Properties

Label 4732.2.g.k.337.7
Level $4732$
Weight $2$
Character 4732.337
Analytic conductor $37.785$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4732,2,Mod(337,4732)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4732.337"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4732, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4732 = 2^{2} \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4732.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(37.7852102365\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 38x^{14} + 587x^{12} + 4762x^{10} + 21849x^{8} + 56552x^{6} + 76456x^{4} + 42624x^{2} + 2704 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{10} \)
Twist minimal: no (minimal twist has level 364)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 337.7
Root \(-0.268953i\) of defining polynomial
Character \(\chi\) \(=\) 4732.337
Dual form 4732.2.g.k.337.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.268953 q^{3} -1.35585i q^{5} +1.00000i q^{7} -2.92766 q^{9} -2.80318i q^{11} +0.364660i q^{15} +5.81868 q^{17} +3.18458i q^{19} -0.268953i q^{21} -7.55347 q^{23} +3.16167 q^{25} +1.59426 q^{27} +7.21661 q^{29} +8.04407i q^{31} +0.753925i q^{33} +1.35585 q^{35} +6.95744i q^{37} -5.05949i q^{41} -6.26854 q^{43} +3.96948i q^{45} +2.64315i q^{47} -1.00000 q^{49} -1.56495 q^{51} -11.0887 q^{53} -3.80070 q^{55} -0.856503i q^{57} -6.29558i q^{59} +12.8081 q^{61} -2.92766i q^{63} -4.96294i q^{67} +2.03153 q^{69} -16.5114i q^{71} +15.4351i q^{73} -0.850340 q^{75} +2.80318 q^{77} +14.7661 q^{79} +8.35421 q^{81} -9.79310i q^{83} -7.88926i q^{85} -1.94093 q^{87} +8.36820i q^{89} -2.16348i q^{93} +4.31782 q^{95} -12.2034i q^{97} +8.20678i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 28 q^{9} - 4 q^{17} - 44 q^{25} - 12 q^{27} + 44 q^{29} + 12 q^{35} - 12 q^{43} - 16 q^{49} - 4 q^{51} + 8 q^{53} - 4 q^{55} - 8 q^{61} + 104 q^{69} + 20 q^{75} - 24 q^{77} + 8 q^{79} - 52 q^{87}+ \cdots + 60 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4732\mathbb{Z}\right)^\times\).

\(n\) \(2367\) \(2705\) \(4565\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.268953 −0.155280 −0.0776400 0.996981i \(-0.524738\pi\)
−0.0776400 + 0.996981i \(0.524738\pi\)
\(4\) 0 0
\(5\) − 1.35585i − 0.606355i −0.952934 0.303177i \(-0.901953\pi\)
0.952934 0.303177i \(-0.0980475\pi\)
\(6\) 0 0
\(7\) 1.00000i 0.377964i
\(8\) 0 0
\(9\) −2.92766 −0.975888
\(10\) 0 0
\(11\) − 2.80318i − 0.845192i −0.906318 0.422596i \(-0.861119\pi\)
0.906318 0.422596i \(-0.138881\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 0.364660i 0.0941548i
\(16\) 0 0
\(17\) 5.81868 1.41124 0.705618 0.708592i \(-0.250669\pi\)
0.705618 + 0.708592i \(0.250669\pi\)
\(18\) 0 0
\(19\) 3.18458i 0.730594i 0.930891 + 0.365297i \(0.119032\pi\)
−0.930891 + 0.365297i \(0.880968\pi\)
\(20\) 0 0
\(21\) − 0.268953i − 0.0586903i
\(22\) 0 0
\(23\) −7.55347 −1.57501 −0.787504 0.616310i \(-0.788627\pi\)
−0.787504 + 0.616310i \(0.788627\pi\)
\(24\) 0 0
\(25\) 3.16167 0.632334
\(26\) 0 0
\(27\) 1.59426 0.306816
\(28\) 0 0
\(29\) 7.21661 1.34009 0.670045 0.742320i \(-0.266275\pi\)
0.670045 + 0.742320i \(0.266275\pi\)
\(30\) 0 0
\(31\) 8.04407i 1.44476i 0.691498 + 0.722379i \(0.256951\pi\)
−0.691498 + 0.722379i \(0.743049\pi\)
\(32\) 0 0
\(33\) 0.753925i 0.131241i
\(34\) 0 0
\(35\) 1.35585 0.229181
\(36\) 0 0
\(37\) 6.95744i 1.14380i 0.820325 + 0.571898i \(0.193793\pi\)
−0.820325 + 0.571898i \(0.806207\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 5.05949i − 0.790159i −0.918647 0.395079i \(-0.870717\pi\)
0.918647 0.395079i \(-0.129283\pi\)
\(42\) 0 0
\(43\) −6.26854 −0.955944 −0.477972 0.878375i \(-0.658628\pi\)
−0.477972 + 0.878375i \(0.658628\pi\)
\(44\) 0 0
\(45\) 3.96948i 0.591734i
\(46\) 0 0
\(47\) 2.64315i 0.385542i 0.981244 + 0.192771i \(0.0617475\pi\)
−0.981244 + 0.192771i \(0.938252\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) −1.56495 −0.219137
\(52\) 0 0
\(53\) −11.0887 −1.52315 −0.761574 0.648079i \(-0.775573\pi\)
−0.761574 + 0.648079i \(0.775573\pi\)
\(54\) 0 0
\(55\) −3.80070 −0.512486
\(56\) 0 0
\(57\) − 0.856503i − 0.113447i
\(58\) 0 0
\(59\) − 6.29558i − 0.819614i −0.912172 0.409807i \(-0.865596\pi\)
0.912172 0.409807i \(-0.134404\pi\)
\(60\) 0 0
\(61\) 12.8081 1.63991 0.819953 0.572431i \(-0.193999\pi\)
0.819953 + 0.572431i \(0.193999\pi\)
\(62\) 0 0
\(63\) − 2.92766i − 0.368851i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 4.96294i − 0.606319i −0.952940 0.303160i \(-0.901958\pi\)
0.952940 0.303160i \(-0.0980416\pi\)
\(68\) 0 0
\(69\) 2.03153 0.244567
\(70\) 0 0
\(71\) − 16.5114i − 1.95955i −0.200111 0.979773i \(-0.564130\pi\)
0.200111 0.979773i \(-0.435870\pi\)
\(72\) 0 0
\(73\) 15.4351i 1.80654i 0.429071 + 0.903271i \(0.358841\pi\)
−0.429071 + 0.903271i \(0.641159\pi\)
\(74\) 0 0
\(75\) −0.850340 −0.0981888
\(76\) 0 0
\(77\) 2.80318 0.319452
\(78\) 0 0
\(79\) 14.7661 1.66131 0.830656 0.556786i \(-0.187966\pi\)
0.830656 + 0.556786i \(0.187966\pi\)
\(80\) 0 0
\(81\) 8.35421 0.928246
\(82\) 0 0
\(83\) − 9.79310i − 1.07493i −0.843285 0.537466i \(-0.819382\pi\)
0.843285 0.537466i \(-0.180618\pi\)
\(84\) 0 0
\(85\) − 7.88926i − 0.855710i
\(86\) 0 0
\(87\) −1.94093 −0.208089
\(88\) 0 0
\(89\) 8.36820i 0.887027i 0.896268 + 0.443513i \(0.146268\pi\)
−0.896268 + 0.443513i \(0.853732\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) − 2.16348i − 0.224342i
\(94\) 0 0
\(95\) 4.31782 0.442999
\(96\) 0 0
\(97\) − 12.2034i − 1.23907i −0.784970 0.619534i \(-0.787322\pi\)
0.784970 0.619534i \(-0.212678\pi\)
\(98\) 0 0
\(99\) 8.20678i 0.824813i
\(100\) 0 0
\(101\) 2.42285 0.241083 0.120541 0.992708i \(-0.461537\pi\)
0.120541 + 0.992708i \(0.461537\pi\)
\(102\) 0 0
\(103\) 14.4909 1.42783 0.713917 0.700230i \(-0.246919\pi\)
0.713917 + 0.700230i \(0.246919\pi\)
\(104\) 0 0
\(105\) −0.364660 −0.0355872
\(106\) 0 0
\(107\) 6.48741 0.627161 0.313581 0.949562i \(-0.398471\pi\)
0.313581 + 0.949562i \(0.398471\pi\)
\(108\) 0 0
\(109\) − 2.93644i − 0.281260i −0.990062 0.140630i \(-0.955087\pi\)
0.990062 0.140630i \(-0.0449129\pi\)
\(110\) 0 0
\(111\) − 1.87122i − 0.177609i
\(112\) 0 0
\(113\) −3.33818 −0.314029 −0.157015 0.987596i \(-0.550187\pi\)
−0.157015 + 0.987596i \(0.550187\pi\)
\(114\) 0 0
\(115\) 10.2414i 0.955013i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 5.81868i 0.533397i
\(120\) 0 0
\(121\) 3.14216 0.285651
\(122\) 0 0
\(123\) 1.36076i 0.122696i
\(124\) 0 0
\(125\) − 11.0660i − 0.989773i
\(126\) 0 0
\(127\) 12.5502 1.11365 0.556827 0.830629i \(-0.312019\pi\)
0.556827 + 0.830629i \(0.312019\pi\)
\(128\) 0 0
\(129\) 1.68594 0.148439
\(130\) 0 0
\(131\) 1.26001 0.110087 0.0550437 0.998484i \(-0.482470\pi\)
0.0550437 + 0.998484i \(0.482470\pi\)
\(132\) 0 0
\(133\) −3.18458 −0.276138
\(134\) 0 0
\(135\) − 2.16158i − 0.186039i
\(136\) 0 0
\(137\) − 8.32302i − 0.711083i −0.934660 0.355542i \(-0.884296\pi\)
0.934660 0.355542i \(-0.115704\pi\)
\(138\) 0 0
\(139\) −5.78876 −0.490997 −0.245498 0.969397i \(-0.578952\pi\)
−0.245498 + 0.969397i \(0.578952\pi\)
\(140\) 0 0
\(141\) − 0.710882i − 0.0598671i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) − 9.78464i − 0.812570i
\(146\) 0 0
\(147\) 0.268953 0.0221829
\(148\) 0 0
\(149\) 14.2039i 1.16362i 0.813323 + 0.581812i \(0.197656\pi\)
−0.813323 + 0.581812i \(0.802344\pi\)
\(150\) 0 0
\(151\) 11.1509i 0.907451i 0.891142 + 0.453725i \(0.149905\pi\)
−0.891142 + 0.453725i \(0.850095\pi\)
\(152\) 0 0
\(153\) −17.0351 −1.37721
\(154\) 0 0
\(155\) 10.9066 0.876036
\(156\) 0 0
\(157\) 4.04749 0.323025 0.161513 0.986871i \(-0.448363\pi\)
0.161513 + 0.986871i \(0.448363\pi\)
\(158\) 0 0
\(159\) 2.98233 0.236514
\(160\) 0 0
\(161\) − 7.55347i − 0.595297i
\(162\) 0 0
\(163\) − 5.27322i − 0.413031i −0.978443 0.206515i \(-0.933788\pi\)
0.978443 0.206515i \(-0.0662124\pi\)
\(164\) 0 0
\(165\) 1.02221 0.0795789
\(166\) 0 0
\(167\) 5.34981i 0.413981i 0.978343 + 0.206990i \(0.0663669\pi\)
−0.978343 + 0.206990i \(0.933633\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) − 9.32339i − 0.712978i
\(172\) 0 0
\(173\) 9.74309 0.740754 0.370377 0.928882i \(-0.379229\pi\)
0.370377 + 0.928882i \(0.379229\pi\)
\(174\) 0 0
\(175\) 3.16167i 0.239000i
\(176\) 0 0
\(177\) 1.69321i 0.127270i
\(178\) 0 0
\(179\) −11.4053 −0.852469 −0.426234 0.904613i \(-0.640160\pi\)
−0.426234 + 0.904613i \(0.640160\pi\)
\(180\) 0 0
\(181\) 25.4727 1.89337 0.946685 0.322160i \(-0.104409\pi\)
0.946685 + 0.322160i \(0.104409\pi\)
\(182\) 0 0
\(183\) −3.44477 −0.254645
\(184\) 0 0
\(185\) 9.43325 0.693546
\(186\) 0 0
\(187\) − 16.3108i − 1.19277i
\(188\) 0 0
\(189\) 1.59426i 0.115966i
\(190\) 0 0
\(191\) 16.3781 1.18508 0.592539 0.805542i \(-0.298126\pi\)
0.592539 + 0.805542i \(0.298126\pi\)
\(192\) 0 0
\(193\) − 9.56245i − 0.688320i −0.938911 0.344160i \(-0.888164\pi\)
0.938911 0.344160i \(-0.111836\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 3.01049i − 0.214489i −0.994233 0.107244i \(-0.965797\pi\)
0.994233 0.107244i \(-0.0342027\pi\)
\(198\) 0 0
\(199\) 4.61969 0.327481 0.163741 0.986503i \(-0.447644\pi\)
0.163741 + 0.986503i \(0.447644\pi\)
\(200\) 0 0
\(201\) 1.33480i 0.0941493i
\(202\) 0 0
\(203\) 7.21661i 0.506507i
\(204\) 0 0
\(205\) −6.85991 −0.479117
\(206\) 0 0
\(207\) 22.1140 1.53703
\(208\) 0 0
\(209\) 8.92697 0.617492
\(210\) 0 0
\(211\) 2.33865 0.160999 0.0804995 0.996755i \(-0.474348\pi\)
0.0804995 + 0.996755i \(0.474348\pi\)
\(212\) 0 0
\(213\) 4.44080i 0.304279i
\(214\) 0 0
\(215\) 8.49921i 0.579641i
\(216\) 0 0
\(217\) −8.04407 −0.546067
\(218\) 0 0
\(219\) − 4.15132i − 0.280520i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 4.86625i 0.325868i 0.986637 + 0.162934i \(0.0520958\pi\)
−0.986637 + 0.162934i \(0.947904\pi\)
\(224\) 0 0
\(225\) −9.25631 −0.617087
\(226\) 0 0
\(227\) − 28.0796i − 1.86371i −0.362832 0.931855i \(-0.618190\pi\)
0.362832 0.931855i \(-0.381810\pi\)
\(228\) 0 0
\(229\) − 0.179280i − 0.0118471i −0.999982 0.00592357i \(-0.998114\pi\)
0.999982 0.00592357i \(-0.00188554\pi\)
\(230\) 0 0
\(231\) −0.753925 −0.0496046
\(232\) 0 0
\(233\) 15.1384 0.991747 0.495873 0.868395i \(-0.334848\pi\)
0.495873 + 0.868395i \(0.334848\pi\)
\(234\) 0 0
\(235\) 3.58371 0.233775
\(236\) 0 0
\(237\) −3.97138 −0.257969
\(238\) 0 0
\(239\) − 12.8703i − 0.832512i −0.909247 0.416256i \(-0.863342\pi\)
0.909247 0.416256i \(-0.136658\pi\)
\(240\) 0 0
\(241\) 9.83172i 0.633317i 0.948540 + 0.316659i \(0.102561\pi\)
−0.948540 + 0.316659i \(0.897439\pi\)
\(242\) 0 0
\(243\) −7.02968 −0.450954
\(244\) 0 0
\(245\) 1.35585i 0.0866221i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 2.63388i 0.166916i
\(250\) 0 0
\(251\) 17.3220 1.09335 0.546677 0.837344i \(-0.315893\pi\)
0.546677 + 0.837344i \(0.315893\pi\)
\(252\) 0 0
\(253\) 21.1738i 1.33118i
\(254\) 0 0
\(255\) 2.12184i 0.132875i
\(256\) 0 0
\(257\) 10.7060 0.667824 0.333912 0.942604i \(-0.391631\pi\)
0.333912 + 0.942604i \(0.391631\pi\)
\(258\) 0 0
\(259\) −6.95744 −0.432314
\(260\) 0 0
\(261\) −21.1278 −1.30778
\(262\) 0 0
\(263\) −14.0697 −0.867574 −0.433787 0.901015i \(-0.642823\pi\)
−0.433787 + 0.901015i \(0.642823\pi\)
\(264\) 0 0
\(265\) 15.0346i 0.923567i
\(266\) 0 0
\(267\) − 2.25065i − 0.137738i
\(268\) 0 0
\(269\) −0.544023 −0.0331697 −0.0165848 0.999862i \(-0.505279\pi\)
−0.0165848 + 0.999862i \(0.505279\pi\)
\(270\) 0 0
\(271\) 0.741214i 0.0450256i 0.999747 + 0.0225128i \(0.00716665\pi\)
−0.999747 + 0.0225128i \(0.992833\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 8.86274i − 0.534443i
\(276\) 0 0
\(277\) 14.1335 0.849200 0.424600 0.905381i \(-0.360415\pi\)
0.424600 + 0.905381i \(0.360415\pi\)
\(278\) 0 0
\(279\) − 23.5503i − 1.40992i
\(280\) 0 0
\(281\) 25.8051i 1.53940i 0.638404 + 0.769702i \(0.279595\pi\)
−0.638404 + 0.769702i \(0.720405\pi\)
\(282\) 0 0
\(283\) −27.2817 −1.62173 −0.810865 0.585233i \(-0.801003\pi\)
−0.810865 + 0.585233i \(0.801003\pi\)
\(284\) 0 0
\(285\) −1.16129 −0.0687889
\(286\) 0 0
\(287\) 5.05949 0.298652
\(288\) 0 0
\(289\) 16.8570 0.991589
\(290\) 0 0
\(291\) 3.28214i 0.192403i
\(292\) 0 0
\(293\) − 1.73217i − 0.101194i −0.998719 0.0505971i \(-0.983888\pi\)
0.998719 0.0505971i \(-0.0161124\pi\)
\(294\) 0 0
\(295\) −8.53586 −0.496977
\(296\) 0 0
\(297\) − 4.46901i − 0.259318i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) − 6.26854i − 0.361313i
\(302\) 0 0
\(303\) −0.651633 −0.0374354
\(304\) 0 0
\(305\) − 17.3658i − 0.994365i
\(306\) 0 0
\(307\) 21.4365i 1.22345i 0.791072 + 0.611723i \(0.209523\pi\)
−0.791072 + 0.611723i \(0.790477\pi\)
\(308\) 0 0
\(309\) −3.89738 −0.221714
\(310\) 0 0
\(311\) −27.2724 −1.54647 −0.773237 0.634117i \(-0.781364\pi\)
−0.773237 + 0.634117i \(0.781364\pi\)
\(312\) 0 0
\(313\) 7.28221 0.411615 0.205807 0.978593i \(-0.434018\pi\)
0.205807 + 0.978593i \(0.434018\pi\)
\(314\) 0 0
\(315\) −3.96948 −0.223655
\(316\) 0 0
\(317\) − 2.54836i − 0.143130i −0.997436 0.0715651i \(-0.977201\pi\)
0.997436 0.0715651i \(-0.0227994\pi\)
\(318\) 0 0
\(319\) − 20.2295i − 1.13263i
\(320\) 0 0
\(321\) −1.74481 −0.0973856
\(322\) 0 0
\(323\) 18.5301i 1.03104i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0.789766i 0.0436741i
\(328\) 0 0
\(329\) −2.64315 −0.145721
\(330\) 0 0
\(331\) 0.195664i 0.0107547i 0.999986 + 0.00537733i \(0.00171167\pi\)
−0.999986 + 0.00537733i \(0.998288\pi\)
\(332\) 0 0
\(333\) − 20.3691i − 1.11622i
\(334\) 0 0
\(335\) −6.72900 −0.367645
\(336\) 0 0
\(337\) 2.00900 0.109437 0.0547185 0.998502i \(-0.482574\pi\)
0.0547185 + 0.998502i \(0.482574\pi\)
\(338\) 0 0
\(339\) 0.897813 0.0487625
\(340\) 0 0
\(341\) 22.5490 1.22110
\(342\) 0 0
\(343\) − 1.00000i − 0.0539949i
\(344\) 0 0
\(345\) − 2.75445i − 0.148295i
\(346\) 0 0
\(347\) 4.54901 0.244204 0.122102 0.992518i \(-0.461037\pi\)
0.122102 + 0.992518i \(0.461037\pi\)
\(348\) 0 0
\(349\) − 5.37745i − 0.287848i −0.989589 0.143924i \(-0.954028\pi\)
0.989589 0.143924i \(-0.0459721\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 8.20095i − 0.436492i −0.975894 0.218246i \(-0.929966\pi\)
0.975894 0.218246i \(-0.0700336\pi\)
\(354\) 0 0
\(355\) −22.3870 −1.18818
\(356\) 0 0
\(357\) − 1.56495i − 0.0828260i
\(358\) 0 0
\(359\) 31.7664i 1.67657i 0.545233 + 0.838284i \(0.316441\pi\)
−0.545233 + 0.838284i \(0.683559\pi\)
\(360\) 0 0
\(361\) 8.85843 0.466233
\(362\) 0 0
\(363\) −0.845093 −0.0443559
\(364\) 0 0
\(365\) 20.9277 1.09541
\(366\) 0 0
\(367\) 17.3374 0.905005 0.452502 0.891763i \(-0.350531\pi\)
0.452502 + 0.891763i \(0.350531\pi\)
\(368\) 0 0
\(369\) 14.8125i 0.771107i
\(370\) 0 0
\(371\) − 11.0887i − 0.575695i
\(372\) 0 0
\(373\) 16.0963 0.833434 0.416717 0.909036i \(-0.363181\pi\)
0.416717 + 0.909036i \(0.363181\pi\)
\(374\) 0 0
\(375\) 2.97623i 0.153692i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 17.6562i 0.906939i 0.891272 + 0.453470i \(0.149814\pi\)
−0.891272 + 0.453470i \(0.850186\pi\)
\(380\) 0 0
\(381\) −3.37542 −0.172928
\(382\) 0 0
\(383\) 8.22450i 0.420252i 0.977674 + 0.210126i \(0.0673874\pi\)
−0.977674 + 0.210126i \(0.932613\pi\)
\(384\) 0 0
\(385\) − 3.80070i − 0.193702i
\(386\) 0 0
\(387\) 18.3522 0.932894
\(388\) 0 0
\(389\) 15.1688 0.769090 0.384545 0.923106i \(-0.374358\pi\)
0.384545 + 0.923106i \(0.374358\pi\)
\(390\) 0 0
\(391\) −43.9512 −2.22271
\(392\) 0 0
\(393\) −0.338883 −0.0170944
\(394\) 0 0
\(395\) − 20.0206i − 1.00734i
\(396\) 0 0
\(397\) − 28.3063i − 1.42065i −0.703874 0.710325i \(-0.748548\pi\)
0.703874 0.710325i \(-0.251452\pi\)
\(398\) 0 0
\(399\) 0.856503 0.0428788
\(400\) 0 0
\(401\) − 17.1192i − 0.854894i −0.904040 0.427447i \(-0.859413\pi\)
0.904040 0.427447i \(-0.140587\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) − 11.3271i − 0.562846i
\(406\) 0 0
\(407\) 19.5030 0.966727
\(408\) 0 0
\(409\) 11.3400i 0.560726i 0.959894 + 0.280363i \(0.0904549\pi\)
−0.959894 + 0.280363i \(0.909545\pi\)
\(410\) 0 0
\(411\) 2.23850i 0.110417i
\(412\) 0 0
\(413\) 6.29558 0.309785
\(414\) 0 0
\(415\) −13.2780 −0.651790
\(416\) 0 0
\(417\) 1.55691 0.0762420
\(418\) 0 0
\(419\) 0.138855 0.00678352 0.00339176 0.999994i \(-0.498920\pi\)
0.00339176 + 0.999994i \(0.498920\pi\)
\(420\) 0 0
\(421\) − 24.3258i − 1.18557i −0.805362 0.592783i \(-0.798029\pi\)
0.805362 0.592783i \(-0.201971\pi\)
\(422\) 0 0
\(423\) − 7.73824i − 0.376246i
\(424\) 0 0
\(425\) 18.3967 0.892373
\(426\) 0 0
\(427\) 12.8081i 0.619826i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 28.7924i − 1.38688i −0.720514 0.693440i \(-0.756094\pi\)
0.720514 0.693440i \(-0.243906\pi\)
\(432\) 0 0
\(433\) 25.2733 1.21456 0.607279 0.794489i \(-0.292261\pi\)
0.607279 + 0.794489i \(0.292261\pi\)
\(434\) 0 0
\(435\) 2.63161i 0.126176i
\(436\) 0 0
\(437\) − 24.0547i − 1.15069i
\(438\) 0 0
\(439\) −6.03023 −0.287807 −0.143904 0.989592i \(-0.545966\pi\)
−0.143904 + 0.989592i \(0.545966\pi\)
\(440\) 0 0
\(441\) 2.92766 0.139413
\(442\) 0 0
\(443\) 23.4988 1.11646 0.558230 0.829686i \(-0.311481\pi\)
0.558230 + 0.829686i \(0.311481\pi\)
\(444\) 0 0
\(445\) 11.3460 0.537853
\(446\) 0 0
\(447\) − 3.82017i − 0.180688i
\(448\) 0 0
\(449\) 23.3876i 1.10373i 0.833933 + 0.551865i \(0.186084\pi\)
−0.833933 + 0.551865i \(0.813916\pi\)
\(450\) 0 0
\(451\) −14.1827 −0.667836
\(452\) 0 0
\(453\) − 2.99908i − 0.140909i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 26.1674i 1.22406i 0.790835 + 0.612030i \(0.209647\pi\)
−0.790835 + 0.612030i \(0.790353\pi\)
\(458\) 0 0
\(459\) 9.27650 0.432990
\(460\) 0 0
\(461\) − 25.2330i − 1.17522i −0.809145 0.587609i \(-0.800069\pi\)
0.809145 0.587609i \(-0.199931\pi\)
\(462\) 0 0
\(463\) − 18.1600i − 0.843968i −0.906603 0.421984i \(-0.861334\pi\)
0.906603 0.421984i \(-0.138666\pi\)
\(464\) 0 0
\(465\) −2.93335 −0.136031
\(466\) 0 0
\(467\) −12.6328 −0.584577 −0.292289 0.956330i \(-0.594417\pi\)
−0.292289 + 0.956330i \(0.594417\pi\)
\(468\) 0 0
\(469\) 4.96294 0.229167
\(470\) 0 0
\(471\) −1.08859 −0.0501594
\(472\) 0 0
\(473\) 17.5719i 0.807956i
\(474\) 0 0
\(475\) 10.0686i 0.461979i
\(476\) 0 0
\(477\) 32.4639 1.48642
\(478\) 0 0
\(479\) − 12.3074i − 0.562338i −0.959658 0.281169i \(-0.909278\pi\)
0.959658 0.281169i \(-0.0907221\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 2.03153i 0.0924378i
\(484\) 0 0
\(485\) −16.5460 −0.751315
\(486\) 0 0
\(487\) 15.6339i 0.708438i 0.935163 + 0.354219i \(0.115253\pi\)
−0.935163 + 0.354219i \(0.884747\pi\)
\(488\) 0 0
\(489\) 1.41825i 0.0641355i
\(490\) 0 0
\(491\) −10.2109 −0.460809 −0.230405 0.973095i \(-0.574005\pi\)
−0.230405 + 0.973095i \(0.574005\pi\)
\(492\) 0 0
\(493\) 41.9911 1.89119
\(494\) 0 0
\(495\) 11.1272 0.500129
\(496\) 0 0
\(497\) 16.5114 0.740639
\(498\) 0 0
\(499\) − 0.681003i − 0.0304859i −0.999884 0.0152430i \(-0.995148\pi\)
0.999884 0.0152430i \(-0.00485217\pi\)
\(500\) 0 0
\(501\) − 1.43885i − 0.0642830i
\(502\) 0 0
\(503\) −35.3403 −1.57575 −0.787873 0.615838i \(-0.788817\pi\)
−0.787873 + 0.615838i \(0.788817\pi\)
\(504\) 0 0
\(505\) − 3.28503i − 0.146182i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 16.8260i − 0.745800i −0.927872 0.372900i \(-0.878364\pi\)
0.927872 0.372900i \(-0.121636\pi\)
\(510\) 0 0
\(511\) −15.4351 −0.682809
\(512\) 0 0
\(513\) 5.07706i 0.224158i
\(514\) 0 0
\(515\) − 19.6475i − 0.865774i
\(516\) 0 0
\(517\) 7.40922 0.325857
\(518\) 0 0
\(519\) −2.62043 −0.115024
\(520\) 0 0
\(521\) 4.76619 0.208811 0.104405 0.994535i \(-0.466706\pi\)
0.104405 + 0.994535i \(0.466706\pi\)
\(522\) 0 0
\(523\) −0.638159 −0.0279048 −0.0139524 0.999903i \(-0.504441\pi\)
−0.0139524 + 0.999903i \(0.504441\pi\)
\(524\) 0 0
\(525\) − 0.850340i − 0.0371119i
\(526\) 0 0
\(527\) 46.8058i 2.03889i
\(528\) 0 0
\(529\) 34.0549 1.48065
\(530\) 0 0
\(531\) 18.4313i 0.799852i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) − 8.79595i − 0.380282i
\(536\) 0 0
\(537\) 3.06748 0.132371
\(538\) 0 0
\(539\) 2.80318i 0.120742i
\(540\) 0 0
\(541\) 22.2050i 0.954668i 0.878722 + 0.477334i \(0.158397\pi\)
−0.878722 + 0.477334i \(0.841603\pi\)
\(542\) 0 0
\(543\) −6.85096 −0.294003
\(544\) 0 0
\(545\) −3.98138 −0.170544
\(546\) 0 0
\(547\) 16.2608 0.695263 0.347631 0.937631i \(-0.386986\pi\)
0.347631 + 0.937631i \(0.386986\pi\)
\(548\) 0 0
\(549\) −37.4977 −1.60036
\(550\) 0 0
\(551\) 22.9819i 0.979062i
\(552\) 0 0
\(553\) 14.7661i 0.627917i
\(554\) 0 0
\(555\) −2.53710 −0.107694
\(556\) 0 0
\(557\) 21.4676i 0.909612i 0.890591 + 0.454806i \(0.150291\pi\)
−0.890591 + 0.454806i \(0.849709\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 4.38685i 0.185213i
\(562\) 0 0
\(563\) 11.1821 0.471268 0.235634 0.971842i \(-0.424283\pi\)
0.235634 + 0.971842i \(0.424283\pi\)
\(564\) 0 0
\(565\) 4.52607i 0.190413i
\(566\) 0 0
\(567\) 8.35421i 0.350844i
\(568\) 0 0
\(569\) 13.1633 0.551835 0.275917 0.961181i \(-0.411018\pi\)
0.275917 + 0.961181i \(0.411018\pi\)
\(570\) 0 0
\(571\) −17.4199 −0.729001 −0.364501 0.931203i \(-0.618760\pi\)
−0.364501 + 0.931203i \(0.618760\pi\)
\(572\) 0 0
\(573\) −4.40494 −0.184019
\(574\) 0 0
\(575\) −23.8816 −0.995931
\(576\) 0 0
\(577\) − 8.47023i − 0.352620i −0.984335 0.176310i \(-0.943584\pi\)
0.984335 0.176310i \(-0.0564161\pi\)
\(578\) 0 0
\(579\) 2.57185i 0.106882i
\(580\) 0 0
\(581\) 9.79310 0.406286
\(582\) 0 0
\(583\) 31.0836i 1.28735i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 21.0685i − 0.869590i −0.900529 0.434795i \(-0.856821\pi\)
0.900529 0.434795i \(-0.143179\pi\)
\(588\) 0 0
\(589\) −25.6170 −1.05553
\(590\) 0 0
\(591\) 0.809681i 0.0333058i
\(592\) 0 0
\(593\) 13.2761i 0.545185i 0.962130 + 0.272593i \(0.0878811\pi\)
−0.962130 + 0.272593i \(0.912119\pi\)
\(594\) 0 0
\(595\) 7.88926 0.323428
\(596\) 0 0
\(597\) −1.24248 −0.0508513
\(598\) 0 0
\(599\) 5.39084 0.220264 0.110132 0.993917i \(-0.464873\pi\)
0.110132 + 0.993917i \(0.464873\pi\)
\(600\) 0 0
\(601\) −24.4408 −0.996959 −0.498480 0.866901i \(-0.666108\pi\)
−0.498480 + 0.866901i \(0.666108\pi\)
\(602\) 0 0
\(603\) 14.5298i 0.591700i
\(604\) 0 0
\(605\) − 4.26030i − 0.173206i
\(606\) 0 0
\(607\) −25.8582 −1.04955 −0.524776 0.851240i \(-0.675851\pi\)
−0.524776 + 0.851240i \(0.675851\pi\)
\(608\) 0 0
\(609\) − 1.94093i − 0.0786504i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) − 14.1688i − 0.572273i −0.958189 0.286136i \(-0.907629\pi\)
0.958189 0.286136i \(-0.0923711\pi\)
\(614\) 0 0
\(615\) 1.84499 0.0743973
\(616\) 0 0
\(617\) 46.0452i 1.85371i 0.375419 + 0.926855i \(0.377499\pi\)
−0.375419 + 0.926855i \(0.622501\pi\)
\(618\) 0 0
\(619\) − 12.0284i − 0.483464i −0.970343 0.241732i \(-0.922285\pi\)
0.970343 0.241732i \(-0.0777155\pi\)
\(620\) 0 0
\(621\) −12.0422 −0.483238
\(622\) 0 0
\(623\) −8.36820 −0.335265
\(624\) 0 0
\(625\) 0.804500 0.0321800
\(626\) 0 0
\(627\) −2.40094 −0.0958841
\(628\) 0 0
\(629\) 40.4831i 1.61417i
\(630\) 0 0
\(631\) 24.3036i 0.967512i 0.875203 + 0.483756i \(0.160728\pi\)
−0.875203 + 0.483756i \(0.839272\pi\)
\(632\) 0 0
\(633\) −0.628986 −0.0249999
\(634\) 0 0
\(635\) − 17.0162i − 0.675269i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 48.3399i 1.91230i
\(640\) 0 0
\(641\) 17.7655 0.701696 0.350848 0.936432i \(-0.385893\pi\)
0.350848 + 0.936432i \(0.385893\pi\)
\(642\) 0 0
\(643\) − 43.1560i − 1.70191i −0.525242 0.850953i \(-0.676025\pi\)
0.525242 0.850953i \(-0.323975\pi\)
\(644\) 0 0
\(645\) − 2.28589i − 0.0900067i
\(646\) 0 0
\(647\) 10.7995 0.424571 0.212286 0.977208i \(-0.431909\pi\)
0.212286 + 0.977208i \(0.431909\pi\)
\(648\) 0 0
\(649\) −17.6477 −0.692731
\(650\) 0 0
\(651\) 2.16348 0.0847933
\(652\) 0 0
\(653\) −3.06560 −0.119966 −0.0599831 0.998199i \(-0.519105\pi\)
−0.0599831 + 0.998199i \(0.519105\pi\)
\(654\) 0 0
\(655\) − 1.70838i − 0.0667520i
\(656\) 0 0
\(657\) − 45.1888i − 1.76298i
\(658\) 0 0
\(659\) −3.64872 −0.142134 −0.0710670 0.997472i \(-0.522640\pi\)
−0.0710670 + 0.997472i \(0.522640\pi\)
\(660\) 0 0
\(661\) 27.2252i 1.05894i 0.848329 + 0.529469i \(0.177609\pi\)
−0.848329 + 0.529469i \(0.822391\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 4.31782i 0.167438i
\(666\) 0 0
\(667\) −54.5105 −2.11065
\(668\) 0 0
\(669\) − 1.30879i − 0.0506008i
\(670\) 0 0
\(671\) − 35.9034i − 1.38604i
\(672\) 0 0
\(673\) −28.2970 −1.09077 −0.545384 0.838186i \(-0.683616\pi\)
−0.545384 + 0.838186i \(0.683616\pi\)
\(674\) 0 0
\(675\) 5.04053 0.194010
\(676\) 0 0
\(677\) −28.8361 −1.10826 −0.554131 0.832429i \(-0.686949\pi\)
−0.554131 + 0.832429i \(0.686949\pi\)
\(678\) 0 0
\(679\) 12.2034 0.468324
\(680\) 0 0
\(681\) 7.55209i 0.289397i
\(682\) 0 0
\(683\) 40.9045i 1.56517i 0.622546 + 0.782583i \(0.286098\pi\)
−0.622546 + 0.782583i \(0.713902\pi\)
\(684\) 0 0
\(685\) −11.2848 −0.431169
\(686\) 0 0
\(687\) 0.0482178i 0.00183963i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 42.2544i 1.60743i 0.595011 + 0.803717i \(0.297148\pi\)
−0.595011 + 0.803717i \(0.702852\pi\)
\(692\) 0 0
\(693\) −8.20678 −0.311750
\(694\) 0 0
\(695\) 7.84870i 0.297718i
\(696\) 0 0
\(697\) − 29.4395i − 1.11510i
\(698\) 0 0
\(699\) −4.07151 −0.153998
\(700\) 0 0
\(701\) −30.3734 −1.14719 −0.573594 0.819140i \(-0.694451\pi\)
−0.573594 + 0.819140i \(0.694451\pi\)
\(702\) 0 0
\(703\) −22.1566 −0.835650
\(704\) 0 0
\(705\) −0.963850 −0.0363007
\(706\) 0 0
\(707\) 2.42285i 0.0911208i
\(708\) 0 0
\(709\) − 23.4297i − 0.879920i −0.898017 0.439960i \(-0.854993\pi\)
0.898017 0.439960i \(-0.145007\pi\)
\(710\) 0 0
\(711\) −43.2301 −1.62125
\(712\) 0 0
\(713\) − 60.7606i − 2.27550i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 3.46151i 0.129273i
\(718\) 0 0
\(719\) 7.02982 0.262168 0.131084 0.991371i \(-0.458154\pi\)
0.131084 + 0.991371i \(0.458154\pi\)
\(720\) 0 0
\(721\) 14.4909i 0.539671i
\(722\) 0 0
\(723\) − 2.64427i − 0.0983415i
\(724\) 0 0
\(725\) 22.8165 0.847385
\(726\) 0 0
\(727\) −20.6810 −0.767015 −0.383507 0.923538i \(-0.625284\pi\)
−0.383507 + 0.923538i \(0.625284\pi\)
\(728\) 0 0
\(729\) −23.1720 −0.858222
\(730\) 0 0
\(731\) −36.4746 −1.34906
\(732\) 0 0
\(733\) − 39.0035i − 1.44063i −0.693648 0.720314i \(-0.743998\pi\)
0.693648 0.720314i \(-0.256002\pi\)
\(734\) 0 0
\(735\) − 0.364660i − 0.0134507i
\(736\) 0 0
\(737\) −13.9120 −0.512456
\(738\) 0 0
\(739\) − 28.7416i − 1.05728i −0.848847 0.528639i \(-0.822703\pi\)
0.848847 0.528639i \(-0.177297\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 6.32843i 0.232168i 0.993239 + 0.116084i \(0.0370341\pi\)
−0.993239 + 0.116084i \(0.962966\pi\)
\(744\) 0 0
\(745\) 19.2583 0.705569
\(746\) 0 0
\(747\) 28.6709i 1.04901i
\(748\) 0 0
\(749\) 6.48741i 0.237045i
\(750\) 0 0
\(751\) 31.4405 1.14728 0.573641 0.819107i \(-0.305531\pi\)
0.573641 + 0.819107i \(0.305531\pi\)
\(752\) 0 0
\(753\) −4.65880 −0.169776
\(754\) 0 0
\(755\) 15.1190 0.550237
\(756\) 0 0
\(757\) 25.4423 0.924716 0.462358 0.886693i \(-0.347003\pi\)
0.462358 + 0.886693i \(0.347003\pi\)
\(758\) 0 0
\(759\) − 5.69475i − 0.206706i
\(760\) 0 0
\(761\) − 20.6105i − 0.747130i −0.927604 0.373565i \(-0.878135\pi\)
0.927604 0.373565i \(-0.121865\pi\)
\(762\) 0 0
\(763\) 2.93644 0.106306
\(764\) 0 0
\(765\) 23.0971i 0.835077i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) − 9.18186i − 0.331106i −0.986201 0.165553i \(-0.947059\pi\)
0.986201 0.165553i \(-0.0529410\pi\)
\(770\) 0 0
\(771\) −2.87942 −0.103700
\(772\) 0 0
\(773\) − 8.49555i − 0.305564i −0.988260 0.152782i \(-0.951177\pi\)
0.988260 0.152782i \(-0.0488232\pi\)
\(774\) 0 0
\(775\) 25.4327i 0.913569i
\(776\) 0 0
\(777\) 1.87122 0.0671298
\(778\) 0 0
\(779\) 16.1124 0.577285
\(780\) 0 0
\(781\) −46.2846 −1.65619
\(782\) 0 0
\(783\) 11.5052 0.411161
\(784\) 0 0
\(785\) − 5.48780i − 0.195868i
\(786\) 0 0
\(787\) 1.96835i 0.0701640i 0.999384 + 0.0350820i \(0.0111692\pi\)
−0.999384 + 0.0350820i \(0.988831\pi\)
\(788\) 0 0
\(789\) 3.78408 0.134717
\(790\) 0 0
\(791\) − 3.33818i − 0.118692i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) − 4.04360i − 0.143412i
\(796\) 0 0
\(797\) 38.4898 1.36338 0.681690 0.731641i \(-0.261245\pi\)
0.681690 + 0.731641i \(0.261245\pi\)
\(798\) 0 0
\(799\) 15.3796i 0.544092i
\(800\) 0 0
\(801\) − 24.4993i − 0.865639i
\(802\) 0 0
\(803\) 43.2674 1.52687
\(804\) 0 0
\(805\) −10.2414 −0.360961
\(806\) 0 0
\(807\) 0.146317 0.00515059
\(808\) 0 0
\(809\) 1.79976 0.0632760 0.0316380 0.999499i \(-0.489928\pi\)
0.0316380 + 0.999499i \(0.489928\pi\)
\(810\) 0 0
\(811\) 49.9235i 1.75305i 0.481357 + 0.876525i \(0.340144\pi\)
−0.481357 + 0.876525i \(0.659856\pi\)
\(812\) 0 0
\(813\) − 0.199352i − 0.00699157i
\(814\) 0 0
\(815\) −7.14970 −0.250443
\(816\) 0 0
\(817\) − 19.9627i − 0.698406i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 4.21824i − 0.147217i −0.997287 0.0736087i \(-0.976548\pi\)
0.997287 0.0736087i \(-0.0234516\pi\)
\(822\) 0 0
\(823\) −14.4982 −0.505377 −0.252688 0.967548i \(-0.581315\pi\)
−0.252688 + 0.967548i \(0.581315\pi\)
\(824\) 0 0
\(825\) 2.38366i 0.0829884i
\(826\) 0 0
\(827\) 26.2618i 0.913213i 0.889669 + 0.456607i \(0.150935\pi\)
−0.889669 + 0.456607i \(0.849065\pi\)
\(828\) 0 0
\(829\) 55.1580 1.91572 0.957858 0.287242i \(-0.0927383\pi\)
0.957858 + 0.287242i \(0.0927383\pi\)
\(830\) 0 0
\(831\) −3.80125 −0.131864
\(832\) 0 0
\(833\) −5.81868 −0.201605
\(834\) 0 0
\(835\) 7.25355 0.251019
\(836\) 0 0
\(837\) 12.8244i 0.443275i
\(838\) 0 0
\(839\) − 7.02028i − 0.242367i −0.992630 0.121184i \(-0.961331\pi\)
0.992630 0.121184i \(-0.0386690\pi\)
\(840\) 0 0
\(841\) 23.0795 0.795843
\(842\) 0 0
\(843\) − 6.94036i − 0.239039i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 3.14216i 0.107966i
\(848\) 0 0
\(849\) 7.33750 0.251822
\(850\) 0 0
\(851\) − 52.5528i − 1.80149i
\(852\) 0 0
\(853\) − 57.6508i − 1.97393i −0.160945 0.986963i \(-0.551454\pi\)
0.160945 0.986963i \(-0.448546\pi\)
\(854\) 0 0
\(855\) −12.6411 −0.432317
\(856\) 0 0
\(857\) −2.50654 −0.0856217 −0.0428109 0.999083i \(-0.513631\pi\)
−0.0428109 + 0.999083i \(0.513631\pi\)
\(858\) 0 0
\(859\) 17.1305 0.584486 0.292243 0.956344i \(-0.405598\pi\)
0.292243 + 0.956344i \(0.405598\pi\)
\(860\) 0 0
\(861\) −1.36076 −0.0463747
\(862\) 0 0
\(863\) − 55.6429i − 1.89411i −0.321079 0.947053i \(-0.604045\pi\)
0.321079 0.947053i \(-0.395955\pi\)
\(864\) 0 0
\(865\) − 13.2102i − 0.449159i
\(866\) 0 0
\(867\) −4.53375 −0.153974
\(868\) 0 0
\(869\) − 41.3920i − 1.40413i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 35.7275i 1.20919i
\(874\) 0 0
\(875\) 11.0660 0.374099
\(876\) 0 0
\(877\) 40.1549i 1.35593i 0.735093 + 0.677967i \(0.237139\pi\)
−0.735093 + 0.677967i \(0.762861\pi\)
\(878\) 0 0
\(879\) 0.465871i 0.0157134i
\(880\) 0 0
\(881\) −50.7673 −1.71039 −0.855197 0.518303i \(-0.826564\pi\)
−0.855197 + 0.518303i \(0.826564\pi\)
\(882\) 0 0
\(883\) −46.3312 −1.55917 −0.779585 0.626297i \(-0.784570\pi\)
−0.779585 + 0.626297i \(0.784570\pi\)
\(884\) 0 0
\(885\) 2.29575 0.0771706
\(886\) 0 0
\(887\) −10.2550 −0.344331 −0.172165 0.985068i \(-0.555076\pi\)
−0.172165 + 0.985068i \(0.555076\pi\)
\(888\) 0 0
\(889\) 12.5502i 0.420921i
\(890\) 0 0
\(891\) − 23.4184i − 0.784546i
\(892\) 0 0
\(893\) −8.41732 −0.281675
\(894\) 0 0
\(895\) 15.4638i 0.516898i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 58.0509i 1.93611i
\(900\) 0 0
\(901\) −64.5214 −2.14952
\(902\) 0 0
\(903\) 1.68594i 0.0561047i
\(904\) 0 0
\(905\) − 34.5372i − 1.14805i
\(906\) 0 0
\(907\) −52.2945 −1.73641 −0.868205 0.496206i \(-0.834726\pi\)
−0.868205 + 0.496206i \(0.834726\pi\)
\(908\) 0 0
\(909\) −7.09330 −0.235270
\(910\) 0 0
\(911\) 50.9172 1.68696 0.843481 0.537159i \(-0.180502\pi\)
0.843481 + 0.537159i \(0.180502\pi\)
\(912\) 0 0
\(913\) −27.4519 −0.908524
\(914\) 0 0
\(915\) 4.67059i 0.154405i
\(916\) 0 0
\(917\) 1.26001i 0.0416091i
\(918\) 0 0
\(919\) 22.8646 0.754234 0.377117 0.926166i \(-0.376915\pi\)
0.377117 + 0.926166i \(0.376915\pi\)
\(920\) 0 0
\(921\) − 5.76541i − 0.189977i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 21.9971i 0.723261i
\(926\) 0 0
\(927\) −42.4246 −1.39341
\(928\) 0 0
\(929\) 33.2658i 1.09142i 0.837976 + 0.545708i \(0.183739\pi\)
−0.837976 + 0.545708i \(0.816261\pi\)
\(930\) 0 0
\(931\) − 3.18458i − 0.104371i
\(932\) 0 0
\(933\) 7.33498 0.240137
\(934\) 0 0
\(935\) −22.1150 −0.723239
\(936\) 0 0
\(937\) −51.2179 −1.67322 −0.836608 0.547802i \(-0.815465\pi\)
−0.836608 + 0.547802i \(0.815465\pi\)
\(938\) 0 0
\(939\) −1.95857 −0.0639156
\(940\) 0 0
\(941\) 10.2918i 0.335502i 0.985829 + 0.167751i \(0.0536504\pi\)
−0.985829 + 0.167751i \(0.946350\pi\)
\(942\) 0 0
\(943\) 38.2167i 1.24451i
\(944\) 0 0
\(945\) 2.16158 0.0703163
\(946\) 0 0
\(947\) − 35.4887i − 1.15323i −0.817017 0.576614i \(-0.804374\pi\)
0.817017 0.576614i \(-0.195626\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0.685389i 0.0222253i
\(952\) 0 0
\(953\) −33.3352 −1.07983 −0.539916 0.841719i \(-0.681544\pi\)
−0.539916 + 0.841719i \(0.681544\pi\)
\(954\) 0 0
\(955\) − 22.2062i − 0.718577i
\(956\) 0 0
\(957\) 5.44078i 0.175875i
\(958\) 0 0
\(959\) 8.32302 0.268764
\(960\) 0 0
\(961\) −33.7070 −1.08732
\(962\) 0 0
\(963\) −18.9929 −0.612039
\(964\) 0 0
\(965\) −12.9653 −0.417366
\(966\) 0 0
\(967\) 29.7131i 0.955509i 0.878494 + 0.477754i \(0.158549\pi\)
−0.878494 + 0.477754i \(0.841451\pi\)
\(968\) 0 0
\(969\) − 4.98372i − 0.160100i
\(970\) 0 0
\(971\) −8.83702 −0.283593 −0.141797 0.989896i \(-0.545288\pi\)
−0.141797 + 0.989896i \(0.545288\pi\)
\(972\) 0 0
\(973\) − 5.78876i − 0.185579i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 14.8307i 0.474475i 0.971452 + 0.237237i \(0.0762419\pi\)
−0.971452 + 0.237237i \(0.923758\pi\)
\(978\) 0 0
\(979\) 23.4576 0.749708
\(980\) 0 0
\(981\) 8.59692i 0.274479i
\(982\) 0 0
\(983\) 20.3390i 0.648714i 0.945935 + 0.324357i \(0.105148\pi\)
−0.945935 + 0.324357i \(0.894852\pi\)
\(984\) 0 0
\(985\) −4.08178 −0.130056
\(986\) 0 0
\(987\) 0.710882 0.0226276
\(988\) 0 0
\(989\) 47.3493 1.50562
\(990\) 0 0
\(991\) −50.8906 −1.61659 −0.808297 0.588775i \(-0.799611\pi\)
−0.808297 + 0.588775i \(0.799611\pi\)
\(992\) 0 0
\(993\) − 0.0526244i − 0.00166999i
\(994\) 0 0
\(995\) − 6.26361i − 0.198570i
\(996\) 0 0
\(997\) −7.39394 −0.234168 −0.117084 0.993122i \(-0.537355\pi\)
−0.117084 + 0.993122i \(0.537355\pi\)
\(998\) 0 0
\(999\) 11.0920i 0.350935i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4732.2.g.k.337.7 16
13.3 even 3 364.2.u.a.225.5 16
13.4 even 6 364.2.u.a.309.5 yes 16
13.5 odd 4 4732.2.a.s.1.4 8
13.8 odd 4 4732.2.a.t.1.4 8
13.12 even 2 inner 4732.2.g.k.337.8 16
39.17 odd 6 3276.2.cf.c.1765.4 16
39.29 odd 6 3276.2.cf.c.2773.5 16
52.3 odd 6 1456.2.cc.f.225.4 16
52.43 odd 6 1456.2.cc.f.673.4 16
91.3 odd 6 2548.2.bq.c.1941.5 16
91.4 even 6 2548.2.bb.d.569.5 16
91.16 even 3 2548.2.bb.d.1733.5 16
91.17 odd 6 2548.2.bb.c.569.4 16
91.30 even 6 2548.2.bq.e.361.4 16
91.55 odd 6 2548.2.u.c.589.4 16
91.68 odd 6 2548.2.bb.c.1733.4 16
91.69 odd 6 2548.2.u.c.1765.4 16
91.81 even 3 2548.2.bq.e.1941.4 16
91.82 odd 6 2548.2.bq.c.361.5 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
364.2.u.a.225.5 16 13.3 even 3
364.2.u.a.309.5 yes 16 13.4 even 6
1456.2.cc.f.225.4 16 52.3 odd 6
1456.2.cc.f.673.4 16 52.43 odd 6
2548.2.u.c.589.4 16 91.55 odd 6
2548.2.u.c.1765.4 16 91.69 odd 6
2548.2.bb.c.569.4 16 91.17 odd 6
2548.2.bb.c.1733.4 16 91.68 odd 6
2548.2.bb.d.569.5 16 91.4 even 6
2548.2.bb.d.1733.5 16 91.16 even 3
2548.2.bq.c.361.5 16 91.82 odd 6
2548.2.bq.c.1941.5 16 91.3 odd 6
2548.2.bq.e.361.4 16 91.30 even 6
2548.2.bq.e.1941.4 16 91.81 even 3
3276.2.cf.c.1765.4 16 39.17 odd 6
3276.2.cf.c.2773.5 16 39.29 odd 6
4732.2.a.s.1.4 8 13.5 odd 4
4732.2.a.t.1.4 8 13.8 odd 4
4732.2.g.k.337.7 16 1.1 even 1 trivial
4732.2.g.k.337.8 16 13.12 even 2 inner