Properties

Label 3276.2.gj.b.17.1
Level $3276$
Weight $2$
Character 3276.17
Analytic conductor $26.159$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3276,2,Mod(17,3276)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3276.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3276, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3276 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3276.gj (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.1589917022\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.1
Root \(1.22474 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 3276.17
Dual form 3276.2.gj.b.1349.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 2.59808i) q^{7} +(2.50000 + 2.59808i) q^{13} -7.34847 q^{17} +(0.500000 - 0.866025i) q^{19} +8.48528i q^{23} +(-2.50000 + 4.33013i) q^{25} +(3.67423 + 2.12132i) q^{29} +(1.00000 - 1.73205i) q^{31} +8.66025i q^{37} +(-7.34847 - 4.24264i) q^{41} +(-0.500000 - 0.866025i) q^{43} +(3.67423 - 2.12132i) q^{47} +(-6.50000 - 2.59808i) q^{49} +(7.34847 + 4.24264i) q^{53} +12.7279i q^{59} +(10.5000 + 6.06218i) q^{61} +(6.00000 - 3.46410i) q^{67} +(-3.67423 - 6.36396i) q^{71} +(5.50000 - 9.52628i) q^{73} +(7.00000 + 12.1244i) q^{79} +(8.00000 - 5.19615i) q^{91} +(-2.50000 - 4.33013i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{7} + 10 q^{13} + 2 q^{19} - 10 q^{25} + 4 q^{31} - 2 q^{43} - 26 q^{49} + 42 q^{61} + 24 q^{67} + 22 q^{73} + 28 q^{79} + 32 q^{91} - 10 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3276\mathbb{Z}\right)^\times\).

\(n\) \(1639\) \(2017\) \(2341\) \(2549\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(6\) 0 0
\(7\) 0.500000 2.59808i 0.188982 0.981981i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(12\) 0 0
\(13\) 2.50000 + 2.59808i 0.693375 + 0.720577i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −7.34847 −1.78227 −0.891133 0.453743i \(-0.850089\pi\)
−0.891133 + 0.453743i \(0.850089\pi\)
\(18\) 0 0
\(19\) 0.500000 0.866025i 0.114708 0.198680i −0.802955 0.596040i \(-0.796740\pi\)
0.917663 + 0.397360i \(0.130073\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 8.48528i 1.76930i 0.466252 + 0.884652i \(0.345604\pi\)
−0.466252 + 0.884652i \(0.654396\pi\)
\(24\) 0 0
\(25\) −2.50000 + 4.33013i −0.500000 + 0.866025i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.67423 + 2.12132i 0.682288 + 0.393919i 0.800717 0.599043i \(-0.204452\pi\)
−0.118428 + 0.992963i \(0.537786\pi\)
\(30\) 0 0
\(31\) 1.00000 1.73205i 0.179605 0.311086i −0.762140 0.647412i \(-0.775851\pi\)
0.941745 + 0.336327i \(0.109185\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 8.66025i 1.42374i 0.702313 + 0.711868i \(0.252151\pi\)
−0.702313 + 0.711868i \(0.747849\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −7.34847 4.24264i −1.14764 0.662589i −0.199328 0.979933i \(-0.563876\pi\)
−0.948311 + 0.317344i \(0.897209\pi\)
\(42\) 0 0
\(43\) −0.500000 0.866025i −0.0762493 0.132068i 0.825380 0.564578i \(-0.190961\pi\)
−0.901629 + 0.432511i \(0.857628\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.67423 2.12132i 0.535942 0.309426i −0.207491 0.978237i \(-0.566530\pi\)
0.743433 + 0.668811i \(0.233196\pi\)
\(48\) 0 0
\(49\) −6.50000 2.59808i −0.928571 0.371154i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 7.34847 + 4.24264i 1.00939 + 0.582772i 0.911013 0.412378i \(-0.135302\pi\)
0.0983769 + 0.995149i \(0.468635\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 12.7279i 1.65703i 0.559964 + 0.828517i \(0.310815\pi\)
−0.559964 + 0.828517i \(0.689185\pi\)
\(60\) 0 0
\(61\) 10.5000 + 6.06218i 1.34439 + 0.776182i 0.987448 0.157945i \(-0.0504869\pi\)
0.356939 + 0.934128i \(0.383820\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 6.00000 3.46410i 0.733017 0.423207i −0.0865081 0.996251i \(-0.527571\pi\)
0.819525 + 0.573044i \(0.194238\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −3.67423 6.36396i −0.436051 0.755263i 0.561329 0.827592i \(-0.310290\pi\)
−0.997381 + 0.0723293i \(0.976957\pi\)
\(72\) 0 0
\(73\) 5.50000 9.52628i 0.643726 1.11497i −0.340868 0.940111i \(-0.610721\pi\)
0.984594 0.174855i \(-0.0559458\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 7.00000 + 12.1244i 0.787562 + 1.36410i 0.927457 + 0.373930i \(0.121990\pi\)
−0.139895 + 0.990166i \(0.544677\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 8.00000 5.19615i 0.838628 0.544705i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −2.50000 4.33013i −0.253837 0.439658i 0.710742 0.703452i \(-0.248359\pi\)
−0.964579 + 0.263795i \(0.915026\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 3.67423 + 6.36396i 0.365600 + 0.633238i 0.988872 0.148767i \(-0.0475305\pi\)
−0.623272 + 0.782005i \(0.714197\pi\)
\(102\) 0 0
\(103\) 4.50000 2.59808i 0.443398 0.255996i −0.261640 0.965166i \(-0.584263\pi\)
0.705038 + 0.709170i \(0.250930\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.24264i 0.410152i 0.978746 + 0.205076i \(0.0657441\pi\)
−0.978746 + 0.205076i \(0.934256\pi\)
\(108\) 0 0
\(109\) −13.5000 7.79423i −1.29307 0.746552i −0.313869 0.949466i \(-0.601625\pi\)
−0.979196 + 0.202915i \(0.934959\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −7.34847 + 4.24264i −0.691286 + 0.399114i −0.804094 0.594503i \(-0.797349\pi\)
0.112808 + 0.993617i \(0.464016\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −3.67423 + 19.0919i −0.336817 + 1.75015i
\(120\) 0 0
\(121\) 5.50000 9.52628i 0.500000 0.866025i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 5.50000 9.52628i 0.488046 0.845321i −0.511859 0.859069i \(-0.671043\pi\)
0.999905 + 0.0137486i \(0.00437646\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 11.0227 + 19.0919i 0.963058 + 1.66807i 0.714744 + 0.699386i \(0.246543\pi\)
0.248314 + 0.968680i \(0.420124\pi\)
\(132\) 0 0
\(133\) −2.00000 1.73205i −0.173422 0.150188i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −7.34847 −0.627822 −0.313911 0.949452i \(-0.601639\pi\)
−0.313911 + 0.949452i \(0.601639\pi\)
\(138\) 0 0
\(139\) −6.00000 + 3.46410i −0.508913 + 0.293821i −0.732387 0.680889i \(-0.761594\pi\)
0.223474 + 0.974710i \(0.428260\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −7.34847 + 12.7279i −0.602010 + 1.04271i 0.390506 + 0.920600i \(0.372300\pi\)
−0.992516 + 0.122112i \(0.961033\pi\)
\(150\) 0 0
\(151\) 18.0000 + 10.3923i 1.46482 + 0.845714i 0.999228 0.0392861i \(-0.0125084\pi\)
0.465591 + 0.885000i \(0.345842\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 16.5000 + 9.52628i 1.31684 + 0.760280i 0.983220 0.182426i \(-0.0583951\pi\)
0.333624 + 0.942706i \(0.391728\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 22.0454 + 4.24264i 1.73742 + 0.334367i
\(162\) 0 0
\(163\) −10.5000 6.06218i −0.822423 0.474826i 0.0288280 0.999584i \(-0.490822\pi\)
−0.851251 + 0.524758i \(0.824156\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 3.67423 + 2.12132i 0.284321 + 0.164153i 0.635378 0.772201i \(-0.280844\pi\)
−0.351057 + 0.936354i \(0.614178\pi\)
\(168\) 0 0
\(169\) −0.500000 + 12.9904i −0.0384615 + 0.999260i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 3.67423 6.36396i 0.279347 0.483843i −0.691876 0.722017i \(-0.743215\pi\)
0.971223 + 0.238174i \(0.0765487\pi\)
\(174\) 0 0
\(175\) 10.0000 + 8.66025i 0.755929 + 0.654654i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 3.67423 2.12132i 0.274625 0.158555i −0.356362 0.934348i \(-0.615983\pi\)
0.630988 + 0.775793i \(0.282650\pi\)
\(180\) 0 0
\(181\) 12.1244i 0.901196i 0.892727 + 0.450598i \(0.148789\pi\)
−0.892727 + 0.450598i \(0.851211\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −11.0227 6.36396i −0.797575 0.460480i 0.0450476 0.998985i \(-0.485656\pi\)
−0.842622 + 0.538505i \(0.818989\pi\)
\(192\) 0 0
\(193\) 4.50000 2.59808i 0.323917 0.187014i −0.329220 0.944253i \(-0.606786\pi\)
0.653137 + 0.757240i \(0.273452\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −3.67423 + 6.36396i −0.261778 + 0.453413i −0.966715 0.255857i \(-0.917642\pi\)
0.704936 + 0.709271i \(0.250976\pi\)
\(198\) 0 0
\(199\) 22.5167i 1.59616i 0.602549 + 0.798082i \(0.294152\pi\)
−0.602549 + 0.798082i \(0.705848\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 7.34847 8.48528i 0.515761 0.595550i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −5.50000 + 9.52628i −0.378636 + 0.655816i −0.990864 0.134865i \(-0.956940\pi\)
0.612228 + 0.790681i \(0.290273\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −4.00000 3.46410i −0.271538 0.235159i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −18.3712 19.0919i −1.23578 1.28426i
\(222\) 0 0
\(223\) 5.00000 8.66025i 0.334825 0.579934i −0.648626 0.761107i \(-0.724656\pi\)
0.983451 + 0.181173i \(0.0579895\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 21.2132i 1.40797i 0.710215 + 0.703985i \(0.248598\pi\)
−0.710215 + 0.703985i \(0.751402\pi\)
\(228\) 0 0
\(229\) −12.5000 21.6506i −0.826023 1.43071i −0.901135 0.433539i \(-0.857265\pi\)
0.0751115 0.997175i \(-0.476069\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −22.0454 + 12.7279i −1.44424 + 0.833834i −0.998129 0.0611424i \(-0.980526\pi\)
−0.446114 + 0.894976i \(0.647192\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −7.34847 −0.475333 −0.237666 0.971347i \(-0.576383\pi\)
−0.237666 + 0.971347i \(0.576383\pi\)
\(240\) 0 0
\(241\) 10.0000 0.644157 0.322078 0.946713i \(-0.395619\pi\)
0.322078 + 0.946713i \(0.395619\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 3.50000 0.866025i 0.222700 0.0551039i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −3.67423 6.36396i −0.231916 0.401690i 0.726456 0.687213i \(-0.241166\pi\)
−0.958372 + 0.285523i \(0.907833\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −7.34847 −0.458385 −0.229192 0.973381i \(-0.573609\pi\)
−0.229192 + 0.973381i \(0.573609\pi\)
\(258\) 0 0
\(259\) 22.5000 + 4.33013i 1.39808 + 0.269061i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −14.6969 + 8.48528i −0.906252 + 0.523225i −0.879223 0.476410i \(-0.841938\pi\)
−0.0270287 + 0.999635i \(0.508605\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) −19.0000 −1.15417 −0.577084 0.816685i \(-0.695809\pi\)
−0.577084 + 0.816685i \(0.695809\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −13.0000 −0.781094 −0.390547 0.920583i \(-0.627714\pi\)
−0.390547 + 0.920583i \(0.627714\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 14.6969 0.876746 0.438373 0.898793i \(-0.355555\pi\)
0.438373 + 0.898793i \(0.355555\pi\)
\(282\) 0 0
\(283\) 13.5000 7.79423i 0.802492 0.463319i −0.0418500 0.999124i \(-0.513325\pi\)
0.844342 + 0.535805i \(0.179992\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −14.6969 + 16.9706i −0.867533 + 1.00174i
\(288\) 0 0
\(289\) 37.0000 2.17647
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 25.7196 14.8492i 1.50256 0.867502i 0.502562 0.864541i \(-0.332391\pi\)
0.999996 0.00296079i \(-0.000942451\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −22.0454 + 21.2132i −1.27492 + 1.22679i
\(300\) 0 0
\(301\) −2.50000 + 0.866025i −0.144098 + 0.0499169i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −26.0000 −1.48390 −0.741949 0.670456i \(-0.766098\pi\)
−0.741949 + 0.670456i \(0.766098\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 7.34847 12.7279i 0.416693 0.721734i −0.578911 0.815391i \(-0.696522\pi\)
0.995605 + 0.0936564i \(0.0298555\pi\)
\(312\) 0 0
\(313\) 4.50000 2.59808i 0.254355 0.146852i −0.367402 0.930062i \(-0.619753\pi\)
0.621757 + 0.783210i \(0.286419\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −7.34847 12.7279i −0.412731 0.714871i 0.582456 0.812862i \(-0.302092\pi\)
−0.995187 + 0.0979908i \(0.968758\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −3.67423 + 6.36396i −0.204440 + 0.354100i
\(324\) 0 0
\(325\) −17.5000 + 4.33013i −0.970725 + 0.240192i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −3.67423 10.6066i −0.202567 0.584761i
\(330\) 0 0
\(331\) 4.50000 + 2.59808i 0.247342 + 0.142803i 0.618547 0.785748i \(-0.287722\pi\)
−0.371204 + 0.928551i \(0.621055\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −31.0000 −1.68868 −0.844339 0.535810i \(-0.820006\pi\)
−0.844339 + 0.535810i \(0.820006\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −10.0000 + 15.5885i −0.539949 + 0.841698i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 21.2132i 1.13878i 0.822066 + 0.569392i \(0.192821\pi\)
−0.822066 + 0.569392i \(0.807179\pi\)
\(348\) 0 0
\(349\) 2.50000 4.33013i 0.133822 0.231786i −0.791325 0.611396i \(-0.790608\pi\)
0.925147 + 0.379610i \(0.123942\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 11.0227 6.36396i 0.586679 0.338719i −0.177104 0.984192i \(-0.556673\pi\)
0.763783 + 0.645473i \(0.223340\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 11.0227 + 19.0919i 0.581756 + 1.00763i 0.995271 + 0.0971339i \(0.0309675\pi\)
−0.413515 + 0.910497i \(0.635699\pi\)
\(360\) 0 0
\(361\) 9.00000 + 15.5885i 0.473684 + 0.820445i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −4.50000 + 2.59808i −0.234898 + 0.135618i −0.612830 0.790215i \(-0.709969\pi\)
0.377932 + 0.925834i \(0.376635\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 14.6969 16.9706i 0.763027 0.881068i
\(372\) 0 0
\(373\) 10.0000 17.3205i 0.517780 0.896822i −0.482006 0.876168i \(-0.660092\pi\)
0.999787 0.0206542i \(-0.00657489\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 3.67423 + 14.8492i 0.189233 + 0.764775i
\(378\) 0 0
\(379\) 30.0000 + 17.3205i 1.54100 + 0.889695i 0.998776 + 0.0494584i \(0.0157495\pi\)
0.542220 + 0.840236i \(0.317584\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −14.6969 8.48528i −0.750978 0.433578i 0.0750689 0.997178i \(-0.476082\pi\)
−0.826047 + 0.563601i \(0.809416\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −7.34847 4.24264i −0.372582 0.215110i 0.302004 0.953307i \(-0.402344\pi\)
−0.674586 + 0.738196i \(0.735678\pi\)
\(390\) 0 0
\(391\) 62.3538i 3.15337i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 3.50000 6.06218i 0.175660 0.304252i −0.764730 0.644351i \(-0.777127\pi\)
0.940389 + 0.340099i \(0.110461\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 36.7423 1.83483 0.917413 0.397937i \(-0.130274\pi\)
0.917413 + 0.397937i \(0.130274\pi\)
\(402\) 0 0
\(403\) 7.00000 1.73205i 0.348695 0.0862796i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −13.0000 −0.642809 −0.321404 0.946942i \(-0.604155\pi\)
−0.321404 + 0.946942i \(0.604155\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 33.0681 + 6.36396i 1.62718 + 0.313150i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 18.3712 31.8198i 0.897491 1.55450i 0.0667989 0.997766i \(-0.478721\pi\)
0.830692 0.556733i \(-0.187945\pi\)
\(420\) 0 0
\(421\) 3.46410i 0.168830i −0.996431 0.0844150i \(-0.973098\pi\)
0.996431 0.0844150i \(-0.0269021\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 18.3712 31.8198i 0.891133 1.54349i
\(426\) 0 0
\(427\) 21.0000 24.2487i 1.01626 1.17348i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 14.6969 + 25.4558i 0.707927 + 1.22616i 0.965625 + 0.259939i \(0.0837026\pi\)
−0.257698 + 0.966225i \(0.582964\pi\)
\(432\) 0 0
\(433\) −15.0000 + 8.66025i −0.720854 + 0.416185i −0.815067 0.579367i \(-0.803300\pi\)
0.0942129 + 0.995552i \(0.469967\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 7.34847 + 4.24264i 0.351525 + 0.202953i
\(438\) 0 0
\(439\) 22.5167i 1.07466i 0.843372 + 0.537331i \(0.180567\pi\)
−0.843372 + 0.537331i \(0.819433\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −3.67423 + 2.12132i −0.174568 + 0.100787i −0.584738 0.811222i \(-0.698803\pi\)
0.410170 + 0.912009i \(0.365469\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −7.34847 12.7279i −0.346796 0.600668i 0.638883 0.769304i \(-0.279397\pi\)
−0.985678 + 0.168636i \(0.946064\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 24.2487i 1.13431i 0.823612 + 0.567153i \(0.191955\pi\)
−0.823612 + 0.567153i \(0.808045\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 25.7196 14.8492i 1.19788 0.691598i 0.237800 0.971314i \(-0.423574\pi\)
0.960083 + 0.279716i \(0.0902403\pi\)
\(462\) 0 0
\(463\) 5.19615i 0.241486i 0.992684 + 0.120743i \(0.0385276\pi\)
−0.992684 + 0.120743i \(0.961472\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −11.0227 19.0919i −0.510070 0.883467i −0.999932 0.0116670i \(-0.996286\pi\)
0.489862 0.871800i \(-0.337047\pi\)
\(468\) 0 0
\(469\) −6.00000 17.3205i −0.277054 0.799787i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 2.50000 + 4.33013i 0.114708 + 0.198680i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −25.7196 + 14.8492i −1.17516 + 0.678479i −0.954890 0.296960i \(-0.904027\pi\)
−0.220270 + 0.975439i \(0.570694\pi\)
\(480\) 0 0
\(481\) −22.5000 + 21.6506i −1.02591 + 0.987184i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 19.0526i 0.863354i 0.902028 + 0.431677i \(0.142078\pi\)
−0.902028 + 0.431677i \(0.857922\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −29.3939 16.9706i −1.32653 0.765871i −0.341766 0.939785i \(-0.611025\pi\)
−0.984761 + 0.173914i \(0.944358\pi\)
\(492\) 0 0
\(493\) −27.0000 15.5885i −1.21602 0.702069i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −18.3712 + 6.36396i −0.824060 + 0.285463i
\(498\) 0 0
\(499\) 16.5000 9.52628i 0.738641 0.426455i −0.0829337 0.996555i \(-0.526429\pi\)
0.821575 + 0.570100i \(0.193096\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 3.67423 + 6.36396i 0.163826 + 0.283755i 0.936238 0.351367i \(-0.114283\pi\)
−0.772412 + 0.635122i \(0.780950\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 4.24264i 0.188052i −0.995570 0.0940259i \(-0.970026\pi\)
0.995570 0.0940259i \(-0.0299736\pi\)
\(510\) 0 0
\(511\) −22.0000 19.0526i −0.973223 0.842836i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 11.0227 19.0919i 0.482913 0.836431i −0.516894 0.856049i \(-0.672912\pi\)
0.999808 + 0.0196188i \(0.00624525\pi\)
\(522\) 0 0
\(523\) 8.66025i 0.378686i 0.981911 + 0.189343i \(0.0606359\pi\)
−0.981911 + 0.189343i \(0.939364\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −7.34847 + 12.7279i −0.320104 + 0.554437i
\(528\) 0 0
\(529\) −49.0000 −2.13043
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −7.34847 29.6985i −0.318298 1.28638i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −22.5000 + 12.9904i −0.967351 + 0.558500i −0.898428 0.439122i \(-0.855290\pi\)
−0.0689231 + 0.997622i \(0.521956\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −13.0000 −0.555840 −0.277920 0.960604i \(-0.589645\pi\)
−0.277920 + 0.960604i \(0.589645\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 3.67423 2.12132i 0.156528 0.0903713i
\(552\) 0 0
\(553\) 35.0000 12.1244i 1.48835 0.515580i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −22.0454 38.1838i −0.934094 1.61790i −0.776242 0.630435i \(-0.782876\pi\)
−0.157852 0.987463i \(-0.550457\pi\)
\(558\) 0 0
\(559\) 1.00000 3.46410i 0.0422955 0.146516i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 7.34847 0.309701 0.154851 0.987938i \(-0.450510\pi\)
0.154851 + 0.987938i \(0.450510\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 12.7279i 0.533582i 0.963754 + 0.266791i \(0.0859634\pi\)
−0.963754 + 0.266791i \(0.914037\pi\)
\(570\) 0 0
\(571\) 5.50000 9.52628i 0.230168 0.398662i −0.727690 0.685907i \(-0.759406\pi\)
0.957857 + 0.287244i \(0.0927391\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −36.7423 21.2132i −1.53226 0.884652i
\(576\) 0 0
\(577\) 9.50000 16.4545i 0.395490 0.685009i −0.597673 0.801740i \(-0.703908\pi\)
0.993164 + 0.116731i \(0.0372414\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 29.3939 + 16.9706i 1.21322 + 0.700450i 0.963458 0.267858i \(-0.0863160\pi\)
0.249757 + 0.968309i \(0.419649\pi\)
\(588\) 0 0
\(589\) −1.00000 1.73205i −0.0412043 0.0713679i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −36.7423 + 21.2132i −1.50883 + 0.871122i −0.508880 + 0.860837i \(0.669940\pi\)
−0.999947 + 0.0102845i \(0.996726\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 25.7196 + 14.8492i 1.05088 + 0.606724i 0.922894 0.385053i \(-0.125817\pi\)
0.127982 + 0.991777i \(0.459150\pi\)
\(600\) 0 0
\(601\) −34.5000 19.9186i −1.40728 0.812496i −0.412159 0.911112i \(-0.635225\pi\)
−0.995126 + 0.0986160i \(0.968558\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 34.5000 + 19.9186i 1.40031 + 0.808470i 0.994424 0.105453i \(-0.0336291\pi\)
0.405887 + 0.913923i \(0.366962\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 14.6969 + 4.24264i 0.594574 + 0.171639i
\(612\) 0 0
\(613\) −19.5000 + 11.2583i −0.787598 + 0.454720i −0.839116 0.543952i \(-0.816927\pi\)
0.0515185 + 0.998672i \(0.483594\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −14.6969 25.4558i −0.591676 1.02481i −0.994007 0.109319i \(-0.965133\pi\)
0.402330 0.915495i \(-0.368200\pi\)
\(618\) 0 0
\(619\) 18.5000 32.0429i 0.743578 1.28791i −0.207279 0.978282i \(-0.566461\pi\)
0.950856 0.309633i \(-0.100206\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −12.5000 21.6506i −0.500000 0.866025i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 63.6396i 2.53748i
\(630\) 0 0
\(631\) −34.5000 + 19.9186i −1.37342 + 0.792946i −0.991357 0.131189i \(-0.958121\pi\)
−0.382066 + 0.924135i \(0.624787\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −9.50000 23.3827i −0.376404 0.926456i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 33.9411i 1.34059i −0.742093 0.670297i \(-0.766167\pi\)
0.742093 0.670297i \(-0.233833\pi\)
\(642\) 0 0
\(643\) 2.50000 + 4.33013i 0.0985904 + 0.170764i 0.911101 0.412182i \(-0.135233\pi\)
−0.812511 + 0.582946i \(0.801900\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −14.6969 25.4558i −0.577796 1.00077i −0.995732 0.0922957i \(-0.970579\pi\)
0.417935 0.908477i \(-0.362754\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 16.9706i 0.664109i 0.943260 + 0.332055i \(0.107742\pi\)
−0.943260 + 0.332055i \(0.892258\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 3.67423 2.12132i 0.143128 0.0826349i −0.426726 0.904381i \(-0.640333\pi\)
0.569854 + 0.821746i \(0.307000\pi\)
\(660\) 0 0
\(661\) −8.00000 13.8564i −0.311164 0.538952i 0.667451 0.744654i \(-0.267385\pi\)
−0.978615 + 0.205702i \(0.934052\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −18.0000 + 31.1769i −0.696963 + 1.20717i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −9.50000 + 16.4545i −0.366198 + 0.634274i −0.988968 0.148132i \(-0.952674\pi\)
0.622770 + 0.782405i \(0.286007\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −3.67423 6.36396i −0.141212 0.244587i 0.786741 0.617283i \(-0.211767\pi\)
−0.927953 + 0.372696i \(0.878433\pi\)
\(678\) 0 0
\(679\) −12.5000 + 4.33013i −0.479706 + 0.166175i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 44.0908 1.68709 0.843544 0.537060i \(-0.180465\pi\)
0.843544 + 0.537060i \(0.180465\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 7.34847 + 29.6985i 0.279954 + 1.13142i
\(690\) 0 0
\(691\) −1.00000 −0.0380418 −0.0190209 0.999819i \(-0.506055\pi\)
−0.0190209 + 0.999819i \(0.506055\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 54.0000 + 31.1769i 2.04540 + 1.18091i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 33.9411i 1.28194i −0.767567 0.640969i \(-0.778533\pi\)
0.767567 0.640969i \(-0.221467\pi\)
\(702\) 0 0
\(703\) 7.50000 + 4.33013i 0.282868 + 0.163314i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 18.3712 6.36396i 0.690919 0.239341i
\(708\) 0 0
\(709\) −28.5000 16.4545i −1.07034 0.617961i −0.142066 0.989857i \(-0.545374\pi\)
−0.928274 + 0.371896i \(0.878708\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 14.6969 + 8.48528i 0.550405 + 0.317776i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 14.6969 25.4558i 0.548103 0.949343i −0.450301 0.892877i \(-0.648683\pi\)
0.998405 0.0564661i \(-0.0179833\pi\)
\(720\) 0 0
\(721\) −4.50000 12.9904i −0.167589 0.483787i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −18.3712 + 10.6066i −0.682288 + 0.393919i
\(726\) 0 0
\(727\) 24.2487i 0.899335i 0.893196 + 0.449667i \(0.148458\pi\)
−0.893196 + 0.449667i \(0.851542\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 3.67423 + 6.36396i 0.135896 + 0.235380i
\(732\) 0 0
\(733\) 10.0000 + 17.3205i 0.369358 + 0.639748i 0.989465 0.144770i \(-0.0462441\pi\)
−0.620107 + 0.784517i \(0.712911\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 28.5000 16.4545i 1.04839 0.605288i 0.126191 0.992006i \(-0.459725\pi\)
0.922198 + 0.386718i \(0.126391\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 7.34847 12.7279i 0.269589 0.466942i −0.699167 0.714959i \(-0.746445\pi\)
0.968756 + 0.248017i \(0.0797788\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 11.0227 + 2.12132i 0.402761 + 0.0775114i
\(750\) 0 0
\(751\) 25.0000 0.912263 0.456131 0.889912i \(-0.349235\pi\)
0.456131 + 0.889912i \(0.349235\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −10.0000 + 17.3205i −0.363456 + 0.629525i −0.988527 0.151043i \(-0.951737\pi\)
0.625071 + 0.780568i \(0.285070\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −7.34847 4.24264i −0.266382 0.153796i 0.360860 0.932620i \(-0.382483\pi\)
−0.627242 + 0.778824i \(0.715816\pi\)
\(762\) 0 0
\(763\) −27.0000 + 31.1769i −0.977466 + 1.12868i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −33.0681 + 31.8198i −1.19402 + 1.14895i
\(768\) 0 0
\(769\) 23.5000 40.7032i 0.847432 1.46779i −0.0360609 0.999350i \(-0.511481\pi\)
0.883493 0.468445i \(-0.155186\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 42.4264i 1.52597i −0.646415 0.762986i \(-0.723733\pi\)
0.646415 0.762986i \(-0.276267\pi\)
\(774\) 0 0
\(775\) 5.00000 + 8.66025i 0.179605 + 0.311086i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −7.34847 + 4.24264i −0.263286 + 0.152008i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −43.0000 −1.53278 −0.766392 0.642373i \(-0.777950\pi\)
−0.766392 + 0.642373i \(0.777950\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 7.34847 + 21.2132i 0.261281 + 0.754255i
\(792\) 0 0
\(793\) 10.5000 + 42.4352i 0.372866 + 1.50692i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −22.0454 38.1838i −0.780888 1.35254i −0.931425 0.363934i \(-0.881433\pi\)
0.150536 0.988604i \(-0.451900\pi\)
\(798\) 0 0
\(799\) −27.0000 + 15.5885i −0.955191 + 0.551480i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −25.7196 + 14.8492i −0.904254 + 0.522072i −0.878578 0.477599i \(-0.841507\pi\)
−0.0256764 + 0.999670i \(0.508174\pi\)
\(810\) 0 0
\(811\) −17.0000 −0.596951 −0.298475 0.954417i \(-0.596478\pi\)
−0.298475 + 0.954417i \(0.596478\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −1.00000 −0.0349856
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(822\) 0 0
\(823\) −4.00000 −0.139431 −0.0697156 0.997567i \(-0.522209\pi\)
−0.0697156 + 0.997567i \(0.522209\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −36.7423 −1.27766 −0.638828 0.769349i \(-0.720581\pi\)
−0.638828 + 0.769349i \(0.720581\pi\)
\(828\) 0 0
\(829\) 4.50000 2.59808i 0.156291 0.0902349i −0.419815 0.907610i \(-0.637905\pi\)
0.576106 + 0.817375i \(0.304572\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 47.7650 + 19.0919i 1.65496 + 0.661495i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 47.7650 27.5772i 1.64903 0.952069i 0.671575 0.740936i \(-0.265618\pi\)
0.977457 0.211133i \(-0.0677154\pi\)
\(840\) 0 0
\(841\) −5.50000 9.52628i −0.189655 0.328492i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −22.0000 19.0526i −0.755929 0.654654i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −73.4847 −2.51902
\(852\) 0 0
\(853\) −4.00000 −0.136957 −0.0684787 0.997653i \(-0.521815\pi\)
−0.0684787 + 0.997653i \(0.521815\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(858\) 0 0
\(859\) 7.50000 4.33013i 0.255897 0.147742i −0.366565 0.930393i \(-0.619466\pi\)
0.622461 + 0.782651i \(0.286133\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 3.67423 + 6.36396i 0.125072 + 0.216632i 0.921761 0.387758i \(-0.126750\pi\)
−0.796689 + 0.604390i \(0.793417\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 24.0000 + 6.92820i 0.813209 + 0.234753i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 9.00000 + 5.19615i 0.303908 + 0.175462i 0.644197 0.764859i \(-0.277192\pi\)
−0.340289 + 0.940321i \(0.610525\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −14.6969 + 25.4558i −0.495152 + 0.857629i −0.999984 0.00558847i \(-0.998221\pi\)
0.504832 + 0.863218i \(0.331554\pi\)
\(882\) 0 0
\(883\) −43.0000 −1.44707 −0.723533 0.690290i \(-0.757483\pi\)
−0.723533 + 0.690290i \(0.757483\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 29.3939 0.986950 0.493475 0.869760i \(-0.335726\pi\)
0.493475 + 0.869760i \(0.335726\pi\)
\(888\) 0 0
\(889\) −22.0000 19.0526i −0.737856 0.639002i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 4.24264i 0.141975i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 7.34847 4.24264i 0.245085 0.141500i
\(900\) 0 0
\(901\) −54.0000 31.1769i −1.79900 1.03865i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −2.50000 4.33013i −0.0830111 0.143780i 0.821531 0.570164i \(-0.193120\pi\)
−0.904542 + 0.426385i \(0.859787\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 50.9117i 1.68678i −0.537302 0.843390i \(-0.680557\pi\)
0.537302 0.843390i \(-0.319443\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 55.1135 19.0919i 1.82001 0.630470i
\(918\) 0 0
\(919\) 18.5000 32.0429i 0.610259 1.05700i −0.380938 0.924601i \(-0.624399\pi\)
0.991197 0.132398i \(-0.0422678\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 7.34847 25.4558i 0.241878 0.837889i
\(924\) 0 0
\(925\) −37.5000 21.6506i −1.23299 0.711868i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 25.7196 + 14.8492i 0.843834 + 0.487188i 0.858566 0.512704i \(-0.171356\pi\)
−0.0147316 + 0.999891i \(0.504689\pi\)
\(930\) 0 0
\(931\) −5.50000 + 4.33013i −0.180255 + 0.141914i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 8.66025i 0.282918i 0.989944 + 0.141459i \(0.0451794\pi\)
−0.989944 + 0.141459i \(0.954821\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −18.3712 10.6066i −0.598883 0.345765i 0.169719 0.985493i \(-0.445714\pi\)
−0.768602 + 0.639727i \(0.779047\pi\)
\(942\) 0 0
\(943\) 36.0000 62.3538i 1.17232 2.03052i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 29.3939 0.955173 0.477586 0.878585i \(-0.341512\pi\)
0.477586 + 0.878585i \(0.341512\pi\)
\(948\) 0 0
\(949\) 38.5000 9.52628i 1.24976 0.309236i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 14.6969 8.48528i 0.476081 0.274865i −0.242701 0.970101i \(-0.578033\pi\)
0.718782 + 0.695236i \(0.244700\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −3.67423 + 19.0919i −0.118647 + 0.616509i
\(960\) 0 0
\(961\) 13.5000 + 23.3827i 0.435484 + 0.754280i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 1.73205i 0.0556990i 0.999612 + 0.0278495i \(0.00886592\pi\)
−0.999612 + 0.0278495i \(0.991134\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −18.3712 + 31.8198i −0.589559 + 1.02115i 0.404731 + 0.914436i \(0.367365\pi\)
−0.994290 + 0.106710i \(0.965968\pi\)
\(972\) 0 0
\(973\) 6.00000 + 17.3205i 0.192351 + 0.555270i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −11.0227 19.0919i −0.352648 0.610803i 0.634065 0.773280i \(-0.281385\pi\)
−0.986712 + 0.162476i \(0.948052\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −18.3712 10.6066i −0.585949 0.338298i 0.177545 0.984113i \(-0.443185\pi\)
−0.763494 + 0.645815i \(0.776518\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 7.34847 4.24264i 0.233668 0.134908i
\(990\) 0 0
\(991\) −18.5000 32.0429i −0.587672 1.01788i −0.994537 0.104389i \(-0.966711\pi\)
0.406865 0.913488i \(-0.366622\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 15.5885i 0.493691i 0.969055 + 0.246846i \(0.0793941\pi\)
−0.969055 + 0.246846i \(0.920606\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3276.2.gj.b.17.1 4
3.2 odd 2 inner 3276.2.gj.b.17.2 yes 4
7.5 odd 6 3276.2.hp.b.2357.1 yes 4
13.10 even 6 3276.2.hp.b.2285.2 yes 4
21.5 even 6 3276.2.hp.b.2357.2 yes 4
39.23 odd 6 3276.2.hp.b.2285.1 yes 4
91.75 odd 6 inner 3276.2.gj.b.1349.2 yes 4
273.257 even 6 inner 3276.2.gj.b.1349.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3276.2.gj.b.17.1 4 1.1 even 1 trivial
3276.2.gj.b.17.2 yes 4 3.2 odd 2 inner
3276.2.gj.b.1349.1 yes 4 273.257 even 6 inner
3276.2.gj.b.1349.2 yes 4 91.75 odd 6 inner
3276.2.hp.b.2285.1 yes 4 39.23 odd 6
3276.2.hp.b.2285.2 yes 4 13.10 even 6
3276.2.hp.b.2357.1 yes 4 7.5 odd 6
3276.2.hp.b.2357.2 yes 4 21.5 even 6