Properties

Label 33.14.a.c.1.2
Level $33$
Weight $14$
Character 33.1
Self dual yes
Analytic conductor $35.386$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Error: no document with id 239787625 found in table mf_hecke_traces.

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [33,14,Mod(1,33)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("33.1"); S:= CuspForms(chi, 14); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(33, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 14, names="a")
 
Level: \( N \) \(=\) \( 33 = 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 33.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,41] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(35.3862065541\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 28008x^{2} - 426124x + 63795376 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-60.8281\) of defining polynomial
Character \(\chi\) \(=\) 33.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-50.8281 q^{2} +729.000 q^{3} -5608.51 q^{4} +40325.0 q^{5} -37053.7 q^{6} +161391. q^{7} +701453. q^{8} +531441. q^{9} -2.04964e6 q^{10} -1.77156e6 q^{11} -4.08860e6 q^{12} +1.00855e7 q^{13} -8.20318e6 q^{14} +2.93969e7 q^{15} +1.02914e7 q^{16} -5.44308e7 q^{17} -2.70121e7 q^{18} +3.35823e7 q^{19} -2.26163e8 q^{20} +1.17654e8 q^{21} +9.00451e7 q^{22} -5.77067e7 q^{23} +5.11359e8 q^{24} +4.05404e8 q^{25} -5.12626e8 q^{26} +3.87420e8 q^{27} -9.05161e8 q^{28} -1.42770e9 q^{29} -1.49419e9 q^{30} -3.95227e8 q^{31} -6.26940e9 q^{32} -1.29147e9 q^{33} +2.76661e9 q^{34} +6.50808e9 q^{35} -2.98059e9 q^{36} +2.97526e10 q^{37} -1.70692e9 q^{38} +7.35233e9 q^{39} +2.82861e10 q^{40} +4.78825e10 q^{41} -5.98012e9 q^{42} +5.25504e10 q^{43} +9.93581e9 q^{44} +2.14304e10 q^{45} +2.93312e9 q^{46} +7.82524e10 q^{47} +7.50240e9 q^{48} -7.08421e10 q^{49} -2.06059e10 q^{50} -3.96800e10 q^{51} -5.65646e10 q^{52} +1.39229e11 q^{53} -1.96918e10 q^{54} -7.14382e10 q^{55} +1.13208e11 q^{56} +2.44815e10 q^{57} +7.25673e10 q^{58} +4.00667e11 q^{59} -1.64873e11 q^{60} +8.48232e9 q^{61} +2.00887e10 q^{62} +8.57696e10 q^{63} +2.34355e11 q^{64} +4.06698e11 q^{65} +6.56428e10 q^{66} -2.54018e11 q^{67} +3.05275e11 q^{68} -4.20682e10 q^{69} -3.30793e11 q^{70} -9.45197e11 q^{71} +3.72781e11 q^{72} -1.26364e12 q^{73} -1.51227e12 q^{74} +2.95540e11 q^{75} -1.88346e11 q^{76} -2.85913e11 q^{77} -3.73705e11 q^{78} +1.73956e12 q^{79} +4.14999e11 q^{80} +2.82430e11 q^{81} -2.43377e12 q^{82} +3.01003e12 q^{83} -6.59862e11 q^{84} -2.19492e12 q^{85} -2.67104e12 q^{86} -1.04079e12 q^{87} -1.24267e12 q^{88} +2.47839e11 q^{89} -1.08926e12 q^{90} +1.62771e12 q^{91} +3.23648e11 q^{92} -2.88121e11 q^{93} -3.97742e12 q^{94} +1.35421e12 q^{95} -4.57039e12 q^{96} -1.01179e13 q^{97} +3.60077e12 q^{98} -9.41480e11 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 41 q^{2} + 2916 q^{3} + 23669 q^{4} - 38422 q^{5} + 29889 q^{6} + 41998 q^{7} + 2375463 q^{8} + 2125764 q^{9} - 5866868 q^{10} - 7086244 q^{11} + 17254701 q^{12} + 50891230 q^{13} + 51438518 q^{14}+ \cdots - 3765920597604 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −50.8281 −0.561576 −0.280788 0.959770i \(-0.590596\pi\)
−0.280788 + 0.959770i \(0.590596\pi\)
\(3\) 729.000 0.577350
\(4\) −5608.51 −0.684632
\(5\) 40325.0 1.15417 0.577085 0.816684i \(-0.304190\pi\)
0.577085 + 0.816684i \(0.304190\pi\)
\(6\) −37053.7 −0.324226
\(7\) 161391. 0.518491 0.259245 0.965811i \(-0.416526\pi\)
0.259245 + 0.965811i \(0.416526\pi\)
\(8\) 701453. 0.946049
\(9\) 531441. 0.333333
\(10\) −2.04964e6 −0.648154
\(11\) −1.77156e6 −0.301511
\(12\) −4.08860e6 −0.395273
\(13\) 1.00855e7 0.579516 0.289758 0.957100i \(-0.406425\pi\)
0.289758 + 0.957100i \(0.406425\pi\)
\(14\) −8.20318e6 −0.291172
\(15\) 2.93969e7 0.666360
\(16\) 1.02914e7 0.153353
\(17\) −5.44308e7 −0.546923 −0.273462 0.961883i \(-0.588169\pi\)
−0.273462 + 0.961883i \(0.588169\pi\)
\(18\) −2.70121e7 −0.187192
\(19\) 3.35823e7 0.163761 0.0818807 0.996642i \(-0.473907\pi\)
0.0818807 + 0.996642i \(0.473907\pi\)
\(20\) −2.26163e8 −0.790181
\(21\) 1.17654e8 0.299351
\(22\) 9.00451e7 0.169322
\(23\) −5.77067e7 −0.0812821 −0.0406411 0.999174i \(-0.512940\pi\)
−0.0406411 + 0.999174i \(0.512940\pi\)
\(24\) 5.11359e8 0.546202
\(25\) 4.05404e8 0.332107
\(26\) −5.12626e8 −0.325442
\(27\) 3.87420e8 0.192450
\(28\) −9.05161e8 −0.354976
\(29\) −1.42770e9 −0.445708 −0.222854 0.974852i \(-0.571537\pi\)
−0.222854 + 0.974852i \(0.571537\pi\)
\(30\) −1.49419e9 −0.374212
\(31\) −3.95227e8 −0.0799827 −0.0399914 0.999200i \(-0.512733\pi\)
−0.0399914 + 0.999200i \(0.512733\pi\)
\(32\) −6.26940e9 −1.03217
\(33\) −1.29147e9 −0.174078
\(34\) 2.76661e9 0.307139
\(35\) 6.50808e9 0.598426
\(36\) −2.98059e9 −0.228211
\(37\) 2.97526e10 1.90640 0.953200 0.302339i \(-0.0977675\pi\)
0.953200 + 0.302339i \(0.0977675\pi\)
\(38\) −1.70692e9 −0.0919646
\(39\) 7.35233e9 0.334584
\(40\) 2.82861e10 1.09190
\(41\) 4.78825e10 1.57428 0.787139 0.616776i \(-0.211561\pi\)
0.787139 + 0.616776i \(0.211561\pi\)
\(42\) −5.98012e9 −0.168108
\(43\) 5.25504e10 1.26774 0.633871 0.773439i \(-0.281465\pi\)
0.633871 + 0.773439i \(0.281465\pi\)
\(44\) 9.93581e9 0.206424
\(45\) 2.14304e10 0.384723
\(46\) 2.93312e9 0.0456461
\(47\) 7.82524e10 1.05892 0.529458 0.848336i \(-0.322395\pi\)
0.529458 + 0.848336i \(0.322395\pi\)
\(48\) 7.50240e9 0.0885385
\(49\) −7.08421e10 −0.731167
\(50\) −2.06059e10 −0.186504
\(51\) −3.96800e10 −0.315766
\(52\) −5.65646e10 −0.396755
\(53\) 1.39229e11 0.862850 0.431425 0.902149i \(-0.358011\pi\)
0.431425 + 0.902149i \(0.358011\pi\)
\(54\) −1.96918e10 −0.108075
\(55\) −7.14382e10 −0.347995
\(56\) 1.13208e11 0.490518
\(57\) 2.44815e10 0.0945477
\(58\) 7.25673e10 0.250299
\(59\) 4.00667e11 1.23665 0.618324 0.785923i \(-0.287812\pi\)
0.618324 + 0.785923i \(0.287812\pi\)
\(60\) −1.64873e11 −0.456211
\(61\) 8.48232e9 0.0210800 0.0105400 0.999944i \(-0.496645\pi\)
0.0105400 + 0.999944i \(0.496645\pi\)
\(62\) 2.00887e10 0.0449164
\(63\) 8.57696e10 0.172830
\(64\) 2.34355e11 0.426288
\(65\) 4.06698e11 0.668860
\(66\) 6.56428e10 0.0977579
\(67\) −2.54018e11 −0.343067 −0.171533 0.985178i \(-0.554872\pi\)
−0.171533 + 0.985178i \(0.554872\pi\)
\(68\) 3.05275e11 0.374441
\(69\) −4.20682e10 −0.0469283
\(70\) −3.30793e11 −0.336062
\(71\) −9.45197e11 −0.875675 −0.437838 0.899054i \(-0.644255\pi\)
−0.437838 + 0.899054i \(0.644255\pi\)
\(72\) 3.72781e11 0.315350
\(73\) −1.26364e12 −0.977297 −0.488648 0.872481i \(-0.662510\pi\)
−0.488648 + 0.872481i \(0.662510\pi\)
\(74\) −1.51227e12 −1.07059
\(75\) 2.95540e11 0.191742
\(76\) −1.88346e11 −0.112116
\(77\) −2.85913e11 −0.156331
\(78\) −3.73705e11 −0.187894
\(79\) 1.73956e12 0.805127 0.402563 0.915392i \(-0.368119\pi\)
0.402563 + 0.915392i \(0.368119\pi\)
\(80\) 4.14999e11 0.176996
\(81\) 2.82430e11 0.111111
\(82\) −2.43377e12 −0.884077
\(83\) 3.01003e12 1.01056 0.505281 0.862955i \(-0.331389\pi\)
0.505281 + 0.862955i \(0.331389\pi\)
\(84\) −6.59862e11 −0.204945
\(85\) −2.19492e12 −0.631242
\(86\) −2.67104e12 −0.711934
\(87\) −1.04079e12 −0.257329
\(88\) −1.24267e12 −0.285245
\(89\) 2.47839e11 0.0528609 0.0264304 0.999651i \(-0.491586\pi\)
0.0264304 + 0.999651i \(0.491586\pi\)
\(90\) −1.08926e12 −0.216051
\(91\) 1.62771e12 0.300474
\(92\) 3.23648e11 0.0556484
\(93\) −2.88121e11 −0.0461780
\(94\) −3.97742e12 −0.594663
\(95\) 1.35421e12 0.189008
\(96\) −4.57039e12 −0.595923
\(97\) −1.01179e13 −1.23332 −0.616659 0.787230i \(-0.711514\pi\)
−0.616659 + 0.787230i \(0.711514\pi\)
\(98\) 3.60077e12 0.410606
\(99\) −9.41480e11 −0.100504
\(100\) −2.27371e12 −0.227371
\(101\) 3.89127e12 0.364756 0.182378 0.983229i \(-0.441621\pi\)
0.182378 + 0.983229i \(0.441621\pi\)
\(102\) 2.01686e12 0.177327
\(103\) −6.01807e12 −0.496610 −0.248305 0.968682i \(-0.579873\pi\)
−0.248305 + 0.968682i \(0.579873\pi\)
\(104\) 7.07450e12 0.548251
\(105\) 4.74439e12 0.345502
\(106\) −7.07672e12 −0.484556
\(107\) −1.78982e13 −1.15296 −0.576480 0.817111i \(-0.695574\pi\)
−0.576480 + 0.817111i \(0.695574\pi\)
\(108\) −2.17285e12 −0.131758
\(109\) 2.38534e13 1.36232 0.681158 0.732136i \(-0.261477\pi\)
0.681158 + 0.732136i \(0.261477\pi\)
\(110\) 3.63107e12 0.195426
\(111\) 2.16897e13 1.10066
\(112\) 1.66093e12 0.0795122
\(113\) 1.74936e13 0.790439 0.395219 0.918587i \(-0.370669\pi\)
0.395219 + 0.918587i \(0.370669\pi\)
\(114\) −1.24435e12 −0.0530958
\(115\) −2.32702e12 −0.0938134
\(116\) 8.00726e12 0.305146
\(117\) 5.35985e12 0.193172
\(118\) −2.03652e13 −0.694472
\(119\) −8.78462e12 −0.283575
\(120\) 2.06206e13 0.630410
\(121\) 3.13843e12 0.0909091
\(122\) −4.31140e11 −0.0118380
\(123\) 3.49063e13 0.908910
\(124\) 2.21664e12 0.0547587
\(125\) −3.28769e13 −0.770862
\(126\) −4.35951e12 −0.0970574
\(127\) 9.69545e12 0.205043 0.102521 0.994731i \(-0.467309\pi\)
0.102521 + 0.994731i \(0.467309\pi\)
\(128\) 3.94471e13 0.792775
\(129\) 3.83092e13 0.731931
\(130\) −2.06717e13 −0.375616
\(131\) 1.03655e14 1.79196 0.895978 0.444098i \(-0.146476\pi\)
0.895978 + 0.444098i \(0.146476\pi\)
\(132\) 7.24321e12 0.119179
\(133\) 5.41987e12 0.0849088
\(134\) 1.29113e13 0.192658
\(135\) 1.56227e13 0.222120
\(136\) −3.81806e13 −0.517417
\(137\) −1.70943e13 −0.220886 −0.110443 0.993882i \(-0.535227\pi\)
−0.110443 + 0.993882i \(0.535227\pi\)
\(138\) 2.13824e12 0.0263538
\(139\) −6.71135e13 −0.789249 −0.394624 0.918843i \(-0.629125\pi\)
−0.394624 + 0.918843i \(0.629125\pi\)
\(140\) −3.65006e13 −0.409702
\(141\) 5.70460e13 0.611366
\(142\) 4.80425e13 0.491758
\(143\) −1.78671e13 −0.174731
\(144\) 5.46925e12 0.0511177
\(145\) −5.75720e13 −0.514422
\(146\) 6.42286e13 0.548827
\(147\) −5.16439e13 −0.422140
\(148\) −1.66868e14 −1.30518
\(149\) 2.58976e13 0.193887 0.0969435 0.995290i \(-0.469093\pi\)
0.0969435 + 0.995290i \(0.469093\pi\)
\(150\) −1.50217e13 −0.107678
\(151\) −9.34481e12 −0.0641535 −0.0320767 0.999485i \(-0.510212\pi\)
−0.0320767 + 0.999485i \(0.510212\pi\)
\(152\) 2.35564e13 0.154926
\(153\) −2.89267e13 −0.182308
\(154\) 1.45324e13 0.0877917
\(155\) −1.59376e13 −0.0923136
\(156\) −4.12356e13 −0.229067
\(157\) −2.90880e14 −1.55012 −0.775061 0.631886i \(-0.782281\pi\)
−0.775061 + 0.631886i \(0.782281\pi\)
\(158\) −8.84187e13 −0.452140
\(159\) 1.01498e14 0.498167
\(160\) −2.52813e14 −1.19130
\(161\) −9.31332e12 −0.0421441
\(162\) −1.43554e13 −0.0623974
\(163\) 2.47872e14 1.03516 0.517580 0.855635i \(-0.326833\pi\)
0.517580 + 0.855635i \(0.326833\pi\)
\(164\) −2.68549e14 −1.07780
\(165\) −5.20785e13 −0.200915
\(166\) −1.52994e14 −0.567508
\(167\) 4.57504e13 0.163207 0.0816034 0.996665i \(-0.473996\pi\)
0.0816034 + 0.996665i \(0.473996\pi\)
\(168\) 8.25286e13 0.283201
\(169\) −2.01158e14 −0.664161
\(170\) 1.11564e14 0.354491
\(171\) 1.78470e13 0.0545872
\(172\) −2.94729e14 −0.867937
\(173\) −6.05688e13 −0.171771 −0.0858854 0.996305i \(-0.527372\pi\)
−0.0858854 + 0.996305i \(0.527372\pi\)
\(174\) 5.29015e13 0.144510
\(175\) 6.54285e13 0.172195
\(176\) −1.82318e13 −0.0462377
\(177\) 2.92087e14 0.713979
\(178\) −1.25972e13 −0.0296854
\(179\) 6.12761e14 1.39234 0.696172 0.717875i \(-0.254885\pi\)
0.696172 + 0.717875i \(0.254885\pi\)
\(180\) −1.20192e14 −0.263394
\(181\) −1.61023e14 −0.340390 −0.170195 0.985410i \(-0.554440\pi\)
−0.170195 + 0.985410i \(0.554440\pi\)
\(182\) −8.27331e13 −0.168739
\(183\) 6.18361e12 0.0121705
\(184\) −4.04785e13 −0.0768969
\(185\) 1.19978e15 2.20031
\(186\) 1.46446e13 0.0259325
\(187\) 9.64274e13 0.164904
\(188\) −4.38879e14 −0.724968
\(189\) 6.25261e13 0.0997836
\(190\) −6.88317e13 −0.106143
\(191\) 4.59444e13 0.0684724 0.0342362 0.999414i \(-0.489100\pi\)
0.0342362 + 0.999414i \(0.489100\pi\)
\(192\) 1.70844e14 0.246118
\(193\) −5.94745e14 −0.828340 −0.414170 0.910200i \(-0.635928\pi\)
−0.414170 + 0.910200i \(0.635928\pi\)
\(194\) 5.14275e14 0.692602
\(195\) 2.96483e14 0.386166
\(196\) 3.97318e14 0.500580
\(197\) −3.87638e14 −0.472494 −0.236247 0.971693i \(-0.575917\pi\)
−0.236247 + 0.971693i \(0.575917\pi\)
\(198\) 4.78536e13 0.0564405
\(199\) −7.15122e14 −0.816273 −0.408136 0.912921i \(-0.633821\pi\)
−0.408136 + 0.912921i \(0.633821\pi\)
\(200\) 2.84372e14 0.314190
\(201\) −1.85179e14 −0.198070
\(202\) −1.97786e14 −0.204838
\(203\) −2.30417e14 −0.231095
\(204\) 2.22546e14 0.216184
\(205\) 1.93086e15 1.81698
\(206\) 3.05887e14 0.278884
\(207\) −3.06677e13 −0.0270940
\(208\) 1.03793e14 0.0888706
\(209\) −5.94931e13 −0.0493759
\(210\) −2.41148e14 −0.194026
\(211\) 1.07694e15 0.840148 0.420074 0.907490i \(-0.362004\pi\)
0.420074 + 0.907490i \(0.362004\pi\)
\(212\) −7.80864e14 −0.590735
\(213\) −6.89048e14 −0.505571
\(214\) 9.09730e14 0.647475
\(215\) 2.11910e15 1.46319
\(216\) 2.71757e14 0.182067
\(217\) −6.37860e13 −0.0414703
\(218\) −1.21242e15 −0.765044
\(219\) −9.21197e14 −0.564243
\(220\) 4.00662e14 0.238249
\(221\) −5.48961e14 −0.316951
\(222\) −1.10244e15 −0.618105
\(223\) −1.91496e15 −1.04274 −0.521372 0.853329i \(-0.674580\pi\)
−0.521372 + 0.853329i \(0.674580\pi\)
\(224\) −1.01182e15 −0.535170
\(225\) 2.15448e14 0.110702
\(226\) −8.89164e14 −0.443892
\(227\) 3.38641e14 0.164275 0.0821375 0.996621i \(-0.473825\pi\)
0.0821375 + 0.996621i \(0.473825\pi\)
\(228\) −1.37305e14 −0.0647304
\(229\) 2.23378e15 1.02355 0.511775 0.859120i \(-0.328988\pi\)
0.511775 + 0.859120i \(0.328988\pi\)
\(230\) 1.18278e14 0.0526834
\(231\) −2.08431e14 −0.0902577
\(232\) −1.00146e15 −0.421661
\(233\) 2.42044e15 0.991015 0.495508 0.868604i \(-0.334982\pi\)
0.495508 + 0.868604i \(0.334982\pi\)
\(234\) −2.72431e14 −0.108481
\(235\) 3.15553e15 1.22217
\(236\) −2.24715e15 −0.846649
\(237\) 1.26814e15 0.464840
\(238\) 4.46505e14 0.159249
\(239\) −8.59607e14 −0.298341 −0.149171 0.988811i \(-0.547660\pi\)
−0.149171 + 0.988811i \(0.547660\pi\)
\(240\) 3.02534e14 0.102188
\(241\) 3.86032e15 1.26915 0.634575 0.772862i \(-0.281175\pi\)
0.634575 + 0.772862i \(0.281175\pi\)
\(242\) −1.59520e14 −0.0510524
\(243\) 2.05891e14 0.0641500
\(244\) −4.75731e13 −0.0144320
\(245\) −2.85671e15 −0.843891
\(246\) −1.77422e15 −0.510422
\(247\) 3.38694e14 0.0949024
\(248\) −2.77234e14 −0.0756676
\(249\) 2.19431e15 0.583448
\(250\) 1.67107e15 0.432898
\(251\) −5.11575e15 −1.29131 −0.645655 0.763629i \(-0.723416\pi\)
−0.645655 + 0.763629i \(0.723416\pi\)
\(252\) −4.81039e14 −0.118325
\(253\) 1.02231e14 0.0245075
\(254\) −4.92801e14 −0.115147
\(255\) −1.60010e15 −0.364448
\(256\) −3.92485e15 −0.871492
\(257\) −5.04066e15 −1.09124 −0.545622 0.838031i \(-0.683707\pi\)
−0.545622 + 0.838031i \(0.683707\pi\)
\(258\) −1.94719e15 −0.411035
\(259\) 4.80180e15 0.988452
\(260\) −2.28097e15 −0.457923
\(261\) −7.58738e14 −0.148569
\(262\) −5.26859e15 −1.00632
\(263\) −6.88032e15 −1.28202 −0.641012 0.767531i \(-0.721485\pi\)
−0.641012 + 0.767531i \(0.721485\pi\)
\(264\) −9.05904e14 −0.164686
\(265\) 5.61440e15 0.995875
\(266\) −2.75481e14 −0.0476828
\(267\) 1.80674e14 0.0305192
\(268\) 1.42466e15 0.234874
\(269\) −7.02139e15 −1.12988 −0.564941 0.825131i \(-0.691101\pi\)
−0.564941 + 0.825131i \(0.691101\pi\)
\(270\) −7.94074e14 −0.124737
\(271\) −6.42148e15 −0.984769 −0.492385 0.870378i \(-0.663875\pi\)
−0.492385 + 0.870378i \(0.663875\pi\)
\(272\) −5.60166e14 −0.0838724
\(273\) 1.18660e15 0.173479
\(274\) 8.68872e14 0.124044
\(275\) −7.18198e14 −0.100134
\(276\) 2.35940e14 0.0321286
\(277\) 9.12510e15 1.21372 0.606861 0.794808i \(-0.292428\pi\)
0.606861 + 0.794808i \(0.292428\pi\)
\(278\) 3.41125e15 0.443223
\(279\) −2.10040e14 −0.0266609
\(280\) 4.56512e15 0.566141
\(281\) 1.24217e16 1.50519 0.752594 0.658485i \(-0.228803\pi\)
0.752594 + 0.658485i \(0.228803\pi\)
\(282\) −2.89954e15 −0.343329
\(283\) −1.43393e16 −1.65926 −0.829632 0.558311i \(-0.811450\pi\)
−0.829632 + 0.558311i \(0.811450\pi\)
\(284\) 5.30114e15 0.599515
\(285\) 9.87216e14 0.109124
\(286\) 9.08149e14 0.0981246
\(287\) 7.72778e15 0.816249
\(288\) −3.33181e15 −0.344056
\(289\) −6.94187e15 −0.700875
\(290\) 2.92628e15 0.288887
\(291\) −7.37597e15 −0.712057
\(292\) 7.08716e15 0.669089
\(293\) 4.83453e15 0.446390 0.223195 0.974774i \(-0.428351\pi\)
0.223195 + 0.974774i \(0.428351\pi\)
\(294\) 2.62496e15 0.237064
\(295\) 1.61569e16 1.42730
\(296\) 2.08701e16 1.80355
\(297\) −6.86339e14 −0.0580259
\(298\) −1.31633e15 −0.108882
\(299\) −5.82000e14 −0.0471043
\(300\) −1.65754e15 −0.131273
\(301\) 8.48114e15 0.657313
\(302\) 4.74979e14 0.0360271
\(303\) 2.83673e15 0.210592
\(304\) 3.45607e14 0.0251133
\(305\) 3.42050e14 0.0243299
\(306\) 1.47029e15 0.102380
\(307\) −1.45721e16 −0.993397 −0.496699 0.867923i \(-0.665455\pi\)
−0.496699 + 0.867923i \(0.665455\pi\)
\(308\) 1.60355e15 0.107029
\(309\) −4.38717e15 −0.286718
\(310\) 8.10075e14 0.0518411
\(311\) −1.87327e16 −1.17397 −0.586985 0.809598i \(-0.699685\pi\)
−0.586985 + 0.809598i \(0.699685\pi\)
\(312\) 5.15731e15 0.316533
\(313\) 2.64002e16 1.58697 0.793485 0.608590i \(-0.208265\pi\)
0.793485 + 0.608590i \(0.208265\pi\)
\(314\) 1.47849e16 0.870512
\(315\) 3.45866e15 0.199475
\(316\) −9.75636e15 −0.551216
\(317\) −1.88635e16 −1.04409 −0.522043 0.852919i \(-0.674830\pi\)
−0.522043 + 0.852919i \(0.674830\pi\)
\(318\) −5.15893e15 −0.279759
\(319\) 2.52926e15 0.134386
\(320\) 9.45035e15 0.492009
\(321\) −1.30478e16 −0.665662
\(322\) 4.73378e14 0.0236671
\(323\) −1.82791e15 −0.0895650
\(324\) −1.58401e15 −0.0760702
\(325\) 4.08870e15 0.192461
\(326\) −1.25989e16 −0.581322
\(327\) 1.73891e16 0.786534
\(328\) 3.35873e16 1.48934
\(329\) 1.26292e16 0.549039
\(330\) 2.64705e15 0.112829
\(331\) −3.39689e16 −1.41971 −0.709855 0.704348i \(-0.751239\pi\)
−0.709855 + 0.704348i \(0.751239\pi\)
\(332\) −1.68818e16 −0.691863
\(333\) 1.58118e16 0.635467
\(334\) −2.32541e15 −0.0916530
\(335\) −1.02433e16 −0.395957
\(336\) 1.21082e15 0.0459064
\(337\) −3.27545e16 −1.21808 −0.609042 0.793138i \(-0.708446\pi\)
−0.609042 + 0.793138i \(0.708446\pi\)
\(338\) 1.02245e16 0.372977
\(339\) 1.27528e16 0.456360
\(340\) 1.23102e16 0.432169
\(341\) 7.00170e14 0.0241157
\(342\) −9.07129e14 −0.0306549
\(343\) −2.70702e16 −0.897595
\(344\) 3.68616e16 1.19935
\(345\) −1.69640e15 −0.0541632
\(346\) 3.07860e15 0.0964624
\(347\) 3.01513e16 0.927180 0.463590 0.886050i \(-0.346561\pi\)
0.463590 + 0.886050i \(0.346561\pi\)
\(348\) 5.83730e15 0.176176
\(349\) −1.67039e16 −0.494825 −0.247413 0.968910i \(-0.579580\pi\)
−0.247413 + 0.968910i \(0.579580\pi\)
\(350\) −3.32560e15 −0.0967004
\(351\) 3.90733e15 0.111528
\(352\) 1.11066e16 0.311211
\(353\) −6.76688e16 −1.86146 −0.930728 0.365711i \(-0.880826\pi\)
−0.930728 + 0.365711i \(0.880826\pi\)
\(354\) −1.48462e16 −0.400954
\(355\) −3.81151e16 −1.01068
\(356\) −1.39001e15 −0.0361902
\(357\) −6.40399e15 −0.163722
\(358\) −3.11455e16 −0.781907
\(359\) 2.06740e16 0.509694 0.254847 0.966981i \(-0.417975\pi\)
0.254847 + 0.966981i \(0.417975\pi\)
\(360\) 1.50324e16 0.363967
\(361\) −4.09252e16 −0.973182
\(362\) 8.18449e15 0.191155
\(363\) 2.28791e15 0.0524864
\(364\) −9.12899e15 −0.205714
\(365\) −5.09565e16 −1.12797
\(366\) −3.14301e14 −0.00683469
\(367\) −7.62996e16 −1.63002 −0.815010 0.579446i \(-0.803269\pi\)
−0.815010 + 0.579446i \(0.803269\pi\)
\(368\) −5.93880e14 −0.0124649
\(369\) 2.54467e16 0.524759
\(370\) −6.09823e16 −1.23564
\(371\) 2.24702e16 0.447380
\(372\) 1.61593e15 0.0316150
\(373\) −9.18470e16 −1.76587 −0.882933 0.469499i \(-0.844434\pi\)
−0.882933 + 0.469499i \(0.844434\pi\)
\(374\) −4.90122e15 −0.0926060
\(375\) −2.39673e16 −0.445057
\(376\) 5.48904e16 1.00179
\(377\) −1.43991e16 −0.258295
\(378\) −3.17808e15 −0.0560361
\(379\) 9.64183e16 1.67111 0.835554 0.549408i \(-0.185147\pi\)
0.835554 + 0.549408i \(0.185147\pi\)
\(380\) −7.59507e15 −0.129401
\(381\) 7.06799e15 0.118381
\(382\) −2.33527e15 −0.0384525
\(383\) 6.12788e16 0.992015 0.496007 0.868318i \(-0.334799\pi\)
0.496007 + 0.868318i \(0.334799\pi\)
\(384\) 2.87569e16 0.457709
\(385\) −1.15295e16 −0.180432
\(386\) 3.02298e16 0.465176
\(387\) 2.79274e16 0.422581
\(388\) 5.67464e16 0.844369
\(389\) 3.60725e16 0.527842 0.263921 0.964544i \(-0.414984\pi\)
0.263921 + 0.964544i \(0.414984\pi\)
\(390\) −1.50696e16 −0.216862
\(391\) 3.14102e15 0.0444551
\(392\) −4.96924e16 −0.691720
\(393\) 7.55646e16 1.03459
\(394\) 1.97029e16 0.265341
\(395\) 7.01480e16 0.929253
\(396\) 5.28030e15 0.0688081
\(397\) −2.35211e16 −0.301523 −0.150761 0.988570i \(-0.548172\pi\)
−0.150761 + 0.988570i \(0.548172\pi\)
\(398\) 3.63483e16 0.458399
\(399\) 3.95108e15 0.0490221
\(400\) 4.17216e15 0.0509297
\(401\) −1.66325e16 −0.199765 −0.0998824 0.994999i \(-0.531847\pi\)
−0.0998824 + 0.994999i \(0.531847\pi\)
\(402\) 9.41230e15 0.111231
\(403\) −3.98607e15 −0.0463513
\(404\) −2.18242e16 −0.249724
\(405\) 1.13890e16 0.128241
\(406\) 1.17117e16 0.129778
\(407\) −5.27086e16 −0.574802
\(408\) −2.78337e16 −0.298731
\(409\) 4.34909e16 0.459406 0.229703 0.973261i \(-0.426224\pi\)
0.229703 + 0.973261i \(0.426224\pi\)
\(410\) −9.81420e16 −1.02037
\(411\) −1.24618e16 −0.127529
\(412\) 3.37524e16 0.339995
\(413\) 6.46640e16 0.641191
\(414\) 1.55878e15 0.0152154
\(415\) 1.21379e17 1.16636
\(416\) −6.32300e16 −0.598158
\(417\) −4.89258e16 −0.455673
\(418\) 3.02392e15 0.0277284
\(419\) 4.23191e16 0.382072 0.191036 0.981583i \(-0.438815\pi\)
0.191036 + 0.981583i \(0.438815\pi\)
\(420\) −2.66090e16 −0.236542
\(421\) −9.41086e16 −0.823750 −0.411875 0.911240i \(-0.635126\pi\)
−0.411875 + 0.911240i \(0.635126\pi\)
\(422\) −5.47388e16 −0.471807
\(423\) 4.15866e16 0.352972
\(424\) 9.76623e16 0.816299
\(425\) −2.20665e16 −0.181637
\(426\) 3.50230e16 0.283917
\(427\) 1.36897e15 0.0109298
\(428\) 1.00382e17 0.789353
\(429\) −1.30251e16 −0.100881
\(430\) −1.07710e17 −0.821693
\(431\) 1.77811e17 1.33615 0.668077 0.744092i \(-0.267118\pi\)
0.668077 + 0.744092i \(0.267118\pi\)
\(432\) 3.98708e15 0.0295128
\(433\) 2.17293e17 1.58444 0.792218 0.610239i \(-0.208926\pi\)
0.792218 + 0.610239i \(0.208926\pi\)
\(434\) 3.24212e15 0.0232887
\(435\) −4.19700e16 −0.297002
\(436\) −1.33782e17 −0.932685
\(437\) −1.93792e15 −0.0133109
\(438\) 4.68227e16 0.316865
\(439\) 1.38182e17 0.921368 0.460684 0.887564i \(-0.347604\pi\)
0.460684 + 0.887564i \(0.347604\pi\)
\(440\) −5.01106e16 −0.329221
\(441\) −3.76484e16 −0.243722
\(442\) 2.79027e16 0.177992
\(443\) 2.38504e15 0.0149924 0.00749620 0.999972i \(-0.497614\pi\)
0.00749620 + 0.999972i \(0.497614\pi\)
\(444\) −1.21647e17 −0.753548
\(445\) 9.99410e15 0.0610104
\(446\) 9.73337e16 0.585581
\(447\) 1.88793e16 0.111941
\(448\) 3.78226e16 0.221027
\(449\) −1.62508e17 −0.935993 −0.467997 0.883730i \(-0.655024\pi\)
−0.467997 + 0.883730i \(0.655024\pi\)
\(450\) −1.09508e16 −0.0621678
\(451\) −8.48267e16 −0.474663
\(452\) −9.81127e16 −0.541160
\(453\) −6.81236e15 −0.0370390
\(454\) −1.72125e16 −0.0922530
\(455\) 6.56372e16 0.346798
\(456\) 1.71726e16 0.0894468
\(457\) −1.35196e17 −0.694237 −0.347119 0.937821i \(-0.612840\pi\)
−0.347119 + 0.937821i \(0.612840\pi\)
\(458\) −1.13539e17 −0.574801
\(459\) −2.10876e16 −0.105255
\(460\) 1.30511e16 0.0642276
\(461\) 2.61048e17 1.26667 0.633337 0.773876i \(-0.281685\pi\)
0.633337 + 0.773876i \(0.281685\pi\)
\(462\) 1.05941e16 0.0506866
\(463\) −2.68515e17 −1.26675 −0.633376 0.773844i \(-0.718331\pi\)
−0.633376 + 0.773844i \(0.718331\pi\)
\(464\) −1.46930e16 −0.0683506
\(465\) −1.16185e16 −0.0532973
\(466\) −1.23026e17 −0.556531
\(467\) 2.63618e17 1.17602 0.588011 0.808853i \(-0.299911\pi\)
0.588011 + 0.808853i \(0.299911\pi\)
\(468\) −3.00607e16 −0.132252
\(469\) −4.09961e16 −0.177877
\(470\) −1.60390e17 −0.686341
\(471\) −2.12051e17 −0.894963
\(472\) 2.81049e17 1.16993
\(473\) −9.30962e16 −0.382239
\(474\) −6.44572e16 −0.261043
\(475\) 1.36144e16 0.0543864
\(476\) 4.92686e16 0.194144
\(477\) 7.39918e16 0.287617
\(478\) 4.36922e16 0.167541
\(479\) 1.28995e16 0.0487967 0.0243984 0.999702i \(-0.492233\pi\)
0.0243984 + 0.999702i \(0.492233\pi\)
\(480\) −1.84301e17 −0.687796
\(481\) 3.00070e17 1.10479
\(482\) −1.96213e17 −0.712724
\(483\) −6.78941e15 −0.0243319
\(484\) −1.76019e16 −0.0622393
\(485\) −4.08006e17 −1.42346
\(486\) −1.04651e16 −0.0360251
\(487\) −1.21187e17 −0.411640 −0.205820 0.978590i \(-0.565986\pi\)
−0.205820 + 0.978590i \(0.565986\pi\)
\(488\) 5.94995e15 0.0199427
\(489\) 1.80699e17 0.597650
\(490\) 1.45201e17 0.473909
\(491\) 1.87480e16 0.0603844 0.0301922 0.999544i \(-0.490388\pi\)
0.0301922 + 0.999544i \(0.490388\pi\)
\(492\) −1.95772e17 −0.622269
\(493\) 7.77108e16 0.243768
\(494\) −1.72152e16 −0.0532949
\(495\) −3.79652e16 −0.115998
\(496\) −4.06743e15 −0.0122656
\(497\) −1.52546e17 −0.454030
\(498\) −1.11533e17 −0.327651
\(499\) −3.02024e16 −0.0875766 −0.0437883 0.999041i \(-0.513943\pi\)
−0.0437883 + 0.999041i \(0.513943\pi\)
\(500\) 1.84391e17 0.527757
\(501\) 3.33521e16 0.0942275
\(502\) 2.60024e17 0.725169
\(503\) 3.61031e17 0.993921 0.496961 0.867773i \(-0.334449\pi\)
0.496961 + 0.867773i \(0.334449\pi\)
\(504\) 6.01634e16 0.163506
\(505\) 1.56915e17 0.420990
\(506\) −5.19620e15 −0.0137628
\(507\) −1.46644e17 −0.383454
\(508\) −5.43770e16 −0.140379
\(509\) −3.96957e17 −1.01176 −0.505881 0.862603i \(-0.668832\pi\)
−0.505881 + 0.862603i \(0.668832\pi\)
\(510\) 8.13299e16 0.204665
\(511\) −2.03941e17 −0.506720
\(512\) −1.23658e17 −0.303366
\(513\) 1.30105e16 0.0315159
\(514\) 2.56207e17 0.612817
\(515\) −2.42679e17 −0.573172
\(516\) −2.14858e17 −0.501104
\(517\) −1.38629e17 −0.319275
\(518\) −2.44066e17 −0.555091
\(519\) −4.41547e16 −0.0991719
\(520\) 2.85280e17 0.632774
\(521\) −4.50995e17 −0.987931 −0.493965 0.869482i \(-0.664453\pi\)
−0.493965 + 0.869482i \(0.664453\pi\)
\(522\) 3.85652e16 0.0834329
\(523\) 6.59136e17 1.40836 0.704180 0.710021i \(-0.251315\pi\)
0.704180 + 0.710021i \(0.251315\pi\)
\(524\) −5.81351e17 −1.22683
\(525\) 4.76974e16 0.0994166
\(526\) 3.49713e17 0.719954
\(527\) 2.15125e16 0.0437444
\(528\) −1.32910e16 −0.0266954
\(529\) −5.00706e17 −0.993393
\(530\) −2.85369e17 −0.559260
\(531\) 2.12931e17 0.412216
\(532\) −3.03974e16 −0.0581313
\(533\) 4.82918e17 0.912319
\(534\) −9.18334e15 −0.0171389
\(535\) −7.21744e17 −1.33071
\(536\) −1.78182e17 −0.324558
\(537\) 4.46703e17 0.803870
\(538\) 3.56884e17 0.634515
\(539\) 1.25501e17 0.220455
\(540\) −8.76202e16 −0.152070
\(541\) −4.61819e17 −0.791934 −0.395967 0.918265i \(-0.629591\pi\)
−0.395967 + 0.918265i \(0.629591\pi\)
\(542\) 3.26391e17 0.553023
\(543\) −1.17386e17 −0.196524
\(544\) 3.41248e17 0.564517
\(545\) 9.61889e17 1.57234
\(546\) −6.03125e16 −0.0974215
\(547\) 1.14325e18 1.82483 0.912416 0.409264i \(-0.134215\pi\)
0.912416 + 0.409264i \(0.134215\pi\)
\(548\) 9.58736e16 0.151226
\(549\) 4.50785e15 0.00702667
\(550\) 3.65046e16 0.0562329
\(551\) −4.79454e16 −0.0729897
\(552\) −2.95089e16 −0.0443965
\(553\) 2.80749e17 0.417451
\(554\) −4.63811e17 −0.681598
\(555\) 8.74636e17 1.27035
\(556\) 3.76407e17 0.540345
\(557\) −8.21907e17 −1.16618 −0.583088 0.812409i \(-0.698156\pi\)
−0.583088 + 0.812409i \(0.698156\pi\)
\(558\) 1.06759e16 0.0149721
\(559\) 5.29997e17 0.734677
\(560\) 6.69770e16 0.0917706
\(561\) 7.02956e16 0.0952072
\(562\) −6.31372e17 −0.845277
\(563\) 1.16556e18 1.54252 0.771260 0.636521i \(-0.219627\pi\)
0.771260 + 0.636521i \(0.219627\pi\)
\(564\) −3.19943e17 −0.418561
\(565\) 7.05428e17 0.912300
\(566\) 7.28838e17 0.931803
\(567\) 4.55815e16 0.0576101
\(568\) −6.63011e17 −0.828432
\(569\) 1.01972e18 1.25966 0.629828 0.776735i \(-0.283126\pi\)
0.629828 + 0.776735i \(0.283126\pi\)
\(570\) −5.01783e16 −0.0612815
\(571\) −4.09487e17 −0.494431 −0.247216 0.968961i \(-0.579516\pi\)
−0.247216 + 0.968961i \(0.579516\pi\)
\(572\) 1.00208e17 0.119626
\(573\) 3.34935e16 0.0395326
\(574\) −3.92788e17 −0.458386
\(575\) −2.33945e16 −0.0269944
\(576\) 1.24546e17 0.142096
\(577\) −1.14413e18 −1.29072 −0.645360 0.763879i \(-0.723293\pi\)
−0.645360 + 0.763879i \(0.723293\pi\)
\(578\) 3.52842e17 0.393595
\(579\) −4.33569e17 −0.478242
\(580\) 3.22893e17 0.352190
\(581\) 4.85790e17 0.523967
\(582\) 3.74906e17 0.399874
\(583\) −2.46652e17 −0.260159
\(584\) −8.86388e17 −0.924571
\(585\) 2.16136e17 0.222953
\(586\) −2.45730e17 −0.250682
\(587\) 8.95116e17 0.903091 0.451546 0.892248i \(-0.350873\pi\)
0.451546 + 0.892248i \(0.350873\pi\)
\(588\) 2.89645e17 0.289010
\(589\) −1.32726e16 −0.0130981
\(590\) −8.21225e17 −0.801538
\(591\) −2.82588e17 −0.272795
\(592\) 3.06195e17 0.292353
\(593\) 1.07087e18 1.01130 0.505652 0.862737i \(-0.331252\pi\)
0.505652 + 0.862737i \(0.331252\pi\)
\(594\) 3.48853e16 0.0325860
\(595\) −3.54240e17 −0.327293
\(596\) −1.45247e17 −0.132741
\(597\) −5.21324e17 −0.471275
\(598\) 2.95820e16 0.0264527
\(599\) −1.90802e17 −0.168775 −0.0843874 0.996433i \(-0.526893\pi\)
−0.0843874 + 0.996433i \(0.526893\pi\)
\(600\) 2.07307e17 0.181398
\(601\) −2.23338e18 −1.93321 −0.966604 0.256274i \(-0.917505\pi\)
−0.966604 + 0.256274i \(0.917505\pi\)
\(602\) −4.31080e17 −0.369131
\(603\) −1.34996e17 −0.114356
\(604\) 5.24104e16 0.0439215
\(605\) 1.26557e17 0.104924
\(606\) −1.44186e17 −0.118263
\(607\) −2.02012e18 −1.63927 −0.819637 0.572883i \(-0.805825\pi\)
−0.819637 + 0.572883i \(0.805825\pi\)
\(608\) −2.10541e17 −0.169029
\(609\) −1.67974e17 −0.133423
\(610\) −1.73857e16 −0.0136631
\(611\) 7.89215e17 0.613659
\(612\) 1.62236e17 0.124814
\(613\) −6.43787e17 −0.490060 −0.245030 0.969516i \(-0.578798\pi\)
−0.245030 + 0.969516i \(0.578798\pi\)
\(614\) 7.40672e17 0.557868
\(615\) 1.40760e18 1.04904
\(616\) −2.00555e17 −0.147897
\(617\) −2.34190e18 −1.70889 −0.854446 0.519540i \(-0.826103\pi\)
−0.854446 + 0.519540i \(0.826103\pi\)
\(618\) 2.22992e17 0.161014
\(619\) −9.74689e17 −0.696429 −0.348214 0.937415i \(-0.613212\pi\)
−0.348214 + 0.937415i \(0.613212\pi\)
\(620\) 8.93859e16 0.0632009
\(621\) −2.23567e16 −0.0156428
\(622\) 9.52145e17 0.659273
\(623\) 3.99989e16 0.0274079
\(624\) 7.56654e16 0.0513095
\(625\) −1.82064e18 −1.22181
\(626\) −1.34187e18 −0.891204
\(627\) −4.33704e16 −0.0285072
\(628\) 1.63140e18 1.06126
\(629\) −1.61946e18 −1.04266
\(630\) −1.75797e17 −0.112021
\(631\) −3.15158e18 −1.98764 −0.993819 0.111010i \(-0.964592\pi\)
−0.993819 + 0.111010i \(0.964592\pi\)
\(632\) 1.22022e18 0.761690
\(633\) 7.85089e17 0.485060
\(634\) 9.58794e17 0.586334
\(635\) 3.90969e17 0.236654
\(636\) −5.69250e17 −0.341061
\(637\) −7.14477e17 −0.423723
\(638\) −1.28557e17 −0.0754679
\(639\) −5.02316e17 −0.291892
\(640\) 1.59070e18 0.914997
\(641\) −2.55544e18 −1.45508 −0.727542 0.686063i \(-0.759338\pi\)
−0.727542 + 0.686063i \(0.759338\pi\)
\(642\) 6.63193e17 0.373820
\(643\) −8.03329e17 −0.448252 −0.224126 0.974560i \(-0.571953\pi\)
−0.224126 + 0.974560i \(0.571953\pi\)
\(644\) 5.22338e16 0.0288532
\(645\) 1.54482e18 0.844773
\(646\) 9.29091e16 0.0502976
\(647\) 1.30317e18 0.698431 0.349215 0.937042i \(-0.386448\pi\)
0.349215 + 0.937042i \(0.386448\pi\)
\(648\) 1.98111e17 0.105117
\(649\) −7.09807e17 −0.372863
\(650\) −2.07821e17 −0.108082
\(651\) −4.65000e16 −0.0239429
\(652\) −1.39019e18 −0.708704
\(653\) 2.59971e17 0.131217 0.0656084 0.997845i \(-0.479101\pi\)
0.0656084 + 0.997845i \(0.479101\pi\)
\(654\) −8.83856e17 −0.441699
\(655\) 4.17990e18 2.06822
\(656\) 4.92775e17 0.241420
\(657\) −6.71553e17 −0.325766
\(658\) −6.41919e17 −0.308327
\(659\) 2.40811e18 1.14530 0.572652 0.819799i \(-0.305915\pi\)
0.572652 + 0.819799i \(0.305915\pi\)
\(660\) 2.92082e17 0.137553
\(661\) −1.24778e18 −0.581874 −0.290937 0.956742i \(-0.593967\pi\)
−0.290937 + 0.956742i \(0.593967\pi\)
\(662\) 1.72657e18 0.797275
\(663\) −4.00193e17 −0.182992
\(664\) 2.11139e18 0.956041
\(665\) 2.18556e17 0.0979992
\(666\) −8.03682e17 −0.356863
\(667\) 8.23878e16 0.0362281
\(668\) −2.56592e17 −0.111737
\(669\) −1.39601e18 −0.602029
\(670\) 5.20646e17 0.222360
\(671\) −1.50269e16 −0.00635586
\(672\) −7.37618e17 −0.308981
\(673\) 6.64659e17 0.275741 0.137870 0.990450i \(-0.455974\pi\)
0.137870 + 0.990450i \(0.455974\pi\)
\(674\) 1.66485e18 0.684047
\(675\) 1.57062e17 0.0639141
\(676\) 1.12820e18 0.454706
\(677\) 2.77653e18 1.10835 0.554174 0.832401i \(-0.313034\pi\)
0.554174 + 0.832401i \(0.313034\pi\)
\(678\) −6.48201e17 −0.256281
\(679\) −1.63294e18 −0.639464
\(680\) −1.53964e18 −0.597187
\(681\) 2.46869e17 0.0948443
\(682\) −3.55883e16 −0.0135428
\(683\) 1.08769e18 0.409986 0.204993 0.978763i \(-0.434283\pi\)
0.204993 + 0.978763i \(0.434283\pi\)
\(684\) −1.00095e17 −0.0373721
\(685\) −6.89329e17 −0.254940
\(686\) 1.37593e18 0.504068
\(687\) 1.62842e18 0.590947
\(688\) 5.40815e17 0.194412
\(689\) 1.40419e18 0.500035
\(690\) 8.62248e16 0.0304168
\(691\) 3.26378e18 1.14055 0.570273 0.821455i \(-0.306837\pi\)
0.570273 + 0.821455i \(0.306837\pi\)
\(692\) 3.39701e17 0.117600
\(693\) −1.51946e17 −0.0521103
\(694\) −1.53253e18 −0.520682
\(695\) −2.70635e18 −0.910927
\(696\) −7.30068e17 −0.243446
\(697\) −2.60628e18 −0.861010
\(698\) 8.49025e17 0.277882
\(699\) 1.76450e18 0.572163
\(700\) −3.66956e17 −0.117890
\(701\) −1.91850e18 −0.610654 −0.305327 0.952248i \(-0.598766\pi\)
−0.305327 + 0.952248i \(0.598766\pi\)
\(702\) −1.98602e17 −0.0626314
\(703\) 9.99161e17 0.312195
\(704\) −4.15173e17 −0.128531
\(705\) 2.30038e18 0.705620
\(706\) 3.43948e18 1.04535
\(707\) 6.28015e17 0.189123
\(708\) −1.63817e18 −0.488813
\(709\) 2.80441e17 0.0829165 0.0414583 0.999140i \(-0.486800\pi\)
0.0414583 + 0.999140i \(0.486800\pi\)
\(710\) 1.93732e18 0.567572
\(711\) 9.24476e17 0.268376
\(712\) 1.73847e17 0.0500090
\(713\) 2.28073e16 0.00650117
\(714\) 3.25502e17 0.0919424
\(715\) −7.20490e17 −0.201669
\(716\) −3.43667e18 −0.953243
\(717\) −6.26653e17 −0.172247
\(718\) −1.05082e18 −0.286232
\(719\) −4.26107e18 −1.15022 −0.575110 0.818076i \(-0.695041\pi\)
−0.575110 + 0.818076i \(0.695041\pi\)
\(720\) 2.20548e17 0.0589985
\(721\) −9.71260e17 −0.257488
\(722\) 2.08015e18 0.546516
\(723\) 2.81417e18 0.732744
\(724\) 9.03099e17 0.233042
\(725\) −5.78796e17 −0.148023
\(726\) −1.16290e17 −0.0294751
\(727\) 4.58389e18 1.15149 0.575745 0.817629i \(-0.304712\pi\)
0.575745 + 0.817629i \(0.304712\pi\)
\(728\) 1.14176e18 0.284263
\(729\) 1.50095e17 0.0370370
\(730\) 2.59002e18 0.633439
\(731\) −2.86036e18 −0.693358
\(732\) −3.46808e16 −0.00833234
\(733\) −2.51601e18 −0.599151 −0.299575 0.954073i \(-0.596845\pi\)
−0.299575 + 0.954073i \(0.596845\pi\)
\(734\) 3.87816e18 0.915381
\(735\) −2.08254e18 −0.487221
\(736\) 3.61786e17 0.0838969
\(737\) 4.50008e17 0.103438
\(738\) −1.29341e18 −0.294692
\(739\) 8.62679e18 1.94832 0.974160 0.225859i \(-0.0725190\pi\)
0.974160 + 0.225859i \(0.0725190\pi\)
\(740\) −6.72895e18 −1.50640
\(741\) 2.46908e17 0.0547919
\(742\) −1.14212e18 −0.251238
\(743\) −7.52533e18 −1.64096 −0.820481 0.571674i \(-0.806294\pi\)
−0.820481 + 0.571674i \(0.806294\pi\)
\(744\) −2.02103e17 −0.0436867
\(745\) 1.04432e18 0.223778
\(746\) 4.66841e18 0.991668
\(747\) 1.59965e18 0.336854
\(748\) −5.40814e17 −0.112898
\(749\) −2.88860e18 −0.597799
\(750\) 1.21821e18 0.249934
\(751\) 5.74109e17 0.116771 0.0583854 0.998294i \(-0.481405\pi\)
0.0583854 + 0.998294i \(0.481405\pi\)
\(752\) 8.05324e17 0.162388
\(753\) −3.72938e18 −0.745538
\(754\) 7.31877e17 0.145052
\(755\) −3.76829e17 −0.0740440
\(756\) −3.50678e17 −0.0683151
\(757\) 6.00586e18 1.15998 0.579992 0.814622i \(-0.303056\pi\)
0.579992 + 0.814622i \(0.303056\pi\)
\(758\) −4.90076e18 −0.938455
\(759\) 7.45263e16 0.0141494
\(760\) 9.49912e17 0.178811
\(761\) −9.37486e18 −1.74970 −0.874852 0.484390i \(-0.839041\pi\)
−0.874852 + 0.484390i \(0.839041\pi\)
\(762\) −3.59252e17 −0.0664802
\(763\) 3.84972e18 0.706349
\(764\) −2.57679e17 −0.0468784
\(765\) −1.16647e18 −0.210414
\(766\) −3.11468e18 −0.557092
\(767\) 4.04093e18 0.716657
\(768\) −2.86122e18 −0.503156
\(769\) −5.81923e18 −1.01472 −0.507358 0.861735i \(-0.669378\pi\)
−0.507358 + 0.861735i \(0.669378\pi\)
\(770\) 5.86021e17 0.101327
\(771\) −3.67464e18 −0.630030
\(772\) 3.33563e18 0.567108
\(773\) 5.96862e18 1.00625 0.503127 0.864213i \(-0.332183\pi\)
0.503127 + 0.864213i \(0.332183\pi\)
\(774\) −1.41950e18 −0.237311
\(775\) −1.60227e17 −0.0265628
\(776\) −7.09725e18 −1.16678
\(777\) 3.50051e18 0.570683
\(778\) −1.83350e18 −0.296423
\(779\) 1.60800e18 0.257806
\(780\) −1.66283e18 −0.264382
\(781\) 1.67447e18 0.264026
\(782\) −1.59652e17 −0.0249649
\(783\) −5.53120e17 −0.0857765
\(784\) −7.29061e17 −0.112127
\(785\) −1.17297e19 −1.78910
\(786\) −3.84080e18 −0.580999
\(787\) −6.41219e18 −0.961990 −0.480995 0.876723i \(-0.659724\pi\)
−0.480995 + 0.876723i \(0.659724\pi\)
\(788\) 2.17407e18 0.323485
\(789\) −5.01575e18 −0.740177
\(790\) −3.56549e18 −0.521846
\(791\) 2.82330e18 0.409835
\(792\) −6.60404e17 −0.0950815
\(793\) 8.55484e16 0.0122162
\(794\) 1.19553e18 0.169328
\(795\) 4.09289e18 0.574969
\(796\) 4.01077e18 0.558847
\(797\) 5.53258e18 0.764625 0.382313 0.924033i \(-0.375128\pi\)
0.382313 + 0.924033i \(0.375128\pi\)
\(798\) −2.00826e17 −0.0275297
\(799\) −4.25934e18 −0.579146
\(800\) −2.54164e18 −0.342791
\(801\) 1.31712e17 0.0176203
\(802\) 8.45397e17 0.112183
\(803\) 2.23862e18 0.294666
\(804\) 1.03858e18 0.135605
\(805\) −3.75560e17 −0.0486414
\(806\) 2.02604e17 0.0260298
\(807\) −5.11859e18 −0.652338
\(808\) 2.72954e18 0.345077
\(809\) 3.66138e18 0.459176 0.229588 0.973288i \(-0.426262\pi\)
0.229588 + 0.973288i \(0.426262\pi\)
\(810\) −5.78880e17 −0.0720171
\(811\) 1.41941e18 0.175176 0.0875878 0.996157i \(-0.472084\pi\)
0.0875878 + 0.996157i \(0.472084\pi\)
\(812\) 1.29230e18 0.158215
\(813\) −4.68126e18 −0.568557
\(814\) 2.67908e18 0.322795
\(815\) 9.99544e18 1.19475
\(816\) −4.08361e17 −0.0484238
\(817\) 1.76476e18 0.207607
\(818\) −2.21056e18 −0.257992
\(819\) 8.65029e17 0.100158
\(820\) −1.08292e19 −1.24397
\(821\) 3.72995e18 0.425082 0.212541 0.977152i \(-0.431826\pi\)
0.212541 + 0.977152i \(0.431826\pi\)
\(822\) 6.33408e17 0.0716171
\(823\) 1.37777e19 1.54553 0.772763 0.634694i \(-0.218874\pi\)
0.772763 + 0.634694i \(0.218874\pi\)
\(824\) −4.22140e18 −0.469817
\(825\) −5.23567e17 −0.0578124
\(826\) −3.28675e18 −0.360077
\(827\) −9.68527e17 −0.105275 −0.0526376 0.998614i \(-0.516763\pi\)
−0.0526376 + 0.998614i \(0.516763\pi\)
\(828\) 1.72000e17 0.0185495
\(829\) 1.27866e19 1.36821 0.684103 0.729385i \(-0.260194\pi\)
0.684103 + 0.729385i \(0.260194\pi\)
\(830\) −6.16948e18 −0.655000
\(831\) 6.65220e18 0.700743
\(832\) 2.36358e18 0.247041
\(833\) 3.85599e18 0.399892
\(834\) 2.48680e18 0.255895
\(835\) 1.84489e18 0.188368
\(836\) 3.33667e17 0.0338044
\(837\) −1.53119e17 −0.0153927
\(838\) −2.15100e18 −0.214563
\(839\) 1.70005e19 1.68271 0.841355 0.540484i \(-0.181759\pi\)
0.841355 + 0.540484i \(0.181759\pi\)
\(840\) 3.32797e18 0.326862
\(841\) −8.22230e18 −0.801345
\(842\) 4.78336e18 0.462599
\(843\) 9.05543e18 0.869020
\(844\) −6.04003e18 −0.575192
\(845\) −8.11170e18 −0.766555
\(846\) −2.11376e18 −0.198221
\(847\) 5.06513e17 0.0471355
\(848\) 1.43285e18 0.132321
\(849\) −1.04533e19 −0.957976
\(850\) 1.12160e18 0.102003
\(851\) −1.71693e18 −0.154956
\(852\) 3.86453e18 0.346130
\(853\) −1.61107e19 −1.43201 −0.716005 0.698095i \(-0.754031\pi\)
−0.716005 + 0.698095i \(0.754031\pi\)
\(854\) −6.95820e16 −0.00613791
\(855\) 7.19681e17 0.0630028
\(856\) −1.25547e19 −1.09076
\(857\) 1.09844e19 0.947113 0.473556 0.880763i \(-0.342970\pi\)
0.473556 + 0.880763i \(0.342970\pi\)
\(858\) 6.62041e17 0.0566523
\(859\) 9.69824e18 0.823640 0.411820 0.911265i \(-0.364893\pi\)
0.411820 + 0.911265i \(0.364893\pi\)
\(860\) −1.18850e19 −1.00175
\(861\) 5.63355e18 0.471262
\(862\) −9.03780e18 −0.750353
\(863\) 7.07808e18 0.583238 0.291619 0.956535i \(-0.405806\pi\)
0.291619 + 0.956535i \(0.405806\pi\)
\(864\) −2.42889e18 −0.198641
\(865\) −2.44244e18 −0.198253
\(866\) −1.10446e19 −0.889781
\(867\) −5.06062e18 −0.404650
\(868\) 3.57744e17 0.0283919
\(869\) −3.08174e18 −0.242755
\(870\) 2.13326e18 0.166789
\(871\) −2.56190e18 −0.198813
\(872\) 1.67320e19 1.28882
\(873\) −5.37708e18 −0.411106
\(874\) 9.85008e16 0.00747508
\(875\) −5.30603e18 −0.399685
\(876\) 5.16654e18 0.386299
\(877\) −1.28865e19 −0.956398 −0.478199 0.878252i \(-0.658710\pi\)
−0.478199 + 0.878252i \(0.658710\pi\)
\(878\) −7.02354e18 −0.517418
\(879\) 3.52437e18 0.257723
\(880\) −7.35196e17 −0.0533662
\(881\) 1.82623e19 1.31586 0.657932 0.753077i \(-0.271431\pi\)
0.657932 + 0.753077i \(0.271431\pi\)
\(882\) 1.91359e18 0.136869
\(883\) 1.25385e19 0.890228 0.445114 0.895474i \(-0.353163\pi\)
0.445114 + 0.895474i \(0.353163\pi\)
\(884\) 3.07885e18 0.216995
\(885\) 1.17784e19 0.824053
\(886\) −1.21227e17 −0.00841937
\(887\) 6.75580e18 0.465772 0.232886 0.972504i \(-0.425183\pi\)
0.232886 + 0.972504i \(0.425183\pi\)
\(888\) 1.52143e19 1.04128
\(889\) 1.56476e18 0.106313
\(890\) −5.07981e17 −0.0342620
\(891\) −5.00341e17 −0.0335013
\(892\) 1.07401e19 0.713896
\(893\) 2.62790e18 0.173410
\(894\) −9.59601e17 −0.0628632
\(895\) 2.47096e19 1.60700
\(896\) 6.36639e18 0.411047
\(897\) −4.24278e17 −0.0271957
\(898\) 8.25996e18 0.525632
\(899\) 5.64266e17 0.0356489
\(900\) −1.20834e18 −0.0757904
\(901\) −7.57832e18 −0.471913
\(902\) 4.31158e18 0.266559
\(903\) 6.18275e18 0.379500
\(904\) 1.22709e19 0.747794
\(905\) −6.49326e18 −0.392868
\(906\) 3.46259e17 0.0208002
\(907\) −1.12737e19 −0.672388 −0.336194 0.941793i \(-0.609140\pi\)
−0.336194 + 0.941793i \(0.609140\pi\)
\(908\) −1.89927e18 −0.112468
\(909\) 2.06798e18 0.121585
\(910\) −3.33622e18 −0.194753
\(911\) −1.78217e19 −1.03295 −0.516474 0.856303i \(-0.672756\pi\)
−0.516474 + 0.856303i \(0.672756\pi\)
\(912\) 2.51948e17 0.0144992
\(913\) −5.33245e18 −0.304696
\(914\) 6.87174e18 0.389867
\(915\) 2.49354e17 0.0140469
\(916\) −1.25281e19 −0.700755
\(917\) 1.67290e19 0.929113
\(918\) 1.07184e18 0.0591090
\(919\) −1.37092e19 −0.750693 −0.375346 0.926885i \(-0.622476\pi\)
−0.375346 + 0.926885i \(0.622476\pi\)
\(920\) −1.63230e18 −0.0887521
\(921\) −1.06231e19 −0.573538
\(922\) −1.32686e19 −0.711334
\(923\) −9.53278e18 −0.507468
\(924\) 1.16899e18 0.0617933
\(925\) 1.20618e19 0.633129
\(926\) 1.36481e19 0.711378
\(927\) −3.19825e18 −0.165537
\(928\) 8.95082e18 0.460045
\(929\) −2.64762e19 −1.35131 −0.675653 0.737220i \(-0.736138\pi\)
−0.675653 + 0.737220i \(0.736138\pi\)
\(930\) 5.90545e17 0.0299305
\(931\) −2.37904e18 −0.119737
\(932\) −1.35750e19 −0.678481
\(933\) −1.36561e19 −0.677791
\(934\) −1.33992e19 −0.660426
\(935\) 3.88844e18 0.190327
\(936\) 3.75968e18 0.182750
\(937\) −1.29501e19 −0.625124 −0.312562 0.949897i \(-0.601187\pi\)
−0.312562 + 0.949897i \(0.601187\pi\)
\(938\) 2.08376e18 0.0998914
\(939\) 1.92457e19 0.916237
\(940\) −1.76978e19 −0.836736
\(941\) −2.82844e19 −1.32805 −0.664024 0.747711i \(-0.731153\pi\)
−0.664024 + 0.747711i \(0.731153\pi\)
\(942\) 1.07782e19 0.502590
\(943\) −2.76314e18 −0.127961
\(944\) 4.12341e18 0.189644
\(945\) 2.52136e18 0.115167
\(946\) 4.73190e18 0.214656
\(947\) 1.92431e19 0.866963 0.433482 0.901162i \(-0.357285\pi\)
0.433482 + 0.901162i \(0.357285\pi\)
\(948\) −7.11238e18 −0.318245
\(949\) −1.27445e19 −0.566359
\(950\) −6.91994e17 −0.0305421
\(951\) −1.37515e19 −0.602804
\(952\) −6.16200e18 −0.268276
\(953\) 1.39412e18 0.0602833 0.0301416 0.999546i \(-0.490404\pi\)
0.0301416 + 0.999546i \(0.490404\pi\)
\(954\) −3.76086e18 −0.161519
\(955\) 1.85271e18 0.0790288
\(956\) 4.82111e18 0.204254
\(957\) 1.84383e18 0.0775877
\(958\) −6.55655e17 −0.0274031
\(959\) −2.75887e18 −0.114527
\(960\) 6.88931e18 0.284062
\(961\) −2.42613e19 −0.993603
\(962\) −1.52520e19 −0.620424
\(963\) −9.51182e18 −0.384320
\(964\) −2.16506e19 −0.868900
\(965\) −2.39831e19 −0.956044
\(966\) 3.45093e17 0.0136642
\(967\) −2.12119e19 −0.834272 −0.417136 0.908844i \(-0.636966\pi\)
−0.417136 + 0.908844i \(0.636966\pi\)
\(968\) 2.20146e18 0.0860045
\(969\) −1.33255e18 −0.0517104
\(970\) 2.07381e19 0.799380
\(971\) 1.34015e19 0.513132 0.256566 0.966527i \(-0.417409\pi\)
0.256566 + 0.966527i \(0.417409\pi\)
\(972\) −1.15474e18 −0.0439192
\(973\) −1.08315e19 −0.409218
\(974\) 6.15970e18 0.231167
\(975\) 2.98066e18 0.111118
\(976\) 8.72945e16 0.00323268
\(977\) −2.97354e19 −1.09385 −0.546926 0.837181i \(-0.684202\pi\)
−0.546926 + 0.837181i \(0.684202\pi\)
\(978\) −9.18456e18 −0.335626
\(979\) −4.39061e17 −0.0159381
\(980\) 1.60219e19 0.577755
\(981\) 1.26767e19 0.454105
\(982\) −9.52924e17 −0.0339104
\(983\) 2.23524e19 0.790182 0.395091 0.918642i \(-0.370713\pi\)
0.395091 + 0.918642i \(0.370713\pi\)
\(984\) 2.44852e19 0.859874
\(985\) −1.56315e19 −0.545338
\(986\) −3.94989e18 −0.136894
\(987\) 9.20670e18 0.316988
\(988\) −1.89957e18 −0.0649732
\(989\) −3.03251e18 −0.103045
\(990\) 1.92970e18 0.0651419
\(991\) 4.17080e19 1.39875 0.699377 0.714753i \(-0.253461\pi\)
0.699377 + 0.714753i \(0.253461\pi\)
\(992\) 2.47784e18 0.0825557
\(993\) −2.47633e19 −0.819669
\(994\) 7.75362e18 0.254972
\(995\) −2.88373e19 −0.942117
\(996\) −1.23068e19 −0.399447
\(997\) 3.97661e19 1.28231 0.641157 0.767410i \(-0.278455\pi\)
0.641157 + 0.767410i \(0.278455\pi\)
\(998\) 1.53513e18 0.0491810
\(999\) 1.15268e19 0.366887
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 33.14.a.c.1.2 4
3.2 odd 2 99.14.a.b.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.14.a.c.1.2 4 1.1 even 1 trivial
99.14.a.b.1.3 4 3.2 odd 2