[N,k,chi] = [33,14,Mod(1,33)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(33, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 14, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("33.1");
S:= CuspForms(chi, 14);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
\( p \)
Sign
\(3\)
\(-1\)
\(11\)
\(1\)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{4} - 41T_{2}^{3} - 27378T_{2}^{2} + 129736T_{2} + 65266816 \)
T2^4 - 41*T2^3 - 27378*T2^2 + 129736*T2 + 65266816
acting on \(S_{14}^{\mathrm{new}}(\Gamma_0(33))\).
$p$
$F_p(T)$
$2$
\( T^{4} - 41 T^{3} - 27378 T^{2} + \cdots + 65266816 \)
T^4 - 41*T^3 - 27378*T^2 + 129736*T + 65266816
$3$
\( (T - 729)^{4} \)
(T - 729)^4
$5$
\( T^{4} + 38422 T^{3} + \cdots - 68\!\cdots\!00 \)
T^4 + 38422*T^3 - 1152870804*T^2 - 64669920637400*T - 681156311466680000
$7$
\( T^{4} - 41998 T^{3} + \cdots + 45\!\cdots\!84 \)
T^4 - 41998*T^3 - 116307358488*T^2 + 12839351841983744*T + 455405197573782045184
$11$
\( (T + 1771561)^{4} \)
(T + 1771561)^4
$13$
\( T^{4} - 50891230 T^{3} + \cdots - 13\!\cdots\!64 \)
T^4 - 50891230*T^3 + 585501088695300*T^2 - 409738840821595047880*T - 13561803430419986469242101664
$17$
\( T^{4} - 192739820 T^{3} + \cdots - 42\!\cdots\!68 \)
T^4 - 192739820*T^3 - 2324771261784192*T^2 + 527431575844090126777648*T - 4263241826292645523001135018768
$19$
\( T^{4} + 183220188 T^{3} + \cdots + 41\!\cdots\!84 \)
T^4 + 183220188*T^3 - 12720871117380384*T^2 - 1038668050914622395952896*T + 41016072183265467316765054531584
$23$
\( T^{4} + 14728250 T^{3} + \cdots + 46\!\cdots\!76 \)
T^4 + 14728250*T^3 - 392839027110689952*T^2 + 58606497277489813509831200*T + 4681904919041516530432321789528576
$29$
\( T^{4} + 548077356 T^{3} + \cdots + 23\!\cdots\!48 \)
T^4 + 548077356*T^3 - 3432948213717103488*T^2 - 1436759367699942505952452656*T + 2386403345161454624914196033176286448
$31$
\( T^{4} + 681968600 T^{3} + \cdots + 16\!\cdots\!00 \)
T^4 + 681968600*T^3 - 42154412484425533632*T^2 + 24555838492508674107319493120*T + 16307565067379297171506447153581875200
$37$
\( T^{4} + 5154946872 T^{3} + \cdots + 52\!\cdots\!44 \)
T^4 + 5154946872*T^3 - 754959349720773188808*T^2 - 8616732419756690694443190031776*T + 5292869932604814793323113409619618771344
$41$
\( T^{4} - 51238857992 T^{3} + \cdots - 11\!\cdots\!72 \)
T^4 - 51238857992*T^3 - 1220580672347284857864*T^2 + 68554966436079933166197344656480*T - 115648257525832747348954937799911842389872
$43$
\( T^{4} - 74347734480 T^{3} + \cdots - 19\!\cdots\!68 \)
T^4 - 74347734480*T^3 + 761704126428390708288*T^2 + 23893768807252179673455134871552*T - 195871633461287422095213326808160473120768
$47$
\( T^{4} - 274474225690 T^{3} + \cdots - 10\!\cdots\!56 \)
T^4 - 274474225690*T^3 + 22650341349499165509216*T^2 - 430648660591006944040003366648096*T - 10974327883787202365501400588128060009017856
$53$
\( T^{4} - 213982590882 T^{3} + \cdots + 10\!\cdots\!52 \)
T^4 - 213982590882*T^3 - 10779916356086313374196*T^2 + 2180127180168823343048328580035912*T + 107181191675962354060502159155422869559154752
$59$
\( T^{4} - 1321318473964 T^{3} + \cdots - 21\!\cdots\!64 \)
T^4 - 1321318473964*T^3 + 559251244600641425561136*T^2 - 75739646547301077216893357625688384*T - 215542721629692032842613126006311417916785664
$61$
\( T^{4} + 103045963950 T^{3} + \cdots - 46\!\cdots\!88 \)
T^4 + 103045963950*T^3 - 350424721977200314110852*T^2 + 58210033242774218889608567420132808*T - 468611009584493176203918284344261090173919488
$67$
\( T^{4} - 564819557912 T^{3} + \cdots + 24\!\cdots\!72 \)
T^4 - 564819557912*T^3 - 330929891773056649525248*T^2 + 66969310010145696822269064641244544*T + 24943515667827497719776156547497667999643414272
$71$
\( T^{4} - 755239009806 T^{3} + \cdots + 67\!\cdots\!24 \)
T^4 - 755239009806*T^3 - 2045557849599132014241456*T^2 + 295200854692496649798173259242976288*T + 670609013615130519662454561123530599427665991424
$73$
\( T^{4} - 1553343364552 T^{3} + \cdots - 81\!\cdots\!64 \)
T^4 - 1553343364552*T^3 - 1097763343079523892424040*T^2 + 2467896462356633460578521300522670816*T - 812627950955525477410057735230378040295128404464
$79$
\( T^{4} + 409630665982 T^{3} + \cdots - 20\!\cdots\!56 \)
T^4 + 409630665982*T^3 - 11288299941003233400844824*T^2 + 14335903759341372245127116960421270016*T - 2092390725196413555270217689996547060000046521856
$83$
\( T^{4} + 2873448789168 T^{3} + \cdots + 18\!\cdots\!00 \)
T^4 + 2873448789168*T^3 - 25281734705077601251234656*T^2 - 38739642897959103489654410051043767040*T + 185214524018416930092144874321187153257930923398400
$89$
\( T^{4} + 2345798585688 T^{3} + \cdots + 85\!\cdots\!44 \)
T^4 + 2345798585688*T^3 - 24103301446821292704099240*T^2 - 28590328919292904400304320353162774944*T + 8526830427636505287285907083616093343082936182544
$97$
\( T^{4} + 325787932204 T^{3} + \cdots + 64\!\cdots\!84 \)
T^4 + 325787932204*T^3 - 155981894380192936279277472*T^2 - 512291360216665415587295971648883365808*T + 642257629056645173216776257224955892384029196188784
show more
show less