gp: [N,k,chi] = [3276,2,Mod(1765,3276)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3276.1765");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3276, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 0, 5]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage: traces = [12,0,0,0,0,0,0,0,0,0,12]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 11 1,\beta_1,\ldots,\beta_{11} 1 , β 1 , … , β 1 1 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 12 − 6 x 11 + 37 x 10 − 130 x 9 + 414 x 8 − 942 x 7 + 1855 x 6 − 2748 x 5 + 3355 x 4 + ⋯ + 229 x^{12} - 6 x^{11} + 37 x^{10} - 130 x^{9} + 414 x^{8} - 942 x^{7} + 1855 x^{6} - 2748 x^{5} + 3355 x^{4} + \cdots + 229 x 1 2 − 6 x 1 1 + 3 7 x 1 0 − 1 3 0 x 9 + 4 1 4 x 8 − 9 4 2 x 7 + 1 8 5 5 x 6 − 2 7 4 8 x 5 + 3 3 5 5 x 4 + ⋯ + 2 2 9
x^12 - 6*x^11 + 37*x^10 - 130*x^9 + 414*x^8 - 942*x^7 + 1855*x^6 - 2748*x^5 + 3355*x^4 - 3002*x^3 + 2040*x^2 - 874*x + 229
:
β 1 \beta_{1} β 1 = = =
( 49 ν 11 − 178 ν 10 + 1175 ν 9 − 2397 ν 8 + 7284 ν 7 − 5184 ν 6 + 4855 ν 5 + ⋯ + 32092 ) / 1647 ( 49 \nu^{11} - 178 \nu^{10} + 1175 \nu^{9} - 2397 \nu^{8} + 7284 \nu^{7} - 5184 \nu^{6} + 4855 \nu^{5} + \cdots + 32092 ) / 1647 ( 4 9 ν 1 1 − 1 7 8 ν 1 0 + 1 1 7 5 ν 9 − 2 3 9 7 ν 8 + 7 2 8 4 ν 7 − 5 1 8 4 ν 6 + 4 8 5 5 ν 5 + ⋯ + 3 2 0 9 2 ) / 1 6 4 7
(49*v^11 - 178*v^10 + 1175*v^9 - 2397*v^8 + 7284*v^7 - 5184*v^6 + 4855*v^5 + 28175*v^4 - 49627*v^3 + 86210*v^2 - 62078*v + 32092) / 1647
β 2 \beta_{2} β 2 = = =
( 13 ν 11 + 20 ν 10 − 58 ν 9 + 1575 ν 8 − 5085 ν 7 + 19524 ν 6 − 39689 ν 5 + ⋯ + 23692 ) / 1647 ( 13 \nu^{11} + 20 \nu^{10} - 58 \nu^{9} + 1575 \nu^{8} - 5085 \nu^{7} + 19524 \nu^{6} - 39689 \nu^{5} + \cdots + 23692 ) / 1647 ( 1 3 ν 1 1 + 2 0 ν 1 0 − 5 8 ν 9 + 1 5 7 5 ν 8 − 5 0 8 5 ν 7 + 1 9 5 2 4 ν 6 − 3 9 6 8 9 ν 5 + ⋯ + 2 3 6 9 2 ) / 1 6 4 7
(13*v^11 + 20*v^10 - 58*v^9 + 1575*v^8 - 5085*v^7 + 19524*v^6 - 39689*v^5 + 78479*v^4 - 94747*v^3 + 99986*v^2 - 56711*v + 23692) / 1647
β 3 \beta_{3} β 3 = = =
( 65 ν 11 − 266 ν 10 + 1723 ν 9 − 4386 ν 8 + 13737 ν 7 − 21696 ν 6 + ⋯ + 2987 ) / 1647 ( 65 \nu^{11} - 266 \nu^{10} + 1723 \nu^{9} - 4386 \nu^{8} + 13737 \nu^{7} - 21696 \nu^{6} + \cdots + 2987 ) / 1647 ( 6 5 ν 1 1 − 2 6 6 ν 1 0 + 1 7 2 3 ν 9 − 4 3 8 6 ν 8 + 1 3 7 3 7 ν 7 − 2 1 6 9 6 ν 6 + ⋯ + 2 9 8 7 ) / 1 6 4 7
(65*v^11 - 266*v^10 + 1723*v^9 - 4386*v^8 + 13737*v^7 - 21696*v^6 + 38906*v^5 - 32531*v^4 + 29698*v^3 - 2771*v^2 - 637*v + 2987) / 1647
β 4 \beta_{4} β 4 = = =
( 13 ν 11 − 163 ν 10 + 857 ν 9 − 4098 ν 8 + 12117 ν 7 − 33363 ν 6 + ⋯ − 26999 ) / 1647 ( 13 \nu^{11} - 163 \nu^{10} + 857 \nu^{9} - 4098 \nu^{8} + 12117 \nu^{7} - 33363 \nu^{6} + \cdots - 26999 ) / 1647 ( 1 3 ν 1 1 − 1 6 3 ν 1 0 + 8 5 7 ν 9 − 4 0 9 8 ν 8 + 1 2 1 1 7 ν 7 − 3 3 3 6 3 ν 6 + ⋯ − 2 6 9 9 9 ) / 1 6 4 7
(13*v^11 - 163*v^10 + 857*v^9 - 4098*v^8 + 12117*v^7 - 33363*v^6 + 62608*v^5 - 106351*v^4 + 122657*v^3 - 119431*v^2 + 68461*v - 26999) / 1647
β 5 \beta_{5} β 5 = = =
( − ν 10 + 5 ν 9 − 29 ν 8 + 86 ν 7 − 245 ν 6 + 455 ν 5 − 753 ν 4 + 838 ν 3 + ⋯ − 162 ) / 9 ( - \nu^{10} + 5 \nu^{9} - 29 \nu^{8} + 86 \nu^{7} - 245 \nu^{6} + 455 \nu^{5} - 753 \nu^{4} + 838 \nu^{3} + \cdots - 162 ) / 9 ( − ν 1 0 + 5 ν 9 − 2 9 ν 8 + 8 6 ν 7 − 2 4 5 ν 6 + 4 5 5 ν 5 − 7 5 3 ν 4 + 8 3 8 ν 3 + ⋯ − 1 6 2 ) / 9
(-v^10 + 5*v^9 - 29*v^8 + 86*v^7 - 245*v^6 + 455*v^5 - 753*v^4 + 838*v^3 - 772*v^2 + 416*v - 162) / 9
β 6 \beta_{6} β 6 = = =
( 13 ν 11 − 102 ν 10 + 613 ν 9 − 2451 ν 8 + 7725 ν 7 − 18906 ν 6 + 36256 ν 5 + ⋯ − 7174 ) / 549 ( 13 \nu^{11} - 102 \nu^{10} + 613 \nu^{9} - 2451 \nu^{8} + 7725 \nu^{7} - 18906 \nu^{6} + 36256 \nu^{5} + \cdots - 7174 ) / 549 ( 1 3 ν 1 1 − 1 0 2 ν 1 0 + 6 1 3 ν 9 − 2 4 5 1 ν 8 + 7 7 2 5 ν 7 − 1 8 9 0 6 ν 6 + 3 6 2 5 6 ν 5 + ⋯ − 7 1 7 4 ) / 5 4 9
(13*v^11 - 102*v^10 + 613*v^9 - 2451*v^8 + 7725*v^7 - 18906*v^6 + 36256*v^5 - 55050*v^4 + 61840*v^3 - 51538*v^2 + 26676*v - 7174) / 549
β 7 \beta_{7} β 7 = = =
( − 49 ν 11 + 361 ν 10 − 2090 ν 9 + 8253 ν 8 − 25218 ν 7 + 62646 ν 6 + ⋯ + 38729 ) / 1647 ( - 49 \nu^{11} + 361 \nu^{10} - 2090 \nu^{9} + 8253 \nu^{8} - 25218 \nu^{7} + 62646 \nu^{6} + \cdots + 38729 ) / 1647 ( − 4 9 ν 1 1 + 3 6 1 ν 1 0 − 2 0 9 0 ν 9 + 8 2 5 3 ν 8 − 2 5 2 1 8 ν 7 + 6 2 6 4 6 ν 6 + ⋯ + 3 8 7 2 9 ) / 1 6 4 7
(-49*v^11 + 361*v^10 - 2090*v^9 + 8253*v^8 - 25218*v^7 + 62646*v^6 - 118315*v^5 + 188680*v^4 - 214076*v^3 + 200002*v^2 - 108478*v + 38729) / 1647
β 8 \beta_{8} β 8 = = =
( 104 ν 11 − 572 ν 10 + 3562 ν 9 − 11739 ν 8 + 36912 ν 7 − 78414 ν 6 + ⋯ − 16888 ) / 1647 ( 104 \nu^{11} - 572 \nu^{10} + 3562 \nu^{9} - 11739 \nu^{8} + 36912 \nu^{7} - 78414 \nu^{6} + \cdots - 16888 ) / 1647 ( 1 0 4 ν 1 1 − 5 7 2 ν 1 0 + 3 5 6 2 ν 9 − 1 1 7 3 9 ν 8 + 3 6 9 1 2 ν 7 − 7 8 4 1 4 ν 6 + ⋯ − 1 6 8 8 8 ) / 1 6 4 7
(104*v^11 - 572*v^10 + 3562*v^9 - 11739*v^8 + 36912*v^7 - 78414*v^6 + 147674*v^5 - 197681*v^4 + 215218*v^3 - 157385*v^2 + 77744*v - 16888) / 1647
β 9 \beta_{9} β 9 = = =
( − 37 ν 11 + 234 ν 10 − 1374 ν 9 + 4855 ν 8 − 14629 ν 7 + 32389 ν 6 + ⋯ + 9992 ) / 549 ( - 37 \nu^{11} + 234 \nu^{10} - 1374 \nu^{9} + 4855 \nu^{8} - 14629 \nu^{7} + 32389 \nu^{6} + \cdots + 9992 ) / 549 ( − 3 7 ν 1 1 + 2 3 4 ν 1 0 − 1 3 7 4 ν 9 + 4 8 5 5 ν 8 − 1 4 6 2 9 ν 7 + 3 2 3 8 9 ν 6 + ⋯ + 9 9 9 2 ) / 5 4 9
(-37*v^11 + 234*v^10 - 1374*v^9 + 4855*v^8 - 14629*v^7 + 32389*v^6 - 58937*v^5 + 81571*v^4 - 87223*v^3 + 67554*v^2 - 34505*v + 9992) / 549
β 10 \beta_{10} β 1 0 = = =
( − 175 ν 11 + 871 ν 10 − 5399 ν 9 + 16482 ν 8 − 51033 ν 7 + 101178 ν 6 + ⋯ + 13721 ) / 1647 ( - 175 \nu^{11} + 871 \nu^{10} - 5399 \nu^{9} + 16482 \nu^{8} - 51033 \nu^{7} + 101178 \nu^{6} + \cdots + 13721 ) / 1647 ( − 1 7 5 ν 1 1 + 8 7 1 ν 1 0 − 5 3 9 9 ν 9 + 1 6 4 8 2 ν 8 − 5 1 0 3 3 ν 7 + 1 0 1 1 7 8 ν 6 + ⋯ + 1 3 7 2 1 ) / 1 6 4 7
(-175*v^11 + 871*v^10 - 5399*v^9 + 16482*v^8 - 51033*v^7 + 101178*v^6 - 187294*v^5 + 234265*v^4 - 250850*v^3 + 168796*v^2 - 77341*v + 13721) / 1647
β 11 \beta_{11} β 1 1 = = =
( − 227 ν 11 + 1157 ν 10 − 7180 ν 9 + 22077 ν 8 − 68391 ν 7 + 134346 ν 6 + ⋯ + 6793 ) / 1647 ( - 227 \nu^{11} + 1157 \nu^{10} - 7180 \nu^{9} + 22077 \nu^{8} - 68391 \nu^{7} + 134346 \nu^{6} + \cdots + 6793 ) / 1647 ( − 2 2 7 ν 1 1 + 1 1 5 7 ν 1 0 − 7 1 8 0 ν 9 + 2 2 0 7 7 ν 8 − 6 8 3 9 1 ν 7 + 1 3 4 3 4 6 ν 6 + ⋯ + 6 7 9 3 ) / 1 6 4 7
(-227*v^11 + 1157*v^10 - 7180*v^9 + 22077*v^8 - 68391*v^7 + 134346*v^6 - 246857*v^5 + 298244*v^4 - 311245*v^3 + 191765*v^2 - 82724*v + 6793) / 1647
ν \nu ν = = =
− β 8 + β 6 + β 3 + 1 -\beta_{8} + \beta_{6} + \beta_{3} + 1 − β 8 + β 6 + β 3 + 1
-b8 + b6 + b3 + 1
ν 2 \nu^{2} ν 2 = = =
− β 11 + β 10 − β 8 + β 6 − β 5 + β 4 − 3 -\beta_{11} + \beta_{10} - \beta_{8} + \beta_{6} - \beta_{5} + \beta_{4} - 3 − β 1 1 + β 1 0 − β 8 + β 6 − β 5 + β 4 − 3
-b11 + b10 - b8 + b6 - b5 + b4 - 3
ν 3 \nu^{3} ν 3 = = =
− β 11 + 2 β 10 + β 9 + 7 β 8 − 5 β 6 − β 5 + 4 β 4 − 6 β 3 + 3 β 2 − 9 -\beta_{11} + 2\beta_{10} + \beta_{9} + 7\beta_{8} - 5\beta_{6} - \beta_{5} + 4\beta_{4} - 6\beta_{3} + 3\beta_{2} - 9 − β 1 1 + 2 β 1 0 + β 9 + 7 β 8 − 5 β 6 − β 5 + 4 β 4 − 6 β 3 + 3 β 2 − 9
-b11 + 2*b10 + b9 + 7*b8 - 5*b6 - b5 + 4*b4 - 6*b3 + 3*b2 - 9
ν 4 \nu^{4} ν 4 = = =
9 β 11 − 7 β 10 + 2 β 9 + 15 β 8 − 9 β 6 + 8 β 5 − 2 β 4 + ⋯ + 10 9 \beta_{11} - 7 \beta_{10} + 2 \beta_{9} + 15 \beta_{8} - 9 \beta_{6} + 8 \beta_{5} - 2 \beta_{4} + \cdots + 10 9 β 1 1 − 7 β 1 0 + 2 β 9 + 1 5 β 8 − 9 β 6 + 8 β 5 − 2 β 4 + ⋯ + 1 0
9*b11 - 7*b10 + 2*b9 + 15*b8 - 9*b6 + 8*b5 - 2*b4 - 4*b3 + 9*b2 + 10
ν 5 \nu^{5} ν 5 = = =
19 β 11 − 26 β 10 − 10 β 9 − 38 β 8 + 3 β 7 + 29 β 6 + 15 β 5 + ⋯ + 75 19 \beta_{11} - 26 \beta_{10} - 10 \beta_{9} - 38 \beta_{8} + 3 \beta_{7} + 29 \beta_{6} + 15 \beta_{5} + \cdots + 75 1 9 β 1 1 − 2 6 β 1 0 − 1 0 β 9 − 3 8 β 8 + 3 β 7 + 2 9 β 6 + 1 5 β 5 + ⋯ + 7 5
19*b11 - 26*b10 - 10*b9 - 38*b8 + 3*b7 + 29*b6 + 15*b5 - 39*b4 + 38*b3 - 15*b2 - 3*b1 + 75
ν 6 \nu^{6} ν 6 = = =
− 58 β 11 + 32 β 10 − 35 β 9 − 152 β 8 + 12 β 7 + 84 β 6 − 56 β 5 + ⋯ + 8 - 58 \beta_{11} + 32 \beta_{10} - 35 \beta_{9} - 152 \beta_{8} + 12 \beta_{7} + 84 \beta_{6} - 56 \beta_{5} + \cdots + 8 − 5 8 β 1 1 + 3 2 β 1 0 − 3 5 β 9 − 1 5 2 β 8 + 1 2 β 7 + 8 4 β 6 − 5 6 β 5 + ⋯ + 8
-58*b11 + 32*b10 - 35*b9 - 152*b8 + 12*b7 + 84*b6 - 56*b5 - 28*b4 + 58*b3 - 111*b2 - 6*b1 + 8
ν 7 \nu^{7} ν 7 = = =
− 225 β 11 + 251 β 10 + 65 β 9 + 146 β 8 − 9 β 7 − 154 β 6 + ⋯ − 554 - 225 \beta_{11} + 251 \beta_{10} + 65 \beta_{9} + 146 \beta_{8} - 9 \beta_{7} - 154 \beta_{6} + \cdots - 554 − 2 2 5 β 1 1 + 2 5 1 β 1 0 + 6 5 β 9 + 1 4 6 β 8 − 9 β 7 − 1 5 4 β 6 + ⋯ − 5 5 4
-225*b11 + 251*b10 + 65*b9 + 146*b8 - 9*b7 - 154*b6 - 174*b5 + 321*b4 - 232*b3 - 9*b2 + 30*b1 - 554
ν 8 \nu^{8} ν 8 = = =
246 β 11 − 16 β 10 + 428 β 9 + 1329 β 8 − 144 β 7 − 754 β 6 + ⋯ − 635 246 \beta_{11} - 16 \beta_{10} + 428 \beta_{9} + 1329 \beta_{8} - 144 \beta_{7} - 754 \beta_{6} + \cdots - 635 2 4 6 β 1 1 − 1 6 β 1 0 + 4 2 8 β 9 + 1 3 2 9 β 8 − 1 4 4 β 7 − 7 5 4 β 6 + ⋯ − 6 3 5
246*b11 - 16*b10 + 428*b9 + 1329*b8 - 144*b7 - 754*b6 + 331*b5 + 611*b4 - 630*b3 + 999*b2 + 96*b1 - 635
ν 9 \nu^{9} ν 9 = = =
2131 β 11 − 2099 β 10 − 121 β 9 + 137 β 8 − 135 β 7 + 587 β 6 + ⋯ + 3643 2131 \beta_{11} - 2099 \beta_{10} - 121 \beta_{9} + 137 \beta_{8} - 135 \beta_{7} + 587 \beta_{6} + \cdots + 3643 2 1 3 1 β 1 1 − 2 0 9 9 β 1 0 − 1 2 1 β 9 + 1 3 7 β 8 − 1 3 5 β 7 + 5 8 7 β 6 + ⋯ + 3 6 4 3
2131*b11 - 2099*b10 - 121*b9 + 137*b8 - 135*b7 + 587*b6 + 1792*b5 - 2155*b4 + 1245*b3 + 1266*b2 - 207*b1 + 3643
ν 10 \nu^{10} ν 1 0 = = =
183 β 11 − 1940 β 10 − 4070 β 9 − 10423 β 8 + 1152 β 7 + 6403 β 6 + ⋯ + 8649 183 \beta_{11} - 1940 \beta_{10} - 4070 \beta_{9} - 10423 \beta_{8} + 1152 \beta_{7} + 6403 \beta_{6} + \cdots + 8649 1 8 3 β 1 1 − 1 9 4 0 β 1 0 − 4 0 7 0 β 9 − 1 0 4 2 3 β 8 + 1 1 5 2 β 7 + 6 4 0 3 β 6 + ⋯ + 8 6 4 9
183*b11 - 1940*b10 - 4070*b9 - 10423*b8 + 1152*b7 + 6403*b6 - 1157*b5 - 7687*b4 + 6023*b3 - 7308*b2 - 1134*b1 + 8649
ν 11 \nu^{11} ν 1 1 = = =
− 17402 β 11 + 15444 β 10 − 3458 β 9 − 11198 β 8 + 2688 β 7 + ⋯ − 20208 - 17402 \beta_{11} + 15444 \beta_{10} - 3458 \beta_{9} - 11198 \beta_{8} + 2688 \beta_{7} + \cdots - 20208 − 1 7 4 0 2 β 1 1 + 1 5 4 4 4 β 1 0 − 3 4 5 8 β 9 − 1 1 1 9 8 β 8 + 2 6 8 8 β 7 + ⋯ − 2 0 2 0 8
-17402*b11 + 15444*b10 - 3458*b9 - 11198*b8 + 2688*b7 + 824*b6 - 16381*b5 + 10267*b4 - 4445*b3 - 19092*b2 + 777*b1 - 20208
Character values
We give the values of χ \chi χ on generators for ( Z / 3276 Z ) × \left(\mathbb{Z}/3276\mathbb{Z}\right)^\times ( Z / 3 2 7 6 Z ) × .
n n n
1639 1639 1 6 3 9
2017 2017 2 0 1 7
2341 2341 2 3 4 1
2549 2549 2 5 4 9
χ ( n ) \chi(n) χ ( n )
1 1 1
β 8 \beta_{8} β 8
1 1 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 5 12 + 28 T 5 10 + 294 T 5 8 + 1450 T 5 6 + 3385 T 5 4 + 3282 T 5 2 + 1089 T_{5}^{12} + 28T_{5}^{10} + 294T_{5}^{8} + 1450T_{5}^{6} + 3385T_{5}^{4} + 3282T_{5}^{2} + 1089 T 5 1 2 + 2 8 T 5 1 0 + 2 9 4 T 5 8 + 1 4 5 0 T 5 6 + 3 3 8 5 T 5 4 + 3 2 8 2 T 5 2 + 1 0 8 9
T5^12 + 28*T5^10 + 294*T5^8 + 1450*T5^6 + 3385*T5^4 + 3282*T5^2 + 1089
acting on S 2 n e w ( 3276 , [ χ ] ) S_{2}^{\mathrm{new}}(3276, [\chi]) S 2 n e w ( 3 2 7 6 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 12 T^{12} T 1 2
T^12
3 3 3
T 12 T^{12} T 1 2
T^12
5 5 5
T 12 + 28 T 10 + ⋯ + 1089 T^{12} + 28 T^{10} + \cdots + 1089 T 1 2 + 2 8 T 1 0 + ⋯ + 1 0 8 9
T^12 + 28*T^10 + 294*T^8 + 1450*T^6 + 3385*T^4 + 3282*T^2 + 1089
7 7 7
( T 4 − T 2 + 1 ) 3 (T^{4} - T^{2} + 1)^{3} ( T 4 − T 2 + 1 ) 3
(T^4 - T^2 + 1)^3
11 11 1 1
T 12 − 12 T 11 + ⋯ + 729 T^{12} - 12 T^{11} + \cdots + 729 T 1 2 − 1 2 T 1 1 + ⋯ + 7 2 9
T^12 - 12*T^11 + 44*T^10 + 48*T^9 - 461*T^8 - 318*T^7 + 4110*T^6 - 36*T^5 - 6363*T^4 + 486*T^3 + 8667*T^2 - 4374*T + 729
13 13 1 3
T 12 + 10 T 11 + ⋯ + 4826809 T^{12} + 10 T^{11} + \cdots + 4826809 T 1 2 + 1 0 T 1 1 + ⋯ + 4 8 2 6 8 0 9
T^12 + 10*T^11 + 40*T^10 + 140*T^9 + 754*T^8 + 3112*T^7 + 10235*T^6 + 40456*T^5 + 127426*T^4 + 307580*T^3 + 1142440*T^2 + 3712930*T + 4826809
17 17 1 7
T 12 − 4 T 11 + ⋯ + 131769 T^{12} - 4 T^{11} + \cdots + 131769 T 1 2 − 4 T 1 1 + ⋯ + 1 3 1 7 6 9
T^12 - 4*T^11 + 64*T^10 + 44*T^9 + 1867*T^8 + 3008*T^7 + 42718*T^6 + 122510*T^5 + 468361*T^4 + 563892*T^3 + 750495*T^2 - 252648*T + 131769
19 19 1 9
T 12 − 59 T 10 + ⋯ + 3101121 T^{12} - 59 T^{10} + \cdots + 3101121 T 1 2 − 5 9 T 1 0 + ⋯ + 3 1 0 1 1 2 1
T^12 - 59*T^10 + 2670*T^8 - 2400*T^7 - 43127*T^6 + 48660*T^5 + 531022*T^4 - 924540*T^3 - 994971*T^2 + 2007540*T + 3101121
23 23 2 3
T 12 + 6 T 11 + ⋯ + 31169889 T^{12} + 6 T^{11} + \cdots + 31169889 T 1 2 + 6 T 1 1 + ⋯ + 3 1 1 6 9 8 8 9
T^12 + 6*T^11 + 125*T^10 + 462*T^9 + 9507*T^8 + 32472*T^7 + 331772*T^6 + 153678*T^5 + 3945769*T^4 + 1412880*T^3 + 32568042*T^2 - 27769842*T + 31169889
29 29 2 9
T 12 − 2 T 11 + ⋯ + 5489649 T^{12} - 2 T^{11} + \cdots + 5489649 T 1 2 − 2 T 1 1 + ⋯ + 5 4 8 9 6 4 9
T^12 - 2*T^11 + 67*T^10 + 46*T^9 + 3013*T^8 + 1864*T^7 + 62662*T^6 + 76366*T^5 + 916087*T^4 + 436080*T^3 + 2484948*T^2 - 562320*T + 5489649
31 31 3 1
T 12 + ⋯ + 210221001 T^{12} + \cdots + 210221001 T 1 2 + ⋯ + 2 1 0 2 2 1 0 0 1
T^12 + 206*T^10 + 15985*T^8 + 582954*T^6 + 10212570*T^4 + 78004944*T^2 + 210221001
37 37 3 7
T 12 + 12 T 11 + ⋯ + 5329 T^{12} + 12 T^{11} + \cdots + 5329 T 1 2 + 1 2 T 1 1 + ⋯ + 5 3 2 9
T^12 + 12*T^11 - 30*T^10 - 936*T^9 + 2643*T^8 + 97026*T^7 + 624152*T^6 + 1820046*T^5 + 2627007*T^4 + 1606194*T^3 + 501099*T^2 + 79278*T + 5329
41 41 4 1
T 12 + ⋯ + 504631296 T^{12} + \cdots + 504631296 T 1 2 + ⋯ + 5 0 4 6 3 1 2 9 6
T^12 - 36*T^11 + 500*T^10 - 2448*T^9 - 7280*T^8 + 93504*T^7 + 161664*T^6 - 3025152*T^5 + 4315392*T^4 + 26542080*T^3 - 44126208*T^2 - 194088960*T + 504631296
43 43 4 3
T 12 + 2 T 11 + ⋯ + 218089 T^{12} + 2 T^{11} + \cdots + 218089 T 1 2 + 2 T 1 1 + ⋯ + 2 1 8 0 8 9
T^12 + 2*T^11 + 59*T^10 + 102*T^9 + 2587*T^8 + 3994*T^7 + 44524*T^6 + 14206*T^5 + 477799*T^4 + 397596*T^3 + 887246*T^2 - 356788*T + 218089
47 47 4 7
T 12 + ⋯ + 1244466729 T^{12} + \cdots + 1244466729 T 1 2 + ⋯ + 1 2 4 4 4 6 6 7 2 9
T^12 + 526*T^10 + 104685*T^8 + 9647758*T^6 + 398841322*T^4 + 5720434872*T^2 + 1244466729
53 53 5 3
( T 6 + 12 T 5 + ⋯ − 1119 ) 2 (T^{6} + 12 T^{5} + \cdots - 1119)^{2} ( T 6 + 1 2 T 5 + ⋯ − 1 1 1 9 ) 2
(T^6 + 12*T^5 + 19*T^4 - 252*T^3 - 1229*T^2 - 2016*T - 1119)^2
59 59 5 9
T 12 − 149 T 10 + ⋯ + 22268961 T^{12} - 149 T^{10} + \cdots + 22268961 T 1 2 − 1 4 9 T 1 0 + ⋯ + 2 2 2 6 8 9 6 1
T^12 - 149*T^10 + 21261*T^8 + 120786*T^7 + 102802*T^6 - 817800*T^5 - 978029*T^4 + 8313360*T^3 + 30507972*T^2 + 41734836*T + 22268961
61 61 6 1
T 12 + ⋯ + 578739249 T^{12} + \cdots + 578739249 T 1 2 + ⋯ + 5 7 8 7 3 9 2 4 9
T^12 + 4*T^11 + 261*T^10 + 724*T^9 + 57430*T^8 + 187932*T^7 + 2135889*T^6 + 8317512*T^5 + 65118006*T^4 + 204370776*T^3 + 596296485*T^2 + 654735312*T + 578739249
67 67 6 7
T 12 − 6 T 11 + ⋯ + 1062961 T^{12} - 6 T^{11} + \cdots + 1062961 T 1 2 − 6 T 1 1 + ⋯ + 1 0 6 2 9 6 1
T^12 - 6*T^11 - 165*T^10 + 1062*T^9 + 28695*T^8 + 60162*T^7 - 559792*T^6 - 941082*T^5 + 11359923*T^4 - 26175528*T^3 + 25321674*T^2 - 8375844*T + 1062961
71 71 7 1
T 12 + ⋯ + 1009904841 T^{12} + \cdots + 1009904841 T 1 2 + ⋯ + 1 0 0 9 9 0 4 8 4 1
T^12 - 18*T^11 - 100*T^10 + 3744*T^9 + 19525*T^8 - 1009464*T^7 + 9422214*T^6 - 31096188*T^5 - 7903647*T^4 + 206165736*T^3 + 153726093*T^2 - 1036503864*T + 1009904841
73 73 7 3
T 12 + 192 T 10 + ⋯ + 54804409 T^{12} + 192 T^{10} + \cdots + 54804409 T 1 2 + 1 9 2 T 1 0 + ⋯ + 5 4 8 0 4 4 0 9
T^12 + 192*T^10 + 12834*T^8 + 374858*T^6 + 5159793*T^4 + 31050486*T^2 + 54804409
79 79 7 9
( T 6 + 18 T 5 + ⋯ − 20331 ) 2 (T^{6} + 18 T^{5} + \cdots - 20331)^{2} ( T 6 + 1 8 T 5 + ⋯ − 2 0 3 3 1 ) 2
(T^6 + 18*T^5 - 123*T^4 - 3150*T^3 - 7578*T^2 + 34884*T - 20331)^2
83 83 8 3
T 12 + 148 T 10 + ⋯ + 23242041 T^{12} + 148 T^{10} + \cdots + 23242041 T 1 2 + 1 4 8 T 1 0 + ⋯ + 2 3 2 4 2 0 4 1
T^12 + 148*T^10 + 8046*T^8 + 199258*T^6 + 2292937*T^4 + 12022386*T^2 + 23242041
89 89 8 9
T 12 + ⋯ + 6347468241 T^{12} + \cdots + 6347468241 T 1 2 + ⋯ + 6 3 4 7 4 6 8 2 4 1
T^12 - 30*T^11 + 205*T^10 + 2850*T^9 - 21246*T^8 - 209502*T^7 + 2012125*T^6 + 3910866*T^5 - 64802390*T^4 - 37414398*T^3 + 1827670389*T^2 - 5833351278*T + 6347468241
97 97 9 7
T 12 + ⋯ + 6400160001 T^{12} + \cdots + 6400160001 T 1 2 + ⋯ + 6 4 0 0 1 6 0 0 0 1
T^12 + 6*T^11 - 401*T^10 - 2478*T^9 + 130221*T^8 + 253128*T^7 - 15996266*T^6 - 1933674*T^5 + 1589818531*T^4 - 9185983344*T^3 + 14162656140*T^2 + 18268068348*T + 6400160001
show more
show less