Properties

Label 3276.2.gv.c
Level $3276$
Weight $2$
Character orbit 3276.gv
Analytic conductor $26.159$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3276,2,Mod(1117,3276)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3276.1117"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3276, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3276 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3276.gv (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,0,0,0,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.1589917022\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1092)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 \zeta_{12} q^{5} + (2 \zeta_{12}^{3} + \zeta_{12}) q^{7} + ( - \zeta_{12}^{3} + \zeta_{12}) q^{11} + ( - 2 \zeta_{12}^{3} - 3) q^{13} - 5 \zeta_{12}^{2} q^{17} - 7 \zeta_{12} q^{19} + ( - 6 \zeta_{12}^{2} + 6) q^{23} + \cdots + 2 \zeta_{12}^{3} q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 12 q^{13} - 10 q^{17} + 12 q^{23} - 2 q^{25} - 36 q^{29} - 4 q^{35} - 32 q^{43} - 22 q^{49} - 2 q^{53} + 8 q^{55} - 10 q^{61} + 8 q^{65} + 8 q^{77} + 20 q^{91} - 28 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3276\mathbb{Z}\right)^\times\).

\(n\) \(1639\) \(2017\) \(2341\) \(2549\)
\(\chi(n)\) \(1\) \(-1\) \(-1 + \zeta_{12}^{2}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1117.1
−0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 0.500000i
0.866025 + 0.500000i
0 0 0 −1.73205 + 1.00000i 0 −0.866025 + 2.50000i 0 0 0
1117.2 0 0 0 1.73205 1.00000i 0 0.866025 2.50000i 0 0 0
2053.1 0 0 0 −1.73205 1.00000i 0 −0.866025 2.50000i 0 0 0
2053.2 0 0 0 1.73205 + 1.00000i 0 0.866025 + 2.50000i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner
13.b even 2 1 inner
91.r even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3276.2.gv.c 4
3.b odd 2 1 1092.2.cu.a 4
7.c even 3 1 inner 3276.2.gv.c 4
13.b even 2 1 inner 3276.2.gv.c 4
21.g even 6 1 7644.2.e.h 2
21.h odd 6 1 1092.2.cu.a 4
21.h odd 6 1 7644.2.e.a 2
39.d odd 2 1 1092.2.cu.a 4
91.r even 6 1 inner 3276.2.gv.c 4
273.w odd 6 1 1092.2.cu.a 4
273.w odd 6 1 7644.2.e.a 2
273.ba even 6 1 7644.2.e.h 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1092.2.cu.a 4 3.b odd 2 1
1092.2.cu.a 4 21.h odd 6 1
1092.2.cu.a 4 39.d odd 2 1
1092.2.cu.a 4 273.w odd 6 1
3276.2.gv.c 4 1.a even 1 1 trivial
3276.2.gv.c 4 7.c even 3 1 inner
3276.2.gv.c 4 13.b even 2 1 inner
3276.2.gv.c 4 91.r even 6 1 inner
7644.2.e.a 2 21.h odd 6 1
7644.2.e.a 2 273.w odd 6 1
7644.2.e.h 2 21.g even 6 1
7644.2.e.h 2 273.ba even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3276, [\chi])\):

\( T_{5}^{4} - 4T_{5}^{2} + 16 \) Copy content Toggle raw display
\( T_{19}^{4} - 49T_{19}^{2} + 2401 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 4T^{2} + 16 \) Copy content Toggle raw display
$7$ \( T^{4} + 11T^{2} + 49 \) Copy content Toggle raw display
$11$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$13$ \( (T^{2} + 6 T + 13)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + 5 T + 25)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} - 49T^{2} + 2401 \) Copy content Toggle raw display
$23$ \( (T^{2} - 6 T + 36)^{2} \) Copy content Toggle raw display
$29$ \( (T + 9)^{4} \) Copy content Toggle raw display
$31$ \( T^{4} - 64T^{2} + 4096 \) Copy content Toggle raw display
$37$ \( T^{4} - 36T^{2} + 1296 \) Copy content Toggle raw display
$41$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$43$ \( (T + 8)^{4} \) Copy content Toggle raw display
$47$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$53$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} - 81T^{2} + 6561 \) Copy content Toggle raw display
$61$ \( (T^{2} + 5 T + 25)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} - 9T^{2} + 81 \) Copy content Toggle raw display
$71$ \( (T^{2} + 225)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} - 100 T^{2} + 10000 \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( T^{4} - 36T^{2} + 1296 \) Copy content Toggle raw display
$97$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
show more
show less