Properties

Label 8-3276e4-1.1-c1e4-0-0
Degree $8$
Conductor $1.152\times 10^{14}$
Sign $1$
Analytic cond. $468256.$
Root an. cond. $5.11458$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 12·13-s − 10·17-s + 12·23-s − 6·25-s − 36·29-s − 32·43-s − 11·49-s − 2·53-s − 10·61-s + 20·101-s − 8·103-s − 16·107-s + 68·113-s − 21·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 82·169-s + 173-s + 179-s + 181-s + ⋯
L(s)  = 1  − 3.32·13-s − 2.42·17-s + 2.50·23-s − 6/5·25-s − 6.68·29-s − 4.87·43-s − 1.57·49-s − 0.274·53-s − 1.28·61-s + 1.99·101-s − 0.788·103-s − 1.54·107-s + 6.39·113-s − 1.90·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 6.30·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{8} \cdot 7^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{8} \cdot 7^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{8} \cdot 3^{8} \cdot 7^{4} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(468256.\)
Root analytic conductor: \(5.11458\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{8} \cdot 3^{8} \cdot 7^{4} \cdot 13^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.008371116467\)
\(L(\frac12)\) \(\approx\) \(0.008371116467\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7$C_2^2$ \( 1 + 11 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
good5$C_2^2$$\times$$C_2^2$ \( ( 1 - 4 T + 11 T^{2} - 4 p T^{3} + p^{2} T^{4} )( 1 + 4 T + 11 T^{2} + 4 p T^{3} + p^{2} T^{4} ) \) 4.5.a_g_a_l
11$C_2^3$ \( 1 + 21 T^{2} + 320 T^{4} + 21 p^{2} T^{6} + p^{4} T^{8} \) 4.11.a_v_a_mi
17$C_2^2$ \( ( 1 + 5 T + 8 T^{2} + 5 p T^{3} + p^{2} T^{4} )^{2} \) 4.17.k_bp_jq_cfk
19$C_2^2$$\times$$C_2^2$ \( ( 1 - 37 T^{2} + p^{2} T^{4} )( 1 + 26 T^{2} + p^{2} T^{4} ) \) 4.19.a_al_a_ajg
23$C_2^2$ \( ( 1 - 6 T + 13 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \) 4.23.am_ck_aqq_egx
29$C_2$ \( ( 1 + 9 T + p T^{2} )^{4} \) 4.29.bk_xe_iyq_cgwp
31$C_2^3$ \( 1 - 2 T^{2} - 957 T^{4} - 2 p^{2} T^{6} + p^{4} T^{8} \) 4.31.a_ac_a_abkv
37$C_2^3$ \( 1 + 38 T^{2} + 75 T^{4} + 38 p^{2} T^{6} + p^{4} T^{8} \) 4.37.a_bm_a_cx
41$C_2^2$ \( ( 1 - 78 T^{2} + p^{2} T^{4} )^{2} \) 4.41.a_aga_a_nzi
43$C_2$ \( ( 1 + 8 T + p T^{2} )^{4} \) 4.43.bg_vk_jdo_ctik
47$C_2^3$ \( 1 + 93 T^{2} + 6440 T^{4} + 93 p^{2} T^{6} + p^{4} T^{8} \) 4.47.a_dp_a_jns
53$C_2^2$ \( ( 1 + T - 52 T^{2} + p T^{3} + p^{2} T^{4} )^{2} \) 4.53.c_adz_c_mme
59$C_2^3$ \( 1 + 37 T^{2} - 2112 T^{4} + 37 p^{2} T^{6} + p^{4} T^{8} \) 4.59.a_bl_a_addg
61$C_2^2$ \( ( 1 + 5 T - 36 T^{2} + 5 p T^{3} + p^{2} T^{4} )^{2} \) 4.61.k_abv_jq_rlk
67$C_2^3$ \( 1 + 125 T^{2} + 11136 T^{4} + 125 p^{2} T^{6} + p^{4} T^{8} \) 4.67.a_ev_a_qmi
71$C_2^2$ \( ( 1 + 83 T^{2} + p^{2} T^{4} )^{2} \) 4.71.a_gk_a_zct
73$C_2^2$$\times$$C_2^2$ \( ( 1 - 97 T^{2} + p^{2} T^{4} )( 1 + 143 T^{2} + p^{2} T^{4} ) \) 4.73.a_bu_a_aetp
79$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \) 4.79.a_agc_a_bbsd
83$C_2$ \( ( 1 - p T^{2} )^{4} \) 4.83.a_amu_a_cjdu
89$C_2^3$ \( 1 + 142 T^{2} + 12243 T^{4} + 142 p^{2} T^{6} + p^{4} T^{8} \) 4.89.a_fm_a_scx
97$C_2^2$ \( ( 1 - 190 T^{2} + p^{2} T^{4} )^{2} \) 4.97.a_aoq_a_ddgg
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.09644681802027163038334353435, −5.86300794450663624872007749962, −5.80659737211474216662143625298, −5.36803693751292621215554789689, −5.20216715426150324659138271279, −5.16971492036559544102475897940, −4.82363019653187247934354597680, −4.74560236352687636506665315183, −4.62444942594934255249692525412, −4.41333185881792064401762936105, −4.16091810141942787764780964514, −3.67627942012269483101388883185, −3.46836430647381808699518191536, −3.42705935353958626052492698376, −3.32002540076028728527778498077, −3.03715231457199159560458957743, −2.47304016172795231353342941085, −2.40635628108301663962136646733, −2.05509945244799644978857400313, −1.94744519974559683596632006718, −1.77366890891672691534895392236, −1.66193130306926541428804350803, −1.01961950131187694419633433106, −0.15428230279692695176971500529, −0.05503649991898183196097299724, 0.05503649991898183196097299724, 0.15428230279692695176971500529, 1.01961950131187694419633433106, 1.66193130306926541428804350803, 1.77366890891672691534895392236, 1.94744519974559683596632006718, 2.05509945244799644978857400313, 2.40635628108301663962136646733, 2.47304016172795231353342941085, 3.03715231457199159560458957743, 3.32002540076028728527778498077, 3.42705935353958626052492698376, 3.46836430647381808699518191536, 3.67627942012269483101388883185, 4.16091810141942787764780964514, 4.41333185881792064401762936105, 4.62444942594934255249692525412, 4.74560236352687636506665315183, 4.82363019653187247934354597680, 5.16971492036559544102475897940, 5.20216715426150324659138271279, 5.36803693751292621215554789689, 5.80659737211474216662143625298, 5.86300794450663624872007749962, 6.09644681802027163038334353435

Graph of the $Z$-function along the critical line