( 1 - 5iT - 47T^{2} \)
53 \( 1 + 6iT - 53T^{2} \)
59 \( 1 + 3T + 59T^{2} \)
61 \( 1 - 6T + 61T^{2} \)
67 \( 1 + 14iT - 67T^{2} \)
71 \( 1 - 15T + 71T^{2} \)
73 \( 1 - 6iT - 73T^{2} \)
79 \( 1 - 13T + 79T^{2} \)
83 \( 1 + 4iT - 83T^{2} \)
89 \( 1 - 14T + 89T^{2} \)
97 \( 1 + 13iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.351161572594121621770995806641, −7.79853084098359768469355396924, −7.14749451606471135120713404210, −6.10267587754654439196416387292, −5.52736443916960795743779627513, −4.97527217040294227871397351859, −3.52590412602665731135923148457, −2.80287065736740764426006422195, −1.93878776845974789058476352015, −0.59272747760092981467884833993, 1.00258537576644659561909555868, 2.22653773169493018400789568809, 3.58695124873011118541631158809, 3.89794520825112203109109355050, 4.93321685893448072198701626601, 5.59009535741271586079673791281, 6.59891542821027260788639507218, 7.43996900952918732857542478708, 7.78811813176051148669011854464, 9.040248209804586867120837552701

Graph of the $Z$-function along the critical line