Properties

Label 3276.2.gj.b
Level $3276$
Weight $2$
Character orbit 3276.gj
Analytic conductor $26.159$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3276,2,Mod(17,3276)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3276.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3276, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3276 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3276.gj (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.1589917022\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (3 \beta_{2} - 1) q^{7} + ( - 3 \beta_{2} + 4) q^{13} + (\beta_{3} - 2 \beta_1) q^{17} + \beta_{2} q^{19} - 2 \beta_{3} q^{23} - 5 \beta_{2} q^{25} + ( - \beta_{3} + \beta_1) q^{29} + 2 \beta_{2} q^{31}+ \cdots + (5 \beta_{2} - 5) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{7} + 10 q^{13} + 2 q^{19} - 10 q^{25} + 4 q^{31} - 2 q^{43} - 26 q^{49} + 42 q^{61} + 24 q^{67} + 22 q^{73} + 28 q^{79} + 32 q^{91} - 10 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 3\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 3\nu^{3} ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 2\beta_{3} ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3276\mathbb{Z}\right)^\times\).

\(n\) \(1639\) \(2017\) \(2341\) \(2549\)
\(\chi(n)\) \(1\) \(1 - \beta_{2}\) \(1 - \beta_{2}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
17.1
1.22474 0.707107i
−1.22474 + 0.707107i
1.22474 + 0.707107i
−1.22474 0.707107i
0 0 0 0 0 0.500000 2.59808i 0 0 0
17.2 0 0 0 0 0 0.500000 2.59808i 0 0 0
1349.1 0 0 0 0 0 0.500000 + 2.59808i 0 0 0
1349.2 0 0 0 0 0 0.500000 + 2.59808i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
91.l odd 6 1 inner
273.br even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3276.2.gj.b 4
3.b odd 2 1 inner 3276.2.gj.b 4
7.d odd 6 1 3276.2.hp.b yes 4
13.e even 6 1 3276.2.hp.b yes 4
21.g even 6 1 3276.2.hp.b yes 4
39.h odd 6 1 3276.2.hp.b yes 4
91.l odd 6 1 inner 3276.2.gj.b 4
273.br even 6 1 inner 3276.2.gj.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3276.2.gj.b 4 1.a even 1 1 trivial
3276.2.gj.b 4 3.b odd 2 1 inner
3276.2.gj.b 4 91.l odd 6 1 inner
3276.2.gj.b 4 273.br even 6 1 inner
3276.2.hp.b yes 4 7.d odd 6 1
3276.2.hp.b yes 4 13.e even 6 1
3276.2.hp.b yes 4 21.g even 6 1
3276.2.hp.b yes 4 39.h odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5} \) acting on \(S_{2}^{\mathrm{new}}(3276, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} - T + 7)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( (T^{2} - 5 T + 13)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} - 54)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 72)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} - 18T^{2} + 324 \) Copy content Toggle raw display
$31$ \( (T^{2} - 2 T + 4)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 75)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} - 72T^{2} + 5184 \) Copy content Toggle raw display
$43$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} - 18T^{2} + 324 \) Copy content Toggle raw display
$53$ \( T^{4} - 72T^{2} + 5184 \) Copy content Toggle raw display
$59$ \( (T^{2} + 162)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} - 21 T + 147)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} - 12 T + 48)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} + 54T^{2} + 2916 \) Copy content Toggle raw display
$73$ \( (T^{2} - 11 T + 121)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} - 14 T + 196)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( (T^{2} + 5 T + 25)^{2} \) Copy content Toggle raw display
show more
show less