Properties

Label 3276.2.cf.c.1765.4
Level $3276$
Weight $2$
Character 3276.1765
Analytic conductor $26.159$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3276,2,Mod(1765,3276)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3276.1765"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3276, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3276 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3276.cf (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,0,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.1589917022\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 38x^{14} + 587x^{12} + 4762x^{10} + 21849x^{8} + 56552x^{6} + 76456x^{4} + 42624x^{2} + 2704 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 364)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1765.4
Root \(0.268953i\) of defining polynomial
Character \(\chi\) \(=\) 3276.1765
Dual form 3276.2.cf.c.2773.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.35585i q^{5} +(0.866025 + 0.500000i) q^{7} +(-2.42763 + 1.40159i) q^{11} +(0.303042 + 3.59279i) q^{13} +(2.90934 - 5.03912i) q^{17} +(2.75793 + 1.59229i) q^{19} +(-3.77674 - 6.54150i) q^{23} +3.16167 q^{25} +(3.60830 + 6.24977i) q^{29} -8.04407i q^{31} +(0.677925 - 1.17420i) q^{35} +(-6.02532 + 3.47872i) q^{37} +(-4.38164 + 2.52974i) q^{41} +(3.13427 - 5.42872i) q^{43} +2.64315i q^{47} +(0.500000 + 0.866025i) q^{49} +11.0887 q^{53} +(1.90035 + 3.29150i) q^{55} +(5.45213 + 3.14779i) q^{59} +(-6.40404 + 11.0921i) q^{61} +(4.87129 - 0.410880i) q^{65} +(4.29803 - 2.48147i) q^{67} +(14.2993 + 8.25572i) q^{71} -15.4351i q^{73} -2.80318 q^{77} +14.7661 q^{79} -9.79310i q^{83} +(-6.83230 - 3.94463i) q^{85} +(7.24707 - 4.18410i) q^{89} +(-1.53395 + 3.26297i) q^{91} +(2.15891 - 3.73934i) q^{95} +(-10.5685 - 6.10170i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{11} + 10 q^{13} - 2 q^{17} - 44 q^{25} + 22 q^{29} + 6 q^{35} + 12 q^{37} - 36 q^{41} + 6 q^{43} + 8 q^{49} - 8 q^{53} + 2 q^{55} + 18 q^{59} + 4 q^{61} + 30 q^{65} + 24 q^{67} - 36 q^{71} + 24 q^{77}+ \cdots - 42 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3276\mathbb{Z}\right)^\times\).

\(n\) \(1639\) \(2017\) \(2341\) \(2549\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.35585i 0.606355i −0.952934 0.303177i \(-0.901953\pi\)
0.952934 0.303177i \(-0.0980475\pi\)
\(6\) 0 0
\(7\) 0.866025 + 0.500000i 0.327327 + 0.188982i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.42763 + 1.40159i −0.731958 + 0.422596i −0.819138 0.573597i \(-0.805548\pi\)
0.0871803 + 0.996193i \(0.472214\pi\)
\(12\) 0 0
\(13\) 0.303042 + 3.59279i 0.0840488 + 0.996462i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.90934 5.03912i 0.705618 1.22217i −0.260850 0.965379i \(-0.584003\pi\)
0.966468 0.256787i \(-0.0826640\pi\)
\(18\) 0 0
\(19\) 2.75793 + 1.59229i 0.632713 + 0.365297i 0.781802 0.623527i \(-0.214301\pi\)
−0.149089 + 0.988824i \(0.547634\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.77674 6.54150i −0.787504 1.36400i −0.927492 0.373843i \(-0.878040\pi\)
0.139988 0.990153i \(-0.455294\pi\)
\(24\) 0 0
\(25\) 3.16167 0.632334
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.60830 + 6.24977i 0.670045 + 1.16055i 0.977891 + 0.209116i \(0.0670587\pi\)
−0.307845 + 0.951436i \(0.599608\pi\)
\(30\) 0 0
\(31\) 8.04407i 1.44476i −0.691498 0.722379i \(-0.743049\pi\)
0.691498 0.722379i \(-0.256951\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.677925 1.17420i 0.114590 0.198476i
\(36\) 0 0
\(37\) −6.02532 + 3.47872i −0.990557 + 0.571898i −0.905441 0.424473i \(-0.860459\pi\)
−0.0851160 + 0.996371i \(0.527126\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −4.38164 + 2.52974i −0.684298 + 0.395079i −0.801472 0.598032i \(-0.795950\pi\)
0.117175 + 0.993111i \(0.462616\pi\)
\(42\) 0 0
\(43\) 3.13427 5.42872i 0.477972 0.827872i −0.521709 0.853123i \(-0.674705\pi\)
0.999681 + 0.0252518i \(0.00803875\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.64315i 0.385542i 0.981244 + 0.192771i \(0.0617475\pi\)
−0.981244 + 0.192771i \(0.938252\pi\)
\(48\) 0 0
\(49\) 0.500000 + 0.866025i 0.0714286 + 0.123718i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 11.0887 1.52315 0.761574 0.648079i \(-0.224427\pi\)
0.761574 + 0.648079i \(0.224427\pi\)
\(54\) 0 0
\(55\) 1.90035 + 3.29150i 0.256243 + 0.443826i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 5.45213 + 3.14779i 0.709807 + 0.409807i 0.810989 0.585061i \(-0.198929\pi\)
−0.101183 + 0.994868i \(0.532263\pi\)
\(60\) 0 0
\(61\) −6.40404 + 11.0921i −0.819953 + 1.42020i 0.0857630 + 0.996316i \(0.472667\pi\)
−0.905716 + 0.423885i \(0.860666\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 4.87129 0.410880i 0.604209 0.0509634i
\(66\) 0 0
\(67\) 4.29803 2.48147i 0.525088 0.303160i −0.213926 0.976850i \(-0.568625\pi\)
0.739014 + 0.673690i \(0.235292\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 14.2993 + 8.25572i 1.69702 + 0.979773i 0.948564 + 0.316586i \(0.102536\pi\)
0.748453 + 0.663188i \(0.230797\pi\)
\(72\) 0 0
\(73\) 15.4351i 1.80654i −0.429071 0.903271i \(-0.641159\pi\)
0.429071 0.903271i \(-0.358841\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2.80318 −0.319452
\(78\) 0 0
\(79\) 14.7661 1.66131 0.830656 0.556786i \(-0.187966\pi\)
0.830656 + 0.556786i \(0.187966\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 9.79310i 1.07493i −0.843285 0.537466i \(-0.819382\pi\)
0.843285 0.537466i \(-0.180618\pi\)
\(84\) 0 0
\(85\) −6.83230 3.94463i −0.741067 0.427855i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 7.24707 4.18410i 0.768188 0.443513i −0.0640399 0.997947i \(-0.520398\pi\)
0.832228 + 0.554434i \(0.187065\pi\)
\(90\) 0 0
\(91\) −1.53395 + 3.26297i −0.160802 + 0.342052i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.15891 3.73934i 0.221499 0.383648i
\(96\) 0 0
\(97\) −10.5685 6.10170i −1.07306 0.619534i −0.144047 0.989571i \(-0.546012\pi\)
−0.929017 + 0.370037i \(0.879345\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.21143 + 2.09825i 0.120541 + 0.208784i 0.919981 0.391962i \(-0.128204\pi\)
−0.799440 + 0.600746i \(0.794870\pi\)
\(102\) 0 0
\(103\) 14.4909 1.42783 0.713917 0.700230i \(-0.246919\pi\)
0.713917 + 0.700230i \(0.246919\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.24370 + 5.61826i 0.313581 + 0.543138i 0.979135 0.203212i \(-0.0651381\pi\)
−0.665554 + 0.746350i \(0.731805\pi\)
\(108\) 0 0
\(109\) 2.93644i 0.281260i 0.990062 + 0.140630i \(0.0449129\pi\)
−0.990062 + 0.140630i \(0.955087\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1.66909 + 2.89095i −0.157015 + 0.271957i −0.933791 0.357819i \(-0.883520\pi\)
0.776776 + 0.629777i \(0.216854\pi\)
\(114\) 0 0
\(115\) −8.86929 + 5.12069i −0.827066 + 0.477507i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 5.03912 2.90934i 0.461936 0.266699i
\(120\) 0 0
\(121\) −1.57108 + 2.72119i −0.142825 + 0.247381i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.0660i 0.989773i
\(126\) 0 0
\(127\) −6.27512 10.8688i −0.556827 0.964452i −0.997759 0.0669115i \(-0.978685\pi\)
0.440932 0.897540i \(-0.354648\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −1.26001 −0.110087 −0.0550437 0.998484i \(-0.517530\pi\)
−0.0550437 + 0.998484i \(0.517530\pi\)
\(132\) 0 0
\(133\) 1.59229 + 2.75793i 0.138069 + 0.239143i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 7.20794 + 4.16151i 0.615816 + 0.355542i 0.775238 0.631669i \(-0.217630\pi\)
−0.159422 + 0.987211i \(0.550963\pi\)
\(138\) 0 0
\(139\) 2.89438 5.01322i 0.245498 0.425216i −0.716773 0.697306i \(-0.754382\pi\)
0.962272 + 0.272091i \(0.0877151\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −5.77131 8.29723i −0.482621 0.693849i
\(144\) 0 0
\(145\) 8.47375 4.89232i 0.703707 0.406285i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −12.3009 7.10193i −1.00773 0.581812i −0.0972028 0.995265i \(-0.530990\pi\)
−0.910526 + 0.413452i \(0.864323\pi\)
\(150\) 0 0
\(151\) 11.1509i 0.907451i −0.891142 0.453725i \(-0.850095\pi\)
0.891142 0.453725i \(-0.149905\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −10.9066 −0.876036
\(156\) 0 0
\(157\) 4.04749 0.323025 0.161513 0.986871i \(-0.448363\pi\)
0.161513 + 0.986871i \(0.448363\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 7.55347i 0.595297i
\(162\) 0 0
\(163\) −4.56675 2.63661i −0.357695 0.206515i 0.310374 0.950615i \(-0.399546\pi\)
−0.668069 + 0.744099i \(0.732879\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 4.63307 2.67491i 0.358518 0.206990i −0.309912 0.950765i \(-0.600300\pi\)
0.668430 + 0.743775i \(0.266966\pi\)
\(168\) 0 0
\(169\) −12.8163 + 2.17754i −0.985872 + 0.167503i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 4.87155 8.43777i 0.370377 0.641511i −0.619247 0.785197i \(-0.712562\pi\)
0.989623 + 0.143685i \(0.0458952\pi\)
\(174\) 0 0
\(175\) 2.73809 + 1.58083i 0.206980 + 0.119500i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −5.70263 9.87724i −0.426234 0.738259i 0.570301 0.821436i \(-0.306827\pi\)
−0.996535 + 0.0831767i \(0.973493\pi\)
\(180\) 0 0
\(181\) 25.4727 1.89337 0.946685 0.322160i \(-0.104409\pi\)
0.946685 + 0.322160i \(0.104409\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 4.71663 + 8.16943i 0.346773 + 0.600629i
\(186\) 0 0
\(187\) 16.3108i 1.19277i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 8.18905 14.1838i 0.592539 1.02631i −0.401351 0.915924i \(-0.631459\pi\)
0.993889 0.110382i \(-0.0352075\pi\)
\(192\) 0 0
\(193\) 8.28132 4.78122i 0.596103 0.344160i −0.171404 0.985201i \(-0.554830\pi\)
0.767507 + 0.641041i \(0.221497\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −2.60716 + 1.50525i −0.185753 + 0.107244i −0.589993 0.807409i \(-0.700869\pi\)
0.404240 + 0.914653i \(0.367536\pi\)
\(198\) 0 0
\(199\) −2.30985 + 4.00077i −0.163741 + 0.283607i −0.936207 0.351448i \(-0.885689\pi\)
0.772467 + 0.635055i \(0.219023\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 7.21661i 0.506507i
\(204\) 0 0
\(205\) 3.42995 + 5.94085i 0.239558 + 0.414927i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −8.92697 −0.617492
\(210\) 0 0
\(211\) −1.16932 2.02533i −0.0804995 0.139429i 0.822965 0.568092i \(-0.192318\pi\)
−0.903465 + 0.428663i \(0.858985\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −7.36053 4.24960i −0.501984 0.289821i
\(216\) 0 0
\(217\) 4.02203 6.96637i 0.273033 0.472908i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 18.9862 + 8.92559i 1.27715 + 0.600400i
\(222\) 0 0
\(223\) −4.21429 + 2.43312i −0.282210 + 0.162934i −0.634423 0.772986i \(-0.718762\pi\)
0.352214 + 0.935920i \(0.385429\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 24.3177 + 14.0398i 1.61402 + 0.931855i 0.988426 + 0.151706i \(0.0484766\pi\)
0.625594 + 0.780149i \(0.284857\pi\)
\(228\) 0 0
\(229\) 0.179280i 0.0118471i 0.999982 + 0.00592357i \(0.00188554\pi\)
−0.999982 + 0.00592357i \(0.998114\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −15.1384 −0.991747 −0.495873 0.868395i \(-0.665152\pi\)
−0.495873 + 0.868395i \(0.665152\pi\)
\(234\) 0 0
\(235\) 3.58371 0.233775
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 12.8703i 0.832512i −0.909247 0.416256i \(-0.863342\pi\)
0.909247 0.416256i \(-0.136658\pi\)
\(240\) 0 0
\(241\) 8.51452 + 4.91586i 0.548469 + 0.316659i 0.748504 0.663130i \(-0.230772\pi\)
−0.200035 + 0.979789i \(0.564106\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1.17420 0.677925i 0.0750170 0.0433111i
\(246\) 0 0
\(247\) −4.88501 + 10.3912i −0.310825 + 0.661177i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 8.66099 15.0013i 0.546677 0.946872i −0.451823 0.892108i \(-0.649226\pi\)
0.998499 0.0547641i \(-0.0174407\pi\)
\(252\) 0 0
\(253\) 18.3370 + 10.5869i 1.15284 + 0.665592i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 5.35302 + 9.27170i 0.333912 + 0.578353i 0.983275 0.182126i \(-0.0582978\pi\)
−0.649363 + 0.760478i \(0.724964\pi\)
\(258\) 0 0
\(259\) −6.95744 −0.432314
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −7.03484 12.1847i −0.433787 0.751341i 0.563409 0.826178i \(-0.309490\pi\)
−0.997196 + 0.0748372i \(0.976156\pi\)
\(264\) 0 0
\(265\) 15.0346i 0.923567i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −0.272011 + 0.471138i −0.0165848 + 0.0287258i −0.874199 0.485568i \(-0.838613\pi\)
0.857614 + 0.514294i \(0.171946\pi\)
\(270\) 0 0
\(271\) −0.641910 + 0.370607i −0.0389933 + 0.0225128i −0.519370 0.854550i \(-0.673833\pi\)
0.480377 + 0.877062i \(0.340500\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −7.67536 + 4.43137i −0.462842 + 0.267222i
\(276\) 0 0
\(277\) −7.06675 + 12.2400i −0.424600 + 0.735429i −0.996383 0.0849763i \(-0.972919\pi\)
0.571783 + 0.820405i \(0.306252\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 25.8051i 1.53940i 0.638404 + 0.769702i \(0.279595\pi\)
−0.638404 + 0.769702i \(0.720405\pi\)
\(282\) 0 0
\(283\) 13.6409 + 23.6267i 0.810865 + 1.40446i 0.912259 + 0.409613i \(0.134336\pi\)
−0.101394 + 0.994846i \(0.532330\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −5.05949 −0.298652
\(288\) 0 0
\(289\) −8.42851 14.5986i −0.495795 0.858742i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1.50010 + 0.866083i 0.0876367 + 0.0505971i 0.543178 0.839618i \(-0.317221\pi\)
−0.455541 + 0.890215i \(0.650554\pi\)
\(294\) 0 0
\(295\) 4.26793 7.39227i 0.248489 0.430395i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 22.3577 15.5514i 1.29298 0.899360i
\(300\) 0 0
\(301\) 5.42872 3.13427i 0.312906 0.180656i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 15.0393 + 8.68292i 0.861145 + 0.497182i
\(306\) 0 0
\(307\) 21.4365i 1.22345i −0.791072 0.611723i \(-0.790477\pi\)
0.791072 0.611723i \(-0.209523\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 27.2724 1.54647 0.773237 0.634117i \(-0.218636\pi\)
0.773237 + 0.634117i \(0.218636\pi\)
\(312\) 0 0
\(313\) 7.28221 0.411615 0.205807 0.978593i \(-0.434018\pi\)
0.205807 + 0.978593i \(0.434018\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2.54836i 0.143130i −0.997436 0.0715651i \(-0.977201\pi\)
0.997436 0.0715651i \(-0.0227994\pi\)
\(318\) 0 0
\(319\) −17.5192 10.1147i −0.980890 0.566317i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 16.0475 9.26503i 0.892907 0.515520i
\(324\) 0 0
\(325\) 0.958120 + 11.3592i 0.0531469 + 0.630096i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −1.32157 + 2.28903i −0.0728607 + 0.126198i
\(330\) 0 0
\(331\) 0.169450 + 0.0978320i 0.00931381 + 0.00537733i 0.504650 0.863324i \(-0.331622\pi\)
−0.495336 + 0.868702i \(0.664955\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −3.36450 5.82749i −0.183822 0.318390i
\(336\) 0 0
\(337\) 2.00900 0.109437 0.0547185 0.998502i \(-0.482574\pi\)
0.0547185 + 0.998502i \(0.482574\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 11.2745 + 19.5280i 0.610549 + 1.05750i
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2.27450 3.93956i 0.122102 0.211486i −0.798495 0.602002i \(-0.794370\pi\)
0.920596 + 0.390516i \(0.127703\pi\)
\(348\) 0 0
\(349\) 4.65700 2.68872i 0.249284 0.143924i −0.370153 0.928971i \(-0.620695\pi\)
0.619436 + 0.785047i \(0.287361\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −7.10223 + 4.10047i −0.378013 + 0.218246i −0.676954 0.736026i \(-0.736700\pi\)
0.298940 + 0.954272i \(0.403367\pi\)
\(354\) 0 0
\(355\) 11.1935 19.3877i 0.594090 1.02899i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 31.7664i 1.67657i 0.545233 + 0.838284i \(0.316441\pi\)
−0.545233 + 0.838284i \(0.683559\pi\)
\(360\) 0 0
\(361\) −4.42921 7.67162i −0.233117 0.403770i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −20.9277 −1.09541
\(366\) 0 0
\(367\) −8.66870 15.0146i −0.452502 0.783757i 0.546038 0.837760i \(-0.316135\pi\)
−0.998541 + 0.0540031i \(0.982802\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 9.60308 + 5.54434i 0.498567 + 0.287848i
\(372\) 0 0
\(373\) −8.04814 + 13.9398i −0.416717 + 0.721775i −0.995607 0.0936306i \(-0.970153\pi\)
0.578890 + 0.815406i \(0.303486\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −21.3607 + 14.8578i −1.10013 + 0.765218i
\(378\) 0 0
\(379\) −15.2907 + 8.82811i −0.785432 + 0.453470i −0.838352 0.545129i \(-0.816481\pi\)
0.0529197 + 0.998599i \(0.483147\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −7.12262 4.11225i −0.363949 0.210126i 0.306863 0.951754i \(-0.400721\pi\)
−0.670812 + 0.741628i \(0.734054\pi\)
\(384\) 0 0
\(385\) 3.80070i 0.193702i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −15.1688 −0.769090 −0.384545 0.923106i \(-0.625642\pi\)
−0.384545 + 0.923106i \(0.625642\pi\)
\(390\) 0 0
\(391\) −43.9512 −2.22271
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 20.0206i 1.00734i
\(396\) 0 0
\(397\) −24.5139 14.1531i −1.23032 0.710325i −0.263223 0.964735i \(-0.584785\pi\)
−0.967096 + 0.254410i \(0.918119\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −14.8257 + 8.55962i −0.740360 + 0.427447i −0.822200 0.569198i \(-0.807254\pi\)
0.0818403 + 0.996645i \(0.473920\pi\)
\(402\) 0 0
\(403\) 28.9007 2.43769i 1.43965 0.121430i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 9.75149 16.8901i 0.483364 0.837210i
\(408\) 0 0
\(409\) 9.82072 + 5.66999i 0.485603 + 0.280363i 0.722749 0.691111i \(-0.242878\pi\)
−0.237145 + 0.971474i \(0.576212\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 3.14779 + 5.45213i 0.154893 + 0.268282i
\(414\) 0 0
\(415\) −13.2780 −0.651790
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0.0694276 + 0.120252i 0.00339176 + 0.00587470i 0.867716 0.497060i \(-0.165587\pi\)
−0.864325 + 0.502934i \(0.832254\pi\)
\(420\) 0 0
\(421\) 24.3258i 1.18557i 0.805362 + 0.592783i \(0.201971\pi\)
−0.805362 + 0.592783i \(0.798029\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 9.19837 15.9320i 0.446186 0.772818i
\(426\) 0 0
\(427\) −11.0921 + 6.40404i −0.536785 + 0.309913i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −24.9349 + 14.3962i −1.20107 + 0.693440i −0.960794 0.277263i \(-0.910573\pi\)
−0.240280 + 0.970704i \(0.577239\pi\)
\(432\) 0 0
\(433\) −12.6367 + 21.8873i −0.607279 + 1.05184i 0.384408 + 0.923163i \(0.374406\pi\)
−0.991687 + 0.128675i \(0.958928\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 24.0547i 1.15069i
\(438\) 0 0
\(439\) 3.01512 + 5.22234i 0.143904 + 0.249248i 0.928963 0.370172i \(-0.120701\pi\)
−0.785060 + 0.619420i \(0.787368\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −23.4988 −1.11646 −0.558230 0.829686i \(-0.688519\pi\)
−0.558230 + 0.829686i \(0.688519\pi\)
\(444\) 0 0
\(445\) −5.67301 9.82594i −0.268927 0.465794i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −20.2543 11.6938i −0.955859 0.551865i −0.0609627 0.998140i \(-0.519417\pi\)
−0.894896 + 0.446275i \(0.852750\pi\)
\(450\) 0 0
\(451\) 7.09133 12.2826i 0.333918 0.578363i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 4.42410 + 2.07981i 0.207405 + 0.0975031i
\(456\) 0 0
\(457\) −22.6616 + 13.0837i −1.06007 + 0.612030i −0.925451 0.378868i \(-0.876313\pi\)
−0.134616 + 0.990898i \(0.542980\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 21.8524 + 12.6165i 1.01777 + 0.587609i 0.913457 0.406936i \(-0.133403\pi\)
0.104312 + 0.994545i \(0.466736\pi\)
\(462\) 0 0
\(463\) 18.1600i 0.843968i 0.906603 + 0.421984i \(0.138666\pi\)
−0.906603 + 0.421984i \(0.861334\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 12.6328 0.584577 0.292289 0.956330i \(-0.405583\pi\)
0.292289 + 0.956330i \(0.405583\pi\)
\(468\) 0 0
\(469\) 4.96294 0.229167
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 17.5719i 0.807956i
\(474\) 0 0
\(475\) 8.71966 + 5.03430i 0.400086 + 0.230990i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −10.6585 + 6.15368i −0.486999 + 0.281169i −0.723329 0.690504i \(-0.757389\pi\)
0.236330 + 0.971673i \(0.424055\pi\)
\(480\) 0 0
\(481\) −14.3243 20.5935i −0.653130 0.938984i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −8.27299 + 14.3292i −0.375657 + 0.650658i
\(486\) 0 0
\(487\) 13.5393 + 7.81693i 0.613525 + 0.354219i 0.774344 0.632765i \(-0.218080\pi\)
−0.160819 + 0.986984i \(0.551413\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −5.10543 8.84286i −0.230405 0.399073i 0.727523 0.686084i \(-0.240672\pi\)
−0.957927 + 0.287011i \(0.907338\pi\)
\(492\) 0 0
\(493\) 41.9911 1.89119
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 8.25572 + 14.2993i 0.370319 + 0.641412i
\(498\) 0 0
\(499\) 0.681003i 0.0304859i 0.999884 + 0.0152430i \(0.00485217\pi\)
−0.999884 + 0.0152430i \(0.995148\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −17.6701 + 30.6056i −0.787873 + 1.36464i 0.139395 + 0.990237i \(0.455484\pi\)
−0.927268 + 0.374399i \(0.877849\pi\)
\(504\) 0 0
\(505\) 2.84492 1.64251i 0.126597 0.0730909i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −14.5717 + 8.41300i −0.645881 + 0.372900i −0.786876 0.617111i \(-0.788303\pi\)
0.140995 + 0.990010i \(0.454970\pi\)
\(510\) 0 0
\(511\) 7.71755 13.3672i 0.341404 0.591330i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 19.6475i 0.865774i
\(516\) 0 0
\(517\) −3.70461 6.41658i −0.162929 0.282201i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −4.76619 −0.208811 −0.104405 0.994535i \(-0.533294\pi\)
−0.104405 + 0.994535i \(0.533294\pi\)
\(522\) 0 0
\(523\) 0.319080 + 0.552662i 0.0139524 + 0.0241662i 0.872917 0.487868i \(-0.162225\pi\)
−0.858965 + 0.512034i \(0.828892\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −40.5351 23.4029i −1.76573 1.01945i
\(528\) 0 0
\(529\) −17.0275 + 29.4924i −0.740325 + 1.28228i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −10.4167 14.9757i −0.451196 0.648670i
\(534\) 0 0
\(535\) 7.61752 4.39798i 0.329334 0.190141i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −2.42763 1.40159i −0.104565 0.0603708i
\(540\) 0 0
\(541\) 22.2050i 0.954668i −0.878722 0.477334i \(-0.841603\pi\)
0.878722 0.477334i \(-0.158397\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 3.98138 0.170544
\(546\) 0 0
\(547\) 16.2608 0.695263 0.347631 0.937631i \(-0.386986\pi\)
0.347631 + 0.937631i \(0.386986\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 22.9819i 0.979062i
\(552\) 0 0
\(553\) 12.7878 + 7.38303i 0.543792 + 0.313958i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 18.5915 10.7338i 0.787747 0.454806i −0.0514219 0.998677i \(-0.516375\pi\)
0.839169 + 0.543871i \(0.183042\pi\)
\(558\) 0 0
\(559\) 20.4541 + 9.61566i 0.865115 + 0.406699i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 5.59103 9.68395i 0.235634 0.408130i −0.723823 0.689986i \(-0.757617\pi\)
0.959457 + 0.281856i \(0.0909500\pi\)
\(564\) 0 0
\(565\) 3.91969 + 2.26304i 0.164903 + 0.0952066i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 6.58165 + 11.3998i 0.275917 + 0.477903i 0.970366 0.241639i \(-0.0776851\pi\)
−0.694449 + 0.719542i \(0.744352\pi\)
\(570\) 0 0
\(571\) −17.4199 −0.729001 −0.364501 0.931203i \(-0.618760\pi\)
−0.364501 + 0.931203i \(0.618760\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −11.9408 20.6821i −0.497965 0.862501i
\(576\) 0 0
\(577\) 8.47023i 0.352620i 0.984335 + 0.176310i \(0.0564161\pi\)
−0.984335 + 0.176310i \(0.943584\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 4.89655 8.48107i 0.203143 0.351854i
\(582\) 0 0
\(583\) −26.9192 + 15.5418i −1.11488 + 0.643676i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −18.2459 + 10.5342i −0.753087 + 0.434795i −0.826808 0.562484i \(-0.809846\pi\)
0.0737213 + 0.997279i \(0.476512\pi\)
\(588\) 0 0
\(589\) 12.8085 22.1850i 0.527765 0.914116i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 13.2761i 0.545185i 0.962130 + 0.272593i \(0.0878811\pi\)
−0.962130 + 0.272593i \(0.912119\pi\)
\(594\) 0 0
\(595\) −3.94463 6.83230i −0.161714 0.280097i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −5.39084 −0.220264 −0.110132 0.993917i \(-0.535127\pi\)
−0.110132 + 0.993917i \(0.535127\pi\)
\(600\) 0 0
\(601\) 12.2204 + 21.1663i 0.498480 + 0.863392i 0.999998 0.00175467i \(-0.000558528\pi\)
−0.501519 + 0.865147i \(0.667225\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 3.68953 + 2.13015i 0.150001 + 0.0866029i
\(606\) 0 0
\(607\) 12.9291 22.3939i 0.524776 0.908939i −0.474808 0.880090i \(-0.657482\pi\)
0.999584 0.0288492i \(-0.00918427\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −9.49628 + 0.800985i −0.384178 + 0.0324044i
\(612\) 0 0
\(613\) 12.2706 7.08441i 0.495603 0.286136i −0.231293 0.972884i \(-0.574296\pi\)
0.726896 + 0.686748i \(0.240962\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −39.8763 23.0226i −1.60536 0.926855i −0.990390 0.138305i \(-0.955835\pi\)
−0.614970 0.788550i \(-0.710832\pi\)
\(618\) 0 0
\(619\) 12.0284i 0.483464i 0.970343 + 0.241732i \(0.0777155\pi\)
−0.970343 + 0.241732i \(0.922285\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 8.36820 0.335265
\(624\) 0 0
\(625\) 0.804500 0.0321800
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 40.4831i 1.61417i
\(630\) 0 0
\(631\) 21.0476 + 12.1518i 0.837890 + 0.483756i 0.856546 0.516070i \(-0.172606\pi\)
−0.0186564 + 0.999826i \(0.505939\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −14.7365 + 8.50812i −0.584800 + 0.337634i
\(636\) 0 0
\(637\) −2.95993 + 2.05884i −0.117277 + 0.0815742i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 8.88276 15.3854i 0.350848 0.607687i −0.635550 0.772060i \(-0.719227\pi\)
0.986398 + 0.164373i \(0.0525600\pi\)
\(642\) 0 0
\(643\) −37.3742 21.5780i −1.47389 0.850953i −0.474326 0.880349i \(-0.657308\pi\)
−0.999568 + 0.0293964i \(0.990641\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 5.39974 + 9.35262i 0.212286 + 0.367689i 0.952429 0.304759i \(-0.0985760\pi\)
−0.740144 + 0.672449i \(0.765243\pi\)
\(648\) 0 0
\(649\) −17.6477 −0.692731
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −1.53280 2.65489i −0.0599831 0.103894i 0.834475 0.551047i \(-0.185771\pi\)
−0.894458 + 0.447153i \(0.852438\pi\)
\(654\) 0 0
\(655\) 1.70838i 0.0667520i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −1.82436 + 3.15988i −0.0710670 + 0.123092i −0.899369 0.437190i \(-0.855974\pi\)
0.828302 + 0.560282i \(0.189307\pi\)
\(660\) 0 0
\(661\) −23.5777 + 13.6126i −0.917068 + 0.529469i −0.882698 0.469940i \(-0.844276\pi\)
−0.0343693 + 0.999409i \(0.510942\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 3.73934 2.15891i 0.145005 0.0837189i
\(666\) 0 0
\(667\) 27.2552 47.2074i 1.05533 1.82788i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 35.9034i 1.38604i
\(672\) 0 0
\(673\) 14.1485 + 24.5059i 0.545384 + 0.944633i 0.998583 + 0.0532233i \(0.0169495\pi\)
−0.453199 + 0.891410i \(0.649717\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 28.8361 1.10826 0.554131 0.832429i \(-0.313051\pi\)
0.554131 + 0.832429i \(0.313051\pi\)
\(678\) 0 0
\(679\) −6.10170 10.5685i −0.234162 0.405580i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −35.4243 20.4522i −1.35547 0.782583i −0.366464 0.930432i \(-0.619432\pi\)
−0.989010 + 0.147849i \(0.952765\pi\)
\(684\) 0 0
\(685\) 5.64238 9.77290i 0.215584 0.373403i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 3.36034 + 39.8393i 0.128019 + 1.51776i
\(690\) 0 0
\(691\) −36.5934 + 21.1272i −1.39208 + 0.803717i −0.993545 0.113436i \(-0.963814\pi\)
−0.398534 + 0.917154i \(0.630481\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −6.79717 3.92435i −0.257831 0.148859i
\(696\) 0 0
\(697\) 29.4395i 1.11510i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 30.3734 1.14719 0.573594 0.819140i \(-0.305549\pi\)
0.573594 + 0.819140i \(0.305549\pi\)
\(702\) 0 0
\(703\) −22.1566 −0.835650
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 2.42285i 0.0911208i
\(708\) 0 0
\(709\) −20.2907 11.7148i −0.762033 0.439960i 0.0679919 0.997686i \(-0.478341\pi\)
−0.830025 + 0.557726i \(0.811674\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −52.6203 + 30.3803i −1.97064 + 1.13775i
\(714\) 0 0
\(715\) −11.2498 + 7.82503i −0.420719 + 0.292639i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 3.51491 6.08800i 0.131084 0.227044i −0.793011 0.609208i \(-0.791488\pi\)
0.924095 + 0.382164i \(0.124821\pi\)
\(720\) 0 0
\(721\) 12.5495 + 7.24547i 0.467369 + 0.269835i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 11.4083 + 19.7597i 0.423692 + 0.733857i
\(726\) 0 0
\(727\) −20.6810 −0.767015 −0.383507 0.923538i \(-0.625284\pi\)
−0.383507 + 0.923538i \(0.625284\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −18.2373 31.5880i −0.674531 1.16832i
\(732\) 0 0
\(733\) 39.0035i 1.44063i 0.693648 + 0.720314i \(0.256002\pi\)
−0.693648 + 0.720314i \(0.743998\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −6.95602 + 12.0482i −0.256228 + 0.443800i
\(738\) 0 0
\(739\) 24.8910 14.3708i 0.915629 0.528639i 0.0333913 0.999442i \(-0.489369\pi\)
0.882238 + 0.470803i \(0.156036\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 5.48059 3.16422i 0.201063 0.116084i −0.396088 0.918213i \(-0.629633\pi\)
0.597151 + 0.802129i \(0.296299\pi\)
\(744\) 0 0
\(745\) −9.62915 + 16.6782i −0.352785 + 0.611041i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 6.48741i 0.237045i
\(750\) 0 0
\(751\) −15.7203 27.2283i −0.573641 0.993575i −0.996188 0.0872339i \(-0.972197\pi\)
0.422547 0.906341i \(-0.361136\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −15.1190 −0.550237
\(756\) 0 0
\(757\) −12.7212 22.0337i −0.462358 0.800828i 0.536720 0.843760i \(-0.319663\pi\)
−0.999078 + 0.0429328i \(0.986330\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 17.8492 + 10.3053i 0.647034 + 0.373565i 0.787319 0.616546i \(-0.211469\pi\)
−0.140285 + 0.990111i \(0.544802\pi\)
\(762\) 0 0
\(763\) −1.46822 + 2.54304i −0.0531532 + 0.0920641i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −9.65713 + 20.5423i −0.348699 + 0.741739i
\(768\) 0 0
\(769\) 7.95173 4.59093i 0.286747 0.165553i −0.349727 0.936852i \(-0.613726\pi\)
0.636474 + 0.771298i \(0.280392\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 7.35736 + 4.24777i 0.264626 + 0.152782i 0.626443 0.779467i \(-0.284510\pi\)
−0.361817 + 0.932249i \(0.617843\pi\)
\(774\) 0 0
\(775\) 25.4327i 0.913569i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −16.1124 −0.577285
\(780\) 0 0
\(781\) −46.2846 −1.65619
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 5.48780i 0.195868i
\(786\) 0 0
\(787\) 1.70464 + 0.984173i 0.0607638 + 0.0350820i 0.530074 0.847951i \(-0.322164\pi\)
−0.469310 + 0.883033i \(0.655497\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −2.89095 + 1.66909i −0.102790 + 0.0593460i
\(792\) 0 0
\(793\) −41.7924 19.6470i −1.48409 0.697686i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 19.2449 33.3332i 0.681690 1.18072i −0.292775 0.956181i \(-0.594579\pi\)
0.974465 0.224540i \(-0.0720879\pi\)
\(798\) 0 0
\(799\) 13.3191 + 7.68981i 0.471197 + 0.272046i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 21.6337 + 37.4707i 0.763437 + 1.32231i
\(804\) 0 0
\(805\) −10.2414 −0.360961
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0.899878 + 1.55863i 0.0316380 + 0.0547987i 0.881411 0.472350i \(-0.156594\pi\)
−0.849773 + 0.527149i \(0.823261\pi\)
\(810\) 0 0
\(811\) 49.9235i 1.75305i −0.481357 0.876525i \(-0.659856\pi\)
0.481357 0.876525i \(-0.340144\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −3.57485 + 6.19183i −0.125222 + 0.216890i
\(816\) 0 0
\(817\) 17.2882 9.98135i 0.604838 0.349203i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −3.65310 + 2.10912i −0.127494 + 0.0736087i −0.562391 0.826872i \(-0.690118\pi\)
0.434897 + 0.900480i \(0.356785\pi\)
\(822\) 0 0
\(823\) 7.24912 12.5558i 0.252688 0.437669i −0.711577 0.702608i \(-0.752019\pi\)
0.964265 + 0.264939i \(0.0853519\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 26.2618i 0.913213i 0.889669 + 0.456607i \(0.150935\pi\)
−0.889669 + 0.456607i \(0.849065\pi\)
\(828\) 0 0
\(829\) −27.5790 47.7682i −0.957858 1.65906i −0.727688 0.685909i \(-0.759405\pi\)
−0.230170 0.973150i \(-0.573928\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 5.81868 0.201605
\(834\) 0 0
\(835\) −3.62677 6.28175i −0.125510 0.217389i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 6.07974 + 3.51014i 0.209896 + 0.121184i 0.601263 0.799051i \(-0.294664\pi\)
−0.391367 + 0.920235i \(0.627998\pi\)
\(840\) 0 0
\(841\) −11.5397 + 19.9874i −0.397922 + 0.689221i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 2.95241 + 17.3770i 0.101566 + 0.597788i
\(846\) 0 0
\(847\) −2.72119 + 1.57108i −0.0935012 + 0.0539829i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 45.5121 + 26.2764i 1.56013 + 0.900744i
\(852\) 0 0
\(853\) 57.6508i 1.97393i 0.160945 + 0.986963i \(0.448546\pi\)
−0.160945 + 0.986963i \(0.551454\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 2.50654 0.0856217 0.0428109 0.999083i \(-0.486369\pi\)
0.0428109 + 0.999083i \(0.486369\pi\)
\(858\) 0 0
\(859\) 17.1305 0.584486 0.292243 0.956344i \(-0.405598\pi\)
0.292243 + 0.956344i \(0.405598\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 55.6429i 1.89411i −0.321079 0.947053i \(-0.604045\pi\)
0.321079 0.947053i \(-0.395955\pi\)
\(864\) 0 0
\(865\) −11.4403 6.60509i −0.388984 0.224580i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −35.8465 + 20.6960i −1.21601 + 0.702064i
\(870\) 0 0
\(871\) 10.2179 + 14.6899i 0.346220 + 0.497750i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 5.53300 9.58344i 0.187050 0.323979i
\(876\) 0 0
\(877\) 34.7751 + 20.0774i 1.17427 + 0.677967i 0.954683 0.297626i \(-0.0961947\pi\)
0.219590 + 0.975592i \(0.429528\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −25.3837 43.9658i −0.855197 1.48124i −0.876462 0.481471i \(-0.840103\pi\)
0.0212650 0.999774i \(-0.493231\pi\)
\(882\) 0 0
\(883\) −46.3312 −1.55917 −0.779585 0.626297i \(-0.784570\pi\)
−0.779585 + 0.626297i \(0.784570\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −5.12752 8.88113i −0.172165 0.298199i 0.767011 0.641634i \(-0.221743\pi\)
−0.939177 + 0.343435i \(0.888410\pi\)
\(888\) 0 0
\(889\) 12.5502i 0.420921i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −4.20866 + 7.28961i −0.140837 + 0.243938i
\(894\) 0 0
\(895\) −13.3921 + 7.73191i −0.447647 + 0.258449i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 50.2736 29.0255i 1.67672 0.968053i
\(900\) 0 0
\(901\) 32.2607 55.8772i 1.07476 1.86154i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 34.5372i 1.14805i
\(906\) 0 0
\(907\) 26.1472 + 45.2883i 0.868205 + 1.50377i 0.863830 + 0.503784i \(0.168059\pi\)
0.00437495 + 0.999990i \(0.498607\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −50.9172 −1.68696 −0.843481 0.537159i \(-0.819498\pi\)
−0.843481 + 0.537159i \(0.819498\pi\)
\(912\) 0 0
\(913\) 13.7259 + 23.7740i 0.454262 + 0.786805i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1.09120 0.630004i −0.0360346 0.0208046i
\(918\) 0 0
\(919\) −11.4323 + 19.8013i −0.377117 + 0.653186i −0.990641 0.136490i \(-0.956418\pi\)
0.613524 + 0.789676i \(0.289751\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −25.3278 + 53.8763i −0.833674 + 1.77336i
\(924\) 0 0
\(925\) −19.0501 + 10.9986i −0.626363 + 0.361631i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −28.8090 16.6329i −0.945193 0.545708i −0.0536089 0.998562i \(-0.517072\pi\)
−0.891584 + 0.452854i \(0.850406\pi\)
\(930\) 0 0
\(931\) 3.18458i 0.104371i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 22.1150 0.723239
\(936\) 0 0
\(937\) −51.2179 −1.67322 −0.836608 0.547802i \(-0.815465\pi\)
−0.836608 + 0.547802i \(0.815465\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 10.2918i 0.335502i 0.985829 + 0.167751i \(0.0536504\pi\)
−0.985829 + 0.167751i \(0.946350\pi\)
\(942\) 0 0
\(943\) 33.0966 + 19.1083i 1.07777 + 0.622253i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −30.7341 + 17.7444i −0.998725 + 0.576614i −0.907871 0.419250i \(-0.862293\pi\)
−0.0908539 + 0.995864i \(0.528960\pi\)
\(948\) 0 0
\(949\) 55.4551 4.67749i 1.80015 0.151838i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −16.6676 + 28.8691i −0.539916 + 0.935163i 0.458992 + 0.888441i \(0.348211\pi\)
−0.998908 + 0.0467220i \(0.985123\pi\)
\(954\) 0 0
\(955\) −19.2312 11.1031i −0.622306 0.359289i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 4.16151 + 7.20794i 0.134382 + 0.232757i
\(960\) 0 0
\(961\) −33.7070 −1.08732
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −6.48263 11.2282i −0.208683 0.361450i
\(966\) 0 0
\(967\) 29.7131i 0.955509i −0.878494 0.477754i \(-0.841451\pi\)
0.878494 0.477754i \(-0.158549\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −4.41851 + 7.65308i −0.141797 + 0.245599i −0.928173 0.372148i \(-0.878621\pi\)
0.786377 + 0.617747i \(0.211955\pi\)
\(972\) 0 0
\(973\) 5.01322 2.89438i 0.160716 0.0927896i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 12.8437 7.41533i 0.410907 0.237237i −0.280272 0.959921i \(-0.590425\pi\)
0.691180 + 0.722683i \(0.257091\pi\)
\(978\) 0 0
\(979\) −11.7288 + 20.3149i −0.374854 + 0.649266i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 20.3390i 0.648714i 0.945935 + 0.324357i \(0.105148\pi\)
−0.945935 + 0.324357i \(0.894852\pi\)
\(984\) 0 0
\(985\) 2.04089 + 3.53493i 0.0650282 + 0.112632i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −47.3493 −1.50562
\(990\) 0 0
\(991\) 25.4453 + 44.0726i 0.808297 + 1.40001i 0.914042 + 0.405619i \(0.132944\pi\)
−0.105745 + 0.994393i \(0.533723\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 5.42445 + 3.13181i 0.171967 + 0.0992849i
\(996\) 0 0
\(997\) 3.69697 6.40334i 0.117084 0.202796i −0.801527 0.597959i \(-0.795979\pi\)
0.918611 + 0.395163i \(0.129312\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3276.2.cf.c.1765.4 16
3.2 odd 2 364.2.u.a.309.5 yes 16
12.11 even 2 1456.2.cc.f.673.4 16
13.4 even 6 inner 3276.2.cf.c.2773.5 16
21.2 odd 6 2548.2.bq.e.361.4 16
21.5 even 6 2548.2.bq.c.361.5 16
21.11 odd 6 2548.2.bb.d.569.5 16
21.17 even 6 2548.2.bb.c.569.4 16
21.20 even 2 2548.2.u.c.1765.4 16
39.2 even 12 4732.2.a.t.1.4 8
39.11 even 12 4732.2.a.s.1.4 8
39.17 odd 6 364.2.u.a.225.5 16
39.23 odd 6 4732.2.g.k.337.7 16
39.29 odd 6 4732.2.g.k.337.8 16
156.95 even 6 1456.2.cc.f.225.4 16
273.17 even 6 2548.2.bq.c.1941.5 16
273.95 odd 6 2548.2.bq.e.1941.4 16
273.173 even 6 2548.2.bb.c.1733.4 16
273.212 odd 6 2548.2.bb.d.1733.5 16
273.251 even 6 2548.2.u.c.589.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
364.2.u.a.225.5 16 39.17 odd 6
364.2.u.a.309.5 yes 16 3.2 odd 2
1456.2.cc.f.225.4 16 156.95 even 6
1456.2.cc.f.673.4 16 12.11 even 2
2548.2.u.c.589.4 16 273.251 even 6
2548.2.u.c.1765.4 16 21.20 even 2
2548.2.bb.c.569.4 16 21.17 even 6
2548.2.bb.c.1733.4 16 273.173 even 6
2548.2.bb.d.569.5 16 21.11 odd 6
2548.2.bb.d.1733.5 16 273.212 odd 6
2548.2.bq.c.361.5 16 21.5 even 6
2548.2.bq.c.1941.5 16 273.17 even 6
2548.2.bq.e.361.4 16 21.2 odd 6
2548.2.bq.e.1941.4 16 273.95 odd 6
3276.2.cf.c.1765.4 16 1.1 even 1 trivial
3276.2.cf.c.2773.5 16 13.4 even 6 inner
4732.2.a.s.1.4 8 39.11 even 12
4732.2.a.t.1.4 8 39.2 even 12
4732.2.g.k.337.7 16 39.23 odd 6
4732.2.g.k.337.8 16 39.29 odd 6