Properties

Label 3276.2.cf.b.1765.5
Level $3276$
Weight $2$
Character 3276.1765
Analytic conductor $26.159$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3276,2,Mod(1765,3276)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3276.1765"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3276, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3276 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3276.cf (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,0,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.1589917022\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 37 x^{10} - 130 x^{9} + 414 x^{8} - 942 x^{7} + 1855 x^{6} - 2748 x^{5} + 3355 x^{4} + \cdots + 229 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1092)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1765.5
Root \(0.500000 - 0.610858i\) of defining polynomial
Character \(\chi\) \(=\) 3276.1765
Dual form 3276.2.cf.b.2773.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.47688i q^{5} +(0.866025 + 0.500000i) q^{7} +(4.71635 - 2.72299i) q^{11} +(0.0198889 + 3.60550i) q^{13} +(3.43453 - 5.94878i) q^{17} +(-5.79187 - 3.34394i) q^{19} +(-3.76241 - 6.51668i) q^{23} -1.13495 q^{25} +(-2.28310 - 3.95444i) q^{29} -7.78715i q^{31} +(-1.23844 + 2.14504i) q^{35} +(8.54751 - 4.93491i) q^{37} +(10.5809 - 6.10890i) q^{41} +(-0.781824 + 1.35416i) q^{43} +0.470035i q^{47} +(0.500000 + 0.866025i) q^{49} -1.91885 q^{53} +(6.74453 + 11.6819i) q^{55} +(-1.88476 - 1.08816i) q^{59} +(-1.56200 + 2.70546i) q^{61} +(-8.93040 + 0.0492624i) q^{65} +(-7.75111 + 4.47511i) q^{67} +(-2.01120 - 1.16117i) q^{71} +3.69299i q^{73} +5.44598 q^{77} -15.4633 q^{79} +6.27682i q^{83} +(14.7344 + 8.50693i) q^{85} +(4.53203 - 2.61657i) q^{89} +(-1.78552 + 3.13240i) q^{91} +(8.28255 - 14.3458i) q^{95} +(4.04658 + 2.33629i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 12 q^{11} - 10 q^{13} + 4 q^{17} - 6 q^{23} + 4 q^{25} + 2 q^{29} - 6 q^{35} - 12 q^{37} + 36 q^{41} - 2 q^{43} + 6 q^{49} - 24 q^{53} + 6 q^{55} - 4 q^{61} + 14 q^{65} + 6 q^{67} + 18 q^{71} - 8 q^{77}+ \cdots - 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3276\mathbb{Z}\right)^\times\).

\(n\) \(1639\) \(2017\) \(2341\) \(2549\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.47688i 1.10770i 0.832618 + 0.553848i \(0.186841\pi\)
−0.832618 + 0.553848i \(0.813159\pi\)
\(6\) 0 0
\(7\) 0.866025 + 0.500000i 0.327327 + 0.188982i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 4.71635 2.72299i 1.42203 0.821012i 0.425562 0.904929i \(-0.360077\pi\)
0.996473 + 0.0839174i \(0.0267432\pi\)
\(12\) 0 0
\(13\) 0.0198889 + 3.60550i 0.00551618 + 0.999985i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.43453 5.94878i 0.832996 1.44279i −0.0626554 0.998035i \(-0.519957\pi\)
0.895652 0.444756i \(-0.146710\pi\)
\(18\) 0 0
\(19\) −5.79187 3.34394i −1.32875 0.767152i −0.343641 0.939101i \(-0.611660\pi\)
−0.985106 + 0.171949i \(0.944994\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.76241 6.51668i −0.784516 1.35882i −0.929288 0.369357i \(-0.879578\pi\)
0.144771 0.989465i \(-0.453755\pi\)
\(24\) 0 0
\(25\) −1.13495 −0.226991
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −2.28310 3.95444i −0.423960 0.734321i 0.572362 0.820001i \(-0.306027\pi\)
−0.996323 + 0.0856801i \(0.972694\pi\)
\(30\) 0 0
\(31\) 7.78715i 1.39861i −0.714821 0.699307i \(-0.753492\pi\)
0.714821 0.699307i \(-0.246508\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.23844 + 2.14504i −0.209335 + 0.362579i
\(36\) 0 0
\(37\) 8.54751 4.93491i 1.40520 0.811294i 0.410282 0.911959i \(-0.365430\pi\)
0.994920 + 0.100665i \(0.0320970\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 10.5809 6.10890i 1.65246 0.954050i 0.676409 0.736527i \(-0.263535\pi\)
0.976055 0.217524i \(-0.0697980\pi\)
\(42\) 0 0
\(43\) −0.781824 + 1.35416i −0.119227 + 0.206507i −0.919462 0.393180i \(-0.871375\pi\)
0.800235 + 0.599687i \(0.204708\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0.470035i 0.0685616i 0.999412 + 0.0342808i \(0.0109141\pi\)
−0.999412 + 0.0342808i \(0.989086\pi\)
\(48\) 0 0
\(49\) 0.500000 + 0.866025i 0.0714286 + 0.123718i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −1.91885 −0.263574 −0.131787 0.991278i \(-0.542071\pi\)
−0.131787 + 0.991278i \(0.542071\pi\)
\(54\) 0 0
\(55\) 6.74453 + 11.6819i 0.909432 + 1.57518i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −1.88476 1.08816i −0.245374 0.141667i 0.372270 0.928124i \(-0.378580\pi\)
−0.617644 + 0.786458i \(0.711913\pi\)
\(60\) 0 0
\(61\) −1.56200 + 2.70546i −0.199994 + 0.346399i −0.948526 0.316699i \(-0.897425\pi\)
0.748532 + 0.663098i \(0.230759\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −8.93040 + 0.0492624i −1.10768 + 0.00611025i
\(66\) 0 0
\(67\) −7.75111 + 4.47511i −0.946949 + 0.546721i −0.892132 0.451775i \(-0.850791\pi\)
−0.0548174 + 0.998496i \(0.517458\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −2.01120 1.16117i −0.238686 0.137805i 0.375887 0.926666i \(-0.377338\pi\)
−0.614573 + 0.788860i \(0.710671\pi\)
\(72\) 0 0
\(73\) 3.69299i 0.432232i 0.976368 + 0.216116i \(0.0693389\pi\)
−0.976368 + 0.216116i \(0.930661\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 5.44598 0.620627
\(78\) 0 0
\(79\) −15.4633 −1.73975 −0.869876 0.493270i \(-0.835802\pi\)
−0.869876 + 0.493270i \(0.835802\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 6.27682i 0.688971i 0.938792 + 0.344485i \(0.111947\pi\)
−0.938792 + 0.344485i \(0.888053\pi\)
\(84\) 0 0
\(85\) 14.7344 + 8.50693i 1.59817 + 0.922707i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 4.53203 2.61657i 0.480394 0.277355i −0.240187 0.970727i \(-0.577209\pi\)
0.720581 + 0.693371i \(0.243875\pi\)
\(90\) 0 0
\(91\) −1.78552 + 3.13240i −0.187174 + 0.328364i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 8.28255 14.3458i 0.849771 1.47185i
\(96\) 0 0
\(97\) 4.04658 + 2.33629i 0.410868 + 0.237215i 0.691163 0.722699i \(-0.257099\pi\)
−0.280295 + 0.959914i \(0.590432\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.00804 + 1.74598i 0.100304 + 0.173731i 0.911810 0.410613i \(-0.134685\pi\)
−0.811506 + 0.584344i \(0.801352\pi\)
\(102\) 0 0
\(103\) −0.222790 −0.0219521 −0.0109761 0.999940i \(-0.503494\pi\)
−0.0109761 + 0.999940i \(0.503494\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.43406 + 2.48386i 0.138636 + 0.240124i 0.926980 0.375110i \(-0.122395\pi\)
−0.788345 + 0.615234i \(0.789062\pi\)
\(108\) 0 0
\(109\) 0.961436i 0.0920888i 0.998939 + 0.0460444i \(0.0146616\pi\)
−0.998939 + 0.0460444i \(0.985338\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 6.73164 11.6595i 0.633259 1.09684i −0.353622 0.935388i \(-0.615050\pi\)
0.986881 0.161448i \(-0.0516165\pi\)
\(114\) 0 0
\(115\) 16.1411 9.31905i 1.50516 0.869006i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 5.94878 3.43453i 0.545324 0.314843i
\(120\) 0 0
\(121\) 9.32933 16.1589i 0.848121 1.46899i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 9.57327i 0.856259i
\(126\) 0 0
\(127\) 6.72739 + 11.6522i 0.596959 + 1.03396i 0.993267 + 0.115846i \(0.0369580\pi\)
−0.396308 + 0.918118i \(0.629709\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 17.4240 1.52234 0.761170 0.648552i \(-0.224625\pi\)
0.761170 + 0.648552i \(0.224625\pi\)
\(132\) 0 0
\(133\) −3.34394 5.79187i −0.289956 0.502219i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −7.16836 4.13865i −0.612434 0.353589i 0.161483 0.986875i \(-0.448372\pi\)
−0.773918 + 0.633286i \(0.781706\pi\)
\(138\) 0 0
\(139\) −1.04017 + 1.80163i −0.0882263 + 0.152812i −0.906761 0.421644i \(-0.861453\pi\)
0.818535 + 0.574456i \(0.194787\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 9.91153 + 16.9506i 0.828844 + 1.41748i
\(144\) 0 0
\(145\) 9.79468 5.65496i 0.813404 0.469619i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −9.16915 5.29381i −0.751166 0.433686i 0.0749493 0.997187i \(-0.476121\pi\)
−0.826115 + 0.563502i \(0.809454\pi\)
\(150\) 0 0
\(151\) 3.53003i 0.287270i 0.989631 + 0.143635i \(0.0458791\pi\)
−0.989631 + 0.143635i \(0.954121\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 19.2879 1.54924
\(156\) 0 0
\(157\) 9.62352 0.768040 0.384020 0.923325i \(-0.374539\pi\)
0.384020 + 0.923325i \(0.374539\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 7.52482i 0.593039i
\(162\) 0 0
\(163\) −17.0628 9.85120i −1.33646 0.771605i −0.350179 0.936683i \(-0.613879\pi\)
−0.986281 + 0.165077i \(0.947213\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 12.5575 7.25009i 0.971731 0.561029i 0.0719673 0.997407i \(-0.477072\pi\)
0.899763 + 0.436378i \(0.143739\pi\)
\(168\) 0 0
\(169\) −12.9992 + 0.143418i −0.999939 + 0.0110322i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −8.11160 + 14.0497i −0.616714 + 1.06818i 0.373368 + 0.927683i \(0.378203\pi\)
−0.990081 + 0.140496i \(0.955130\pi\)
\(174\) 0 0
\(175\) −0.982898 0.567476i −0.0743001 0.0428972i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −2.29636 3.97742i −0.171638 0.297286i 0.767354 0.641223i \(-0.221573\pi\)
−0.938993 + 0.343937i \(0.888239\pi\)
\(180\) 0 0
\(181\) 9.14445 0.679702 0.339851 0.940479i \(-0.389623\pi\)
0.339851 + 0.940479i \(0.389623\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 12.2232 + 21.1712i 0.898667 + 1.55654i
\(186\) 0 0
\(187\) 37.4088i 2.73560i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −0.462606 + 0.801258i −0.0334730 + 0.0579770i −0.882277 0.470731i \(-0.843990\pi\)
0.848804 + 0.528708i \(0.177323\pi\)
\(192\) 0 0
\(193\) 11.2841 6.51490i 0.812250 0.468953i −0.0354863 0.999370i \(-0.511298\pi\)
0.847737 + 0.530417i \(0.177965\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 4.02212 2.32217i 0.286564 0.165448i −0.349827 0.936814i \(-0.613760\pi\)
0.636391 + 0.771366i \(0.280426\pi\)
\(198\) 0 0
\(199\) 1.17377 2.03303i 0.0832065 0.144118i −0.821419 0.570325i \(-0.806817\pi\)
0.904626 + 0.426207i \(0.140151\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 4.56619i 0.320484i
\(204\) 0 0
\(205\) 15.1310 + 26.2077i 1.05680 + 1.83043i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −36.4220 −2.51936
\(210\) 0 0
\(211\) −0.701975 1.21586i −0.0483259 0.0837030i 0.840851 0.541267i \(-0.182055\pi\)
−0.889177 + 0.457564i \(0.848722\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −3.35409 1.93649i −0.228747 0.132067i
\(216\) 0 0
\(217\) 3.89358 6.74387i 0.264313 0.457804i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 21.5166 + 12.2649i 1.44736 + 0.825025i
\(222\) 0 0
\(223\) −21.2092 + 12.2451i −1.42027 + 0.819996i −0.996322 0.0856890i \(-0.972691\pi\)
−0.423952 + 0.905685i \(0.639358\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −8.91834 5.14901i −0.591931 0.341752i 0.173930 0.984758i \(-0.444353\pi\)
−0.765861 + 0.643006i \(0.777687\pi\)
\(228\) 0 0
\(229\) 17.9669i 1.18729i 0.804728 + 0.593643i \(0.202311\pi\)
−0.804728 + 0.593643i \(0.797689\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 21.6058 1.41545 0.707723 0.706490i \(-0.249723\pi\)
0.707723 + 0.706490i \(0.249723\pi\)
\(234\) 0 0
\(235\) −1.16422 −0.0759454
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 10.4485i 0.675859i −0.941171 0.337929i \(-0.890274\pi\)
0.941171 0.337929i \(-0.109726\pi\)
\(240\) 0 0
\(241\) 18.1574 + 10.4832i 1.16962 + 0.675281i 0.953591 0.301105i \(-0.0973555\pi\)
0.216031 + 0.976387i \(0.430689\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −2.14504 + 1.23844i −0.137042 + 0.0791211i
\(246\) 0 0
\(247\) 11.9414 20.9491i 0.759811 1.33296i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −5.38623 + 9.32922i −0.339976 + 0.588855i −0.984428 0.175790i \(-0.943752\pi\)
0.644452 + 0.764645i \(0.277086\pi\)
\(252\) 0 0
\(253\) −35.4897 20.4900i −2.23122 1.28819i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 2.42369 + 4.19795i 0.151185 + 0.261861i 0.931664 0.363322i \(-0.118358\pi\)
−0.780478 + 0.625183i \(0.785024\pi\)
\(258\) 0 0
\(259\) 9.86982 0.613280
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 4.59477 + 7.95837i 0.283326 + 0.490734i 0.972202 0.234145i \(-0.0752290\pi\)
−0.688876 + 0.724879i \(0.741896\pi\)
\(264\) 0 0
\(265\) 4.75276i 0.291960i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −12.7323 + 22.0530i −0.776302 + 1.34459i 0.157758 + 0.987478i \(0.449573\pi\)
−0.934060 + 0.357117i \(0.883760\pi\)
\(270\) 0 0
\(271\) 20.3211 11.7324i 1.23442 0.712690i 0.266469 0.963844i \(-0.414143\pi\)
0.967947 + 0.251153i \(0.0808098\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −5.35284 + 3.09046i −0.322788 + 0.186362i
\(276\) 0 0
\(277\) −14.5556 + 25.2111i −0.874563 + 1.51479i −0.0173360 + 0.999850i \(0.505519\pi\)
−0.857227 + 0.514938i \(0.827815\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 24.0881i 1.43697i −0.695540 0.718487i \(-0.744835\pi\)
0.695540 0.718487i \(-0.255165\pi\)
\(282\) 0 0
\(283\) −10.9024 18.8835i −0.648082 1.12251i −0.983581 0.180470i \(-0.942238\pi\)
0.335499 0.942041i \(-0.391095\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 12.2178 0.721194
\(288\) 0 0
\(289\) −15.0920 26.1401i −0.887765 1.53765i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 27.3743 + 15.8045i 1.59922 + 0.923311i 0.991637 + 0.129057i \(0.0411949\pi\)
0.607585 + 0.794255i \(0.292138\pi\)
\(294\) 0 0
\(295\) 2.69526 4.66832i 0.156924 0.271800i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 23.4210 13.6950i 1.35447 0.792000i
\(300\) 0 0
\(301\) −1.35416 + 0.781824i −0.0780524 + 0.0450636i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −6.70112 3.86889i −0.383705 0.221532i
\(306\) 0 0
\(307\) 6.58096i 0.375595i −0.982208 0.187798i \(-0.939865\pi\)
0.982208 0.187798i \(-0.0601349\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −5.82186 −0.330127 −0.165064 0.986283i \(-0.552783\pi\)
−0.165064 + 0.986283i \(0.552783\pi\)
\(312\) 0 0
\(313\) 17.7789 1.00492 0.502461 0.864600i \(-0.332428\pi\)
0.502461 + 0.864600i \(0.332428\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 22.1182i 1.24228i 0.783698 + 0.621142i \(0.213331\pi\)
−0.783698 + 0.621142i \(0.786669\pi\)
\(318\) 0 0
\(319\) −21.5358 12.4337i −1.20577 0.696153i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −39.7847 + 22.9697i −2.21368 + 1.27807i
\(324\) 0 0
\(325\) −0.0225729 4.09207i −0.00125212 0.226987i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −0.235017 + 0.407062i −0.0129569 + 0.0224421i
\(330\) 0 0
\(331\) −7.55702 4.36305i −0.415371 0.239815i 0.277724 0.960661i \(-0.410420\pi\)
−0.693095 + 0.720846i \(0.743753\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −11.0843 19.1986i −0.605601 1.04893i
\(336\) 0 0
\(337\) −19.6305 −1.06934 −0.534670 0.845061i \(-0.679564\pi\)
−0.534670 + 0.845061i \(0.679564\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −21.2043 36.7270i −1.14828 1.98888i
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 4.44485 7.69871i 0.238612 0.413288i −0.721704 0.692202i \(-0.756641\pi\)
0.960316 + 0.278913i \(0.0899742\pi\)
\(348\) 0 0
\(349\) −10.9700 + 6.33353i −0.587210 + 0.339026i −0.763994 0.645224i \(-0.776764\pi\)
0.176783 + 0.984250i \(0.443431\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 3.50611 2.02425i 0.186611 0.107740i −0.403784 0.914854i \(-0.632305\pi\)
0.590395 + 0.807114i \(0.298972\pi\)
\(354\) 0 0
\(355\) 2.87608 4.98151i 0.152646 0.264391i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 15.1406i 0.799090i 0.916714 + 0.399545i \(0.130832\pi\)
−0.916714 + 0.399545i \(0.869168\pi\)
\(360\) 0 0
\(361\) 12.8638 + 22.2808i 0.677045 + 1.17268i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −9.14711 −0.478782
\(366\) 0 0
\(367\) 15.0219 + 26.0188i 0.784139 + 1.35817i 0.929512 + 0.368792i \(0.120229\pi\)
−0.145373 + 0.989377i \(0.546438\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −1.66177 0.959423i −0.0862748 0.0498108i
\(372\) 0 0
\(373\) 12.7449 22.0749i 0.659908 1.14299i −0.320731 0.947170i \(-0.603928\pi\)
0.980639 0.195824i \(-0.0627383\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 14.2123 8.31034i 0.731971 0.428004i
\(378\) 0 0
\(379\) 24.7386 14.2828i 1.27074 0.733660i 0.295609 0.955309i \(-0.404477\pi\)
0.975126 + 0.221649i \(0.0711440\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 11.6200 + 6.70881i 0.593754 + 0.342804i 0.766581 0.642148i \(-0.221957\pi\)
−0.172826 + 0.984952i \(0.555290\pi\)
\(384\) 0 0
\(385\) 13.4891i 0.687466i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 15.7559 0.798856 0.399428 0.916764i \(-0.369209\pi\)
0.399428 + 0.916764i \(0.369209\pi\)
\(390\) 0 0
\(391\) −51.6884 −2.61400
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 38.3007i 1.92712i
\(396\) 0 0
\(397\) −25.8457 14.9220i −1.29716 0.748915i −0.317247 0.948343i \(-0.602758\pi\)
−0.979913 + 0.199428i \(0.936092\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −25.9054 + 14.9565i −1.29365 + 0.746892i −0.979300 0.202414i \(-0.935121\pi\)
−0.314354 + 0.949306i \(0.601788\pi\)
\(402\) 0 0
\(403\) 28.0766 0.154878i 1.39859 0.00771500i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 26.8754 46.5496i 1.33216 2.30738i
\(408\) 0 0
\(409\) 8.74842 + 5.05090i 0.432582 + 0.249751i 0.700446 0.713706i \(-0.252985\pi\)
−0.267864 + 0.963457i \(0.586318\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −1.08816 1.88476i −0.0535451 0.0927428i
\(414\) 0 0
\(415\) −15.5470 −0.763170
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −12.8960 22.3364i −0.630008 1.09121i −0.987549 0.157309i \(-0.949718\pi\)
0.357541 0.933897i \(-0.383615\pi\)
\(420\) 0 0
\(421\) 5.04452i 0.245855i 0.992416 + 0.122927i \(0.0392282\pi\)
−0.992416 + 0.122927i \(0.960772\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −3.89803 + 6.75159i −0.189082 + 0.327500i
\(426\) 0 0
\(427\) −2.70546 + 1.56200i −0.130927 + 0.0755905i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −4.44919 + 2.56874i −0.214310 + 0.123732i −0.603313 0.797505i \(-0.706153\pi\)
0.389003 + 0.921237i \(0.372820\pi\)
\(432\) 0 0
\(433\) −11.8619 + 20.5455i −0.570049 + 0.987353i 0.426512 + 0.904482i \(0.359742\pi\)
−0.996560 + 0.0828710i \(0.973591\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 50.3250i 2.40737i
\(438\) 0 0
\(439\) 12.6408 + 21.8944i 0.603311 + 1.04496i 0.992316 + 0.123729i \(0.0394854\pi\)
−0.389005 + 0.921235i \(0.627181\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −29.0623 −1.38079 −0.690395 0.723432i \(-0.742563\pi\)
−0.690395 + 0.723432i \(0.742563\pi\)
\(444\) 0 0
\(445\) 6.48093 + 11.2253i 0.307226 + 0.532130i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −13.2312 7.63904i −0.624419 0.360508i 0.154169 0.988045i \(-0.450730\pi\)
−0.778587 + 0.627536i \(0.784063\pi\)
\(450\) 0 0
\(451\) 33.2689 57.6235i 1.56657 2.71338i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −7.75858 4.42254i −0.363728 0.207332i
\(456\) 0 0
\(457\) 1.03285 0.596315i 0.0483146 0.0278944i −0.475648 0.879636i \(-0.657786\pi\)
0.523963 + 0.851741i \(0.324453\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −10.2910 5.94150i −0.479299 0.276723i 0.240825 0.970568i \(-0.422582\pi\)
−0.720124 + 0.693845i \(0.755915\pi\)
\(462\) 0 0
\(463\) 14.5531i 0.676338i −0.941085 0.338169i \(-0.890192\pi\)
0.941085 0.338169i \(-0.109808\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 23.8134 1.10195 0.550977 0.834520i \(-0.314255\pi\)
0.550977 + 0.834520i \(0.314255\pi\)
\(468\) 0 0
\(469\) −8.95022 −0.413283
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 8.51559i 0.391547i
\(474\) 0 0
\(475\) 6.57350 + 3.79521i 0.301613 + 0.174136i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −14.1919 + 8.19368i −0.648443 + 0.374379i −0.787859 0.615855i \(-0.788811\pi\)
0.139416 + 0.990234i \(0.455477\pi\)
\(480\) 0 0
\(481\) 17.9628 + 30.7199i 0.819033 + 1.40071i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −5.78673 + 10.0229i −0.262762 + 0.455117i
\(486\) 0 0
\(487\) 31.4746 + 18.1719i 1.42625 + 0.823446i 0.996823 0.0796545i \(-0.0253817\pi\)
0.429428 + 0.903101i \(0.358715\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 12.8222 + 22.2086i 0.578656 + 1.00226i 0.995634 + 0.0933451i \(0.0297560\pi\)
−0.416978 + 0.908917i \(0.636911\pi\)
\(492\) 0 0
\(493\) −31.3655 −1.41263
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1.16117 2.01120i −0.0520855 0.0902147i
\(498\) 0 0
\(499\) 35.3041i 1.58043i 0.612830 + 0.790215i \(0.290031\pi\)
−0.612830 + 0.790215i \(0.709969\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −9.49443 + 16.4448i −0.423336 + 0.733239i −0.996263 0.0863668i \(-0.972474\pi\)
0.572928 + 0.819606i \(0.305808\pi\)
\(504\) 0 0
\(505\) −4.32458 + 2.49680i −0.192441 + 0.111106i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 2.24530 1.29633i 0.0995212 0.0574586i −0.449413 0.893324i \(-0.648367\pi\)
0.548935 + 0.835865i \(0.315034\pi\)
\(510\) 0 0
\(511\) −1.84650 + 3.19822i −0.0816841 + 0.141481i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0.551825i 0.0243163i
\(516\) 0 0
\(517\) 1.27990 + 2.21685i 0.0562899 + 0.0974970i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −9.45529 −0.414244 −0.207122 0.978315i \(-0.566410\pi\)
−0.207122 + 0.978315i \(0.566410\pi\)
\(522\) 0 0
\(523\) 1.22463 + 2.12113i 0.0535494 + 0.0927503i 0.891558 0.452907i \(-0.149613\pi\)
−0.838008 + 0.545658i \(0.816280\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −46.3241 26.7452i −2.01791 1.16504i
\(528\) 0 0
\(529\) −16.8114 + 29.1182i −0.730931 + 1.26601i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 22.2361 + 38.0280i 0.963151 + 1.64718i
\(534\) 0 0
\(535\) −6.15224 + 3.55200i −0.265984 + 0.153566i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 4.71635 + 2.72299i 0.203148 + 0.117287i
\(540\) 0 0
\(541\) 27.4190i 1.17883i 0.807829 + 0.589417i \(0.200642\pi\)
−0.807829 + 0.589417i \(0.799358\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −2.38136 −0.102006
\(546\) 0 0
\(547\) −1.78529 −0.0763334 −0.0381667 0.999271i \(-0.512152\pi\)
−0.0381667 + 0.999271i \(0.512152\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 30.5381i 1.30097i
\(552\) 0 0
\(553\) −13.3916 7.73163i −0.569468 0.328782i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 21.9009 12.6445i 0.927972 0.535765i 0.0418021 0.999126i \(-0.486690\pi\)
0.886169 + 0.463361i \(0.153357\pi\)
\(558\) 0 0
\(559\) −4.89796 2.79193i −0.207162 0.118086i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 5.54261 9.60009i 0.233593 0.404596i −0.725270 0.688465i \(-0.758285\pi\)
0.958863 + 0.283869i \(0.0916182\pi\)
\(564\) 0 0
\(565\) 28.8793 + 16.6735i 1.21496 + 0.701458i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −9.85755 17.0738i −0.413250 0.715770i 0.581993 0.813194i \(-0.302273\pi\)
−0.995243 + 0.0974240i \(0.968940\pi\)
\(570\) 0 0
\(571\) −4.76181 −0.199276 −0.0996378 0.995024i \(-0.531768\pi\)
−0.0996378 + 0.995024i \(0.531768\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 4.27016 + 7.39613i 0.178078 + 0.308440i
\(576\) 0 0
\(577\) 33.0438i 1.37563i −0.725885 0.687816i \(-0.758570\pi\)
0.725885 0.687816i \(-0.241430\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −3.13841 + 5.43589i −0.130203 + 0.225519i
\(582\) 0 0
\(583\) −9.04996 + 5.22500i −0.374811 + 0.216397i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −16.0331 + 9.25671i −0.661756 + 0.382065i −0.792946 0.609292i \(-0.791454\pi\)
0.131190 + 0.991357i \(0.458120\pi\)
\(588\) 0 0
\(589\) −26.0398 + 45.1022i −1.07295 + 1.85840i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 1.25752i 0.0516401i 0.999667 + 0.0258201i \(0.00821969\pi\)
−0.999667 + 0.0258201i \(0.991780\pi\)
\(594\) 0 0
\(595\) 8.50693 + 14.7344i 0.348750 + 0.604053i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 44.3582 1.81243 0.906213 0.422821i \(-0.138960\pi\)
0.906213 + 0.422821i \(0.138960\pi\)
\(600\) 0 0
\(601\) −4.34601 7.52751i −0.177277 0.307054i 0.763670 0.645607i \(-0.223396\pi\)
−0.940947 + 0.338554i \(0.890062\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 40.0237 + 23.1077i 1.62719 + 0.939461i
\(606\) 0 0
\(607\) −7.35085 + 12.7321i −0.298362 + 0.516778i −0.975761 0.218837i \(-0.929774\pi\)
0.677399 + 0.735615i \(0.263107\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −1.69471 + 0.00934846i −0.0685606 + 0.000378198i
\(612\) 0 0
\(613\) 27.4352 15.8397i 1.10810 0.639761i 0.169762 0.985485i \(-0.445700\pi\)
0.938336 + 0.345724i \(0.112367\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −17.3842 10.0368i −0.699863 0.404066i 0.107434 0.994212i \(-0.465737\pi\)
−0.807296 + 0.590146i \(0.799070\pi\)
\(618\) 0 0
\(619\) 1.42652i 0.0573368i −0.999589 0.0286684i \(-0.990873\pi\)
0.999589 0.0286684i \(-0.00912668\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 5.23313 0.209661
\(624\) 0 0
\(625\) −29.3866 −1.17547
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 67.7964i 2.70322i
\(630\) 0 0
\(631\) −22.9922 13.2746i −0.915305 0.528452i −0.0331708 0.999450i \(-0.510561\pi\)
−0.882134 + 0.470998i \(0.843894\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −28.8611 + 16.6630i −1.14532 + 0.661250i
\(636\) 0 0
\(637\) −3.11251 + 1.81997i −0.123322 + 0.0721099i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −2.87679 + 4.98275i −0.113627 + 0.196807i −0.917230 0.398358i \(-0.869580\pi\)
0.803603 + 0.595165i \(0.202913\pi\)
\(642\) 0 0
\(643\) 41.6405 + 24.0412i 1.64214 + 0.948091i 0.980070 + 0.198651i \(0.0636560\pi\)
0.662072 + 0.749440i \(0.269677\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −1.51493 2.62394i −0.0595580 0.103158i 0.834709 0.550691i \(-0.185636\pi\)
−0.894267 + 0.447534i \(0.852302\pi\)
\(648\) 0 0
\(649\) −11.8522 −0.465241
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −11.4298 19.7969i −0.447281 0.774714i 0.550927 0.834554i \(-0.314274\pi\)
−0.998208 + 0.0598398i \(0.980941\pi\)
\(654\) 0 0
\(655\) 43.1572i 1.68629i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 13.2417 22.9352i 0.515822 0.893429i −0.484010 0.875063i \(-0.660820\pi\)
0.999831 0.0183666i \(-0.00584659\pi\)
\(660\) 0 0
\(661\) 11.0472 6.37812i 0.429687 0.248080i −0.269526 0.962993i \(-0.586867\pi\)
0.699213 + 0.714913i \(0.253534\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 14.3458 8.28255i 0.556306 0.321183i
\(666\) 0 0
\(667\) −17.1799 + 29.7564i −0.665207 + 1.15217i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 17.0132i 0.656789i
\(672\) 0 0
\(673\) 12.1461 + 21.0377i 0.468199 + 0.810944i 0.999339 0.0363398i \(-0.0115699\pi\)
−0.531141 + 0.847284i \(0.678237\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −37.3653 −1.43607 −0.718033 0.696009i \(-0.754957\pi\)
−0.718033 + 0.696009i \(0.754957\pi\)
\(678\) 0 0
\(679\) 2.33629 + 4.04658i 0.0896587 + 0.155293i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −26.6651 15.3951i −1.02031 0.589077i −0.106117 0.994354i \(-0.533842\pi\)
−0.914194 + 0.405277i \(0.867175\pi\)
\(684\) 0 0
\(685\) 10.2510 17.7552i 0.391669 0.678391i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −0.0381637 6.91839i −0.00145392 0.263570i
\(690\) 0 0
\(691\) −32.8616 + 18.9726i −1.25011 + 0.721753i −0.971132 0.238543i \(-0.923330\pi\)
−0.278981 + 0.960296i \(0.589997\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −4.46243 2.57639i −0.169270 0.0977279i
\(696\) 0 0
\(697\) 83.9249i 3.17888i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −25.4219 −0.960172 −0.480086 0.877221i \(-0.659395\pi\)
−0.480086 + 0.877221i \(0.659395\pi\)
\(702\) 0 0
\(703\) −66.0081 −2.48954
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 2.01608i 0.0758225i
\(708\) 0 0
\(709\) −5.13695 2.96582i −0.192922 0.111384i 0.400428 0.916328i \(-0.368862\pi\)
−0.593350 + 0.804945i \(0.702195\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −50.7464 + 29.2985i −1.90047 + 1.09724i
\(714\) 0 0
\(715\) −41.9848 + 24.5497i −1.57014 + 0.918107i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 22.0528 38.1966i 0.822432 1.42449i −0.0814338 0.996679i \(-0.525950\pi\)
0.903866 0.427816i \(-0.140717\pi\)
\(720\) 0 0
\(721\) −0.192942 0.111395i −0.00718552 0.00414856i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 2.59121 + 4.48810i 0.0962350 + 0.166684i
\(726\) 0 0
\(727\) 28.8610 1.07039 0.535197 0.844727i \(-0.320237\pi\)
0.535197 + 0.844727i \(0.320237\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 5.37040 + 9.30180i 0.198631 + 0.344039i
\(732\) 0 0
\(733\) 35.9193i 1.32671i −0.748305 0.663355i \(-0.769132\pi\)
0.748305 0.663355i \(-0.230868\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −24.3713 + 42.2124i −0.897730 + 1.55491i
\(738\) 0 0
\(739\) −11.3878 + 6.57476i −0.418908 + 0.241857i −0.694610 0.719387i \(-0.744423\pi\)
0.275702 + 0.961243i \(0.411090\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −10.0394 + 5.79624i −0.368309 + 0.212643i −0.672719 0.739898i \(-0.734874\pi\)
0.304410 + 0.952541i \(0.401541\pi\)
\(744\) 0 0
\(745\) 13.1121 22.7109i 0.480392 0.832063i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 2.86812i 0.104799i
\(750\) 0 0
\(751\) −5.26997 9.12785i −0.192304 0.333080i 0.753710 0.657208i \(-0.228263\pi\)
−0.946013 + 0.324128i \(0.894929\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −8.74348 −0.318208
\(756\) 0 0
\(757\) 20.1930 + 34.9753i 0.733926 + 1.27120i 0.955193 + 0.295984i \(0.0956475\pi\)
−0.221267 + 0.975213i \(0.571019\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 25.6681 + 14.8195i 0.930469 + 0.537207i 0.886960 0.461846i \(-0.152813\pi\)
0.0435092 + 0.999053i \(0.486146\pi\)
\(762\) 0 0
\(763\) −0.480718 + 0.832628i −0.0174032 + 0.0301431i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 3.88589 6.81712i 0.140311 0.246152i
\(768\) 0 0
\(769\) −35.9082 + 20.7316i −1.29488 + 0.747601i −0.979515 0.201369i \(-0.935461\pi\)
−0.315367 + 0.948970i \(0.602128\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 32.6117 + 18.8284i 1.17296 + 0.677209i 0.954375 0.298609i \(-0.0965228\pi\)
0.218584 + 0.975818i \(0.429856\pi\)
\(774\) 0 0
\(775\) 8.83805i 0.317472i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −81.7112 −2.92761
\(780\) 0 0
\(781\) −12.6474 −0.452559
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 23.8363i 0.850755i
\(786\) 0 0
\(787\) 36.4498 + 21.0443i 1.29929 + 0.750148i 0.980282 0.197602i \(-0.0633155\pi\)
0.319012 + 0.947751i \(0.396649\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 11.6595 6.73164i 0.414565 0.239349i
\(792\) 0 0
\(793\) −9.78561 5.57798i −0.347497 0.198080i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 9.77791 16.9358i 0.346351 0.599898i −0.639247 0.769002i \(-0.720754\pi\)
0.985598 + 0.169103i \(0.0540871\pi\)
\(798\) 0 0
\(799\) 2.79613 + 1.61435i 0.0989201 + 0.0571116i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 10.0560 + 17.4175i 0.354868 + 0.614649i
\(804\) 0 0
\(805\) 18.6381 0.656906
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 14.8643 + 25.7457i 0.522601 + 0.905171i 0.999654 + 0.0262970i \(0.00837156\pi\)
−0.477053 + 0.878874i \(0.658295\pi\)
\(810\) 0 0
\(811\) 24.5115i 0.860717i −0.902658 0.430358i \(-0.858387\pi\)
0.902658 0.430358i \(-0.141613\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 24.4003 42.2625i 0.854704 1.48039i
\(816\) 0 0
\(817\) 9.05644 5.22874i 0.316845 0.182930i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −17.1551 + 9.90448i −0.598716 + 0.345669i −0.768536 0.639806i \(-0.779015\pi\)
0.169820 + 0.985475i \(0.445681\pi\)
\(822\) 0 0
\(823\) 14.0679 24.3663i 0.490376 0.849356i −0.509563 0.860434i \(-0.670193\pi\)
0.999939 + 0.0110775i \(0.00352614\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 2.88561i 0.100343i 0.998741 + 0.0501713i \(0.0159767\pi\)
−0.998741 + 0.0501713i \(0.984023\pi\)
\(828\) 0 0
\(829\) 0.952423 + 1.64965i 0.0330790 + 0.0572945i 0.882091 0.471079i \(-0.156135\pi\)
−0.849012 + 0.528374i \(0.822802\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 6.86906 0.237999
\(834\) 0 0
\(835\) 17.9576 + 31.1035i 0.621450 + 1.07638i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −40.6215 23.4528i −1.40241 0.809681i −0.407769 0.913085i \(-0.633693\pi\)
−0.994639 + 0.103404i \(0.967026\pi\)
\(840\) 0 0
\(841\) 4.07495 7.05802i 0.140515 0.243380i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −0.355231 32.1975i −0.0122203 1.10763i
\(846\) 0 0
\(847\) 16.1589 9.32933i 0.555226 0.320560i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −64.3184 37.1343i −2.20481 1.27295i
\(852\) 0 0
\(853\) 30.8198i 1.05525i −0.849478 0.527625i \(-0.823083\pi\)
0.849478 0.527625i \(-0.176917\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 2.88680 0.0986113 0.0493056 0.998784i \(-0.484299\pi\)
0.0493056 + 0.998784i \(0.484299\pi\)
\(858\) 0 0
\(859\) 40.9476 1.39711 0.698557 0.715554i \(-0.253826\pi\)
0.698557 + 0.715554i \(0.253826\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 3.44875i 0.117397i 0.998276 + 0.0586983i \(0.0186950\pi\)
−0.998276 + 0.0586983i \(0.981305\pi\)
\(864\) 0 0
\(865\) −34.7995 20.0915i −1.18322 0.683131i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −72.9302 + 42.1063i −2.47399 + 1.42836i
\(870\) 0 0
\(871\) −16.2891 27.8576i −0.551937 0.943919i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −4.78664 + 8.29070i −0.161818 + 0.280277i
\(876\) 0 0
\(877\) 20.9753 + 12.1101i 0.708286 + 0.408929i 0.810426 0.585841i \(-0.199236\pi\)
−0.102140 + 0.994770i \(0.532569\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 7.78313 + 13.4808i 0.262220 + 0.454179i 0.966832 0.255414i \(-0.0822119\pi\)
−0.704611 + 0.709594i \(0.748879\pi\)
\(882\) 0 0
\(883\) 54.7132 1.84125 0.920624 0.390451i \(-0.127681\pi\)
0.920624 + 0.390451i \(0.127681\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 14.6681 + 25.4059i 0.492507 + 0.853047i 0.999963 0.00863106i \(-0.00274739\pi\)
−0.507456 + 0.861678i \(0.669414\pi\)
\(888\) 0 0
\(889\) 13.4548i 0.451259i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 1.57177 2.72238i 0.0525972 0.0911010i
\(894\) 0 0
\(895\) 9.85160 5.68783i 0.329303 0.190123i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −30.7938 + 17.7788i −1.02703 + 0.592957i
\(900\) 0 0
\(901\) −6.59034 + 11.4148i −0.219556 + 0.380282i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 22.6497i 0.752903i
\(906\) 0 0
\(907\) 17.2556 + 29.8875i 0.572961 + 0.992398i 0.996260 + 0.0864080i \(0.0275389\pi\)
−0.423298 + 0.905990i \(0.639128\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −14.4041 −0.477229 −0.238614 0.971114i \(-0.576693\pi\)
−0.238614 + 0.971114i \(0.576693\pi\)
\(912\) 0 0
\(913\) 17.0917 + 29.6037i 0.565653 + 0.979740i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 15.0896 + 8.71199i 0.498303 + 0.287695i
\(918\) 0 0
\(919\) 12.7295 22.0482i 0.419908 0.727301i −0.576022 0.817434i \(-0.695396\pi\)
0.995930 + 0.0901327i \(0.0287291\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 4.14659 7.27447i 0.136487 0.239442i
\(924\) 0 0
\(925\) −9.70102 + 5.60089i −0.318968 + 0.184156i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 36.0971 + 20.8407i 1.18431 + 0.683760i 0.957007 0.290065i \(-0.0936768\pi\)
0.227300 + 0.973825i \(0.427010\pi\)
\(930\) 0 0
\(931\) 6.68788i 0.219186i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 92.6571 3.03021
\(936\) 0 0
\(937\) 12.2637 0.400636 0.200318 0.979731i \(-0.435802\pi\)
0.200318 + 0.979731i \(0.435802\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1.42137i 0.0463353i −0.999732 0.0231676i \(-0.992625\pi\)
0.999732 0.0231676i \(-0.00737514\pi\)
\(942\) 0 0
\(943\) −79.6195 45.9684i −2.59277 1.49694i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0.0361202 0.0208540i 0.00117375 0.000677665i −0.499413 0.866364i \(-0.666451\pi\)
0.500587 + 0.865686i \(0.333118\pi\)
\(948\) 0 0
\(949\) −13.3151 + 0.0734494i −0.432225 + 0.00238427i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0.135787 0.235190i 0.00439857 0.00761855i −0.863818 0.503804i \(-0.831933\pi\)
0.868216 + 0.496186i \(0.165267\pi\)
\(954\) 0 0
\(955\) −1.98462 1.14582i −0.0642209 0.0370779i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −4.13865 7.16836i −0.133644 0.231478i
\(960\) 0 0
\(961\) −29.6398 −0.956122
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 16.1367 + 27.9495i 0.519457 + 0.899727i
\(966\) 0 0
\(967\) 40.0864i 1.28909i −0.764565 0.644546i \(-0.777046\pi\)
0.764565 0.644546i \(-0.222954\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −18.0757 + 31.3080i −0.580077 + 1.00472i 0.415393 + 0.909642i \(0.363644\pi\)
−0.995470 + 0.0950802i \(0.969689\pi\)
\(972\) 0 0
\(973\) −1.80163 + 1.04017i −0.0577577 + 0.0333464i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −35.0014 + 20.2081i −1.11980 + 0.646514i −0.941349 0.337436i \(-0.890440\pi\)
−0.178446 + 0.983950i \(0.557107\pi\)
\(978\) 0 0
\(979\) 14.2498 24.6813i 0.455424 0.788818i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 25.9746i 0.828461i −0.910172 0.414230i \(-0.864051\pi\)
0.910172 0.414230i \(-0.135949\pi\)
\(984\) 0 0
\(985\) 5.75175 + 9.96232i 0.183266 + 0.317426i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 11.7662 0.374142
\(990\) 0 0
\(991\) −12.0491 20.8696i −0.382751 0.662944i 0.608704 0.793398i \(-0.291690\pi\)
−0.991454 + 0.130454i \(0.958357\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 5.03559 + 2.90730i 0.159639 + 0.0921675i
\(996\) 0 0
\(997\) −5.82563 + 10.0903i −0.184499 + 0.319562i −0.943408 0.331635i \(-0.892400\pi\)
0.758908 + 0.651198i \(0.225733\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3276.2.cf.b.1765.5 12
3.2 odd 2 1092.2.bg.a.673.2 yes 12
13.4 even 6 inner 3276.2.cf.b.2773.2 12
39.17 odd 6 1092.2.bg.a.589.5 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1092.2.bg.a.589.5 12 39.17 odd 6
1092.2.bg.a.673.2 yes 12 3.2 odd 2
3276.2.cf.b.1765.5 12 1.1 even 1 trivial
3276.2.cf.b.2773.2 12 13.4 even 6 inner