Properties

Label 33.14.a.c
Level $33$
Weight $14$
Character orbit 33.a
Self dual yes
Analytic conductor $35.386$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [33,14,Mod(1,33)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(33, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 14, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("33.1");
 
S:= CuspForms(chi, 14);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 33 = 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 33.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(35.3862065541\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 28008x^{2} - 426124x + 63795376 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 + 10) q^{2} + 729 q^{3} + (5 \beta_{3} + 43 \beta_1 + 5909) q^{4} + ( - 4 \beta_{3} + \beta_{2} - 97 \beta_1 - 9583) q^{5} + (729 \beta_1 + 7290) q^{6} + ( - 96 \beta_{3} + \beta_{2} + 931 \beta_1 + 10219) q^{7} + (285 \beta_{3} + 30 \beta_{2} + 8051 \beta_1 + 592003) q^{8} + 531441 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (\beta_1 + 10) q^{2} + 729 q^{3} + (5 \beta_{3} + 43 \beta_1 + 5909) q^{4} + ( - 4 \beta_{3} + \beta_{2} - 97 \beta_1 - 9583) q^{5} + (729 \beta_1 + 7290) q^{6} + ( - 96 \beta_{3} + \beta_{2} + 931 \beta_1 + 10219) q^{7} + (285 \beta_{3} + 30 \beta_{2} + 8051 \beta_1 + 592003) q^{8} + 531441 q^{9} + (206 \beta_{3} - 40 \beta_{2} - 20616 \beta_1 - 1461470) q^{10} - 1771561 q^{11} + (3645 \beta_{3} + 31347 \beta_1 + 4307661) q^{12} + (4488 \beta_{3} + 249 \beta_{2} + 62771 \beta_1 + 12709421) q^{13} + (4058 \beta_{3} - 592 \beta_{2} - 130926 \beta_1 + 12894242) q^{14} + ( - 2916 \beta_{3} + 729 \beta_{2} - 70713 \beta_1 - 6986007) q^{15} + (25695 \beta_{3} + 1230 \beta_{2} + 992585 \beta_1 + 71045253) q^{16} + ( - 15536 \beta_{3} - 2994 \beta_{2} + 324666 \beta_1 + 48095272) q^{17} + (531441 \beta_1 + 5314410) q^{18} + ( - 45932 \beta_{3} + 556 \beta_{2} + 374520 \beta_1 - 45921504) q^{19} + ( - 97308 \beta_{3} - 6316 \beta_{2} - 951876 \beta_1 - 224335992) q^{20} + ( - 69984 \beta_{3} + 729 \beta_{2} + 678699 \beta_1 + 7449651) q^{21} + ( - 1771561 \beta_1 - 17715610) q^{22} + ( - 118472 \beta_{3} - 2207 \beta_{2} + 3004059 \beta_1 - 4492865) q^{23} + (207765 \beta_{3} + 21870 \beta_{2} + 5869179 \beta_1 + 431570187) q^{24} + ( - 162716 \beta_{3} + 10984 \beta_{2} + \cdots - 275341797) q^{25}+ \cdots - 941480149401 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 41 q^{2} + 2916 q^{3} + 23669 q^{4} - 38422 q^{5} + 29889 q^{6} + 41998 q^{7} + 2375463 q^{8} + 2125764 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 41 q^{2} + 2916 q^{3} + 23669 q^{4} - 38422 q^{5} + 29889 q^{6} + 41998 q^{7} + 2375463 q^{8} + 2125764 q^{9} - 5866868 q^{10} - 7086244 q^{11} + 17254701 q^{12} + 50891230 q^{13} + 51438518 q^{14} - 28009638 q^{15} + 285120977 q^{16} + 192739820 q^{17} + 21789081 q^{18} - 183220188 q^{19} - 898094912 q^{20} + 30616542 q^{21} - 72634001 q^{22} - 14728250 q^{23} + 1731712527 q^{24} - 1100820808 q^{25} + 4093863728 q^{26} + 1549681956 q^{27} - 7107233974 q^{28} - 548077356 q^{29} - 4276946772 q^{30} - 681968600 q^{31} + 39383025007 q^{32} - 5165871876 q^{33} + 19950148786 q^{34} + 5394617384 q^{35} + 12578677029 q^{36} - 5154946872 q^{37} + 18554908452 q^{38} + 37099706670 q^{39} - 15687175464 q^{40} + 51238857992 q^{41} + 37498679622 q^{42} + 74347734480 q^{43} - 41931077309 q^{44} - 20419026102 q^{45} + 166685861450 q^{46} + 274474225690 q^{47} + 207853192233 q^{48} - 153177492648 q^{49} - 149839157 q^{50} + 140507328780 q^{51} + 898475423084 q^{52} + 213982590882 q^{53} + 15884240049 q^{54} + 68066916742 q^{55} - 15495316938 q^{56} - 133567517052 q^{57} - 366985322898 q^{58} + 1321318473964 q^{59} - 654711190848 q^{60} - 103045963950 q^{61} - 1085044917496 q^{62} + 22319459118 q^{63} + 2752080303457 q^{64} - 592303463140 q^{65} - 52950186729 q^{66} + 564819557912 q^{67} + 475206163858 q^{68} - 10736894250 q^{69} - 1630864907696 q^{70} + 755239009806 q^{71} + 1262418432183 q^{72} + 1553343364552 q^{73} - 1161503492586 q^{74} - 802498369032 q^{75} - 4781019846036 q^{76} - 74402018878 q^{77} + 2984426657712 q^{78} - 409630665982 q^{79} - 7292238669896 q^{80} + 1129718145924 q^{81} - 14121959211962 q^{82} - 2873448789168 q^{83} - 5181173567046 q^{84} - 9861359797412 q^{85} - 5038703996808 q^{86} - 399548392524 q^{87} - 4208277607743 q^{88} - 2345798585688 q^{89} - 3117894196788 q^{90} - 4061579957120 q^{91} - 4480747709890 q^{92} - 497155109400 q^{93} - 21071642578954 q^{94} + 5118679925808 q^{95} + 28710225230103 q^{96} - 325787932204 q^{97} - 19699761224547 q^{98} - 3765920597604 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 28008x^{2} - 426124x + 63795376 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - 27\nu^{2} - 22824\nu + 43214 ) / 30 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{2} - 23\nu - 14001 ) / 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 5\beta_{3} + 23\beta _1 + 14001 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 135\beta_{3} + 30\beta_{2} + 23445\beta _1 + 334813 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−148.687
−60.8281
41.8107
168.704
−138.687 729.000 11042.0 −19288.1 −101103. −364424. −395257. 531441. 2.67501e6
1.2 −50.8281 729.000 −5608.51 40325.0 −37053.7 161391. 701453. 531441. −2.04964e6
1.3 51.8107 729.000 −5507.65 −32573.1 37770.0 273357. −709788. 531441. −1.68763e6
1.4 178.704 729.000 23743.2 −26885.8 130275. −28325.8 2.77906e6 531441. −4.80460e6
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(-1\)
\(11\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 33.14.a.c 4
3.b odd 2 1 99.14.a.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
33.14.a.c 4 1.a even 1 1 trivial
99.14.a.b 4 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} - 41T_{2}^{3} - 27378T_{2}^{2} + 129736T_{2} + 65266816 \) acting on \(S_{14}^{\mathrm{new}}(\Gamma_0(33))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 41 T^{3} - 27378 T^{2} + \cdots + 65266816 \) Copy content Toggle raw display
$3$ \( (T - 729)^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 38422 T^{3} + \cdots - 68\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( T^{4} - 41998 T^{3} + \cdots + 45\!\cdots\!84 \) Copy content Toggle raw display
$11$ \( (T + 1771561)^{4} \) Copy content Toggle raw display
$13$ \( T^{4} - 50891230 T^{3} + \cdots - 13\!\cdots\!64 \) Copy content Toggle raw display
$17$ \( T^{4} - 192739820 T^{3} + \cdots - 42\!\cdots\!68 \) Copy content Toggle raw display
$19$ \( T^{4} + 183220188 T^{3} + \cdots + 41\!\cdots\!84 \) Copy content Toggle raw display
$23$ \( T^{4} + 14728250 T^{3} + \cdots + 46\!\cdots\!76 \) Copy content Toggle raw display
$29$ \( T^{4} + 548077356 T^{3} + \cdots + 23\!\cdots\!48 \) Copy content Toggle raw display
$31$ \( T^{4} + 681968600 T^{3} + \cdots + 16\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T^{4} + 5154946872 T^{3} + \cdots + 52\!\cdots\!44 \) Copy content Toggle raw display
$41$ \( T^{4} - 51238857992 T^{3} + \cdots - 11\!\cdots\!72 \) Copy content Toggle raw display
$43$ \( T^{4} - 74347734480 T^{3} + \cdots - 19\!\cdots\!68 \) Copy content Toggle raw display
$47$ \( T^{4} - 274474225690 T^{3} + \cdots - 10\!\cdots\!56 \) Copy content Toggle raw display
$53$ \( T^{4} - 213982590882 T^{3} + \cdots + 10\!\cdots\!52 \) Copy content Toggle raw display
$59$ \( T^{4} - 1321318473964 T^{3} + \cdots - 21\!\cdots\!64 \) Copy content Toggle raw display
$61$ \( T^{4} + 103045963950 T^{3} + \cdots - 46\!\cdots\!88 \) Copy content Toggle raw display
$67$ \( T^{4} - 564819557912 T^{3} + \cdots + 24\!\cdots\!72 \) Copy content Toggle raw display
$71$ \( T^{4} - 755239009806 T^{3} + \cdots + 67\!\cdots\!24 \) Copy content Toggle raw display
$73$ \( T^{4} - 1553343364552 T^{3} + \cdots - 81\!\cdots\!64 \) Copy content Toggle raw display
$79$ \( T^{4} + 409630665982 T^{3} + \cdots - 20\!\cdots\!56 \) Copy content Toggle raw display
$83$ \( T^{4} + 2873448789168 T^{3} + \cdots + 18\!\cdots\!00 \) Copy content Toggle raw display
$89$ \( T^{4} + 2345798585688 T^{3} + \cdots + 85\!\cdots\!44 \) Copy content Toggle raw display
$97$ \( T^{4} + 325787932204 T^{3} + \cdots + 64\!\cdots\!84 \) Copy content Toggle raw display
show more
show less