Properties

Label 3276.2.cf.b
Level 32763276
Weight 22
Character orbit 3276.cf
Analytic conductor 26.15926.159
Analytic rank 00
Dimension 1212
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3276,2,Mod(1765,3276)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3276.1765"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3276, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 5])) N = Newforms(chi, 2, names="a")
 
Level: N N == 3276=2232713 3276 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3276.cf (of order 66, degree 22, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,0,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 26.158991702226.1589917022
Analytic rank: 00
Dimension: 1212
Relative dimension: 66 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x126x11+37x10130x9+414x8942x7+1855x62748x5+3355x4++229 x^{12} - 6 x^{11} + 37 x^{10} - 130 x^{9} + 414 x^{8} - 942 x^{7} + 1855 x^{6} - 2748 x^{5} + 3355 x^{4} + \cdots + 229 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 1092)
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β111,\beta_1,\ldots,\beta_{11} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β6β4+β2)q5β4q7+(β11+β8+β7++1)q11+(β10β9β8+2)q13+(2β11+2β9++1)q17++(β11+3β10+2)q97+O(q100) q + ( - \beta_{6} - \beta_{4} + \cdots - \beta_{2}) q^{5} - \beta_{4} q^{7} + ( - \beta_{11} + \beta_{8} + \beta_{7} + \cdots + 1) q^{11} + (\beta_{10} - \beta_{9} - \beta_{8} + \cdots - 2) q^{13} + ( - 2 \beta_{11} + 2 \beta_{9} + \cdots + 1) q^{17}+ \cdots + ( - \beta_{11} + 3 \beta_{10} + \cdots - 2) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q+12q1110q13+4q176q23+4q25+2q296q3512q37+36q412q43+6q4924q53+6q554q61+14q65+6q67+18q718q77+6q97+O(q100) 12 q + 12 q^{11} - 10 q^{13} + 4 q^{17} - 6 q^{23} + 4 q^{25} + 2 q^{29} - 6 q^{35} - 12 q^{37} + 36 q^{41} - 2 q^{43} + 6 q^{49} - 24 q^{53} + 6 q^{55} - 4 q^{61} + 14 q^{65} + 6 q^{67} + 18 q^{71} - 8 q^{77}+ \cdots - 6 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x126x11+37x10130x9+414x8942x7+1855x62748x5+3355x4++229 x^{12} - 6 x^{11} + 37 x^{10} - 130 x^{9} + 414 x^{8} - 942 x^{7} + 1855 x^{6} - 2748 x^{5} + 3355 x^{4} + \cdots + 229 : Copy content Toggle raw display

β1\beta_{1}== (49ν11178ν10+1175ν92397ν8+7284ν75184ν6+4855ν5++32092)/1647 ( 49 \nu^{11} - 178 \nu^{10} + 1175 \nu^{9} - 2397 \nu^{8} + 7284 \nu^{7} - 5184 \nu^{6} + 4855 \nu^{5} + \cdots + 32092 ) / 1647 Copy content Toggle raw display
β2\beta_{2}== (13ν11+20ν1058ν9+1575ν85085ν7+19524ν639689ν5++23692)/1647 ( 13 \nu^{11} + 20 \nu^{10} - 58 \nu^{9} + 1575 \nu^{8} - 5085 \nu^{7} + 19524 \nu^{6} - 39689 \nu^{5} + \cdots + 23692 ) / 1647 Copy content Toggle raw display
β3\beta_{3}== (65ν11266ν10+1723ν94386ν8+13737ν721696ν6++2987)/1647 ( 65 \nu^{11} - 266 \nu^{10} + 1723 \nu^{9} - 4386 \nu^{8} + 13737 \nu^{7} - 21696 \nu^{6} + \cdots + 2987 ) / 1647 Copy content Toggle raw display
β4\beta_{4}== (13ν11163ν10+857ν94098ν8+12117ν733363ν6+26999)/1647 ( 13 \nu^{11} - 163 \nu^{10} + 857 \nu^{9} - 4098 \nu^{8} + 12117 \nu^{7} - 33363 \nu^{6} + \cdots - 26999 ) / 1647 Copy content Toggle raw display
β5\beta_{5}== (ν10+5ν929ν8+86ν7245ν6+455ν5753ν4+838ν3+162)/9 ( - \nu^{10} + 5 \nu^{9} - 29 \nu^{8} + 86 \nu^{7} - 245 \nu^{6} + 455 \nu^{5} - 753 \nu^{4} + 838 \nu^{3} + \cdots - 162 ) / 9 Copy content Toggle raw display
β6\beta_{6}== (13ν11102ν10+613ν92451ν8+7725ν718906ν6+36256ν5+7174)/549 ( 13 \nu^{11} - 102 \nu^{10} + 613 \nu^{9} - 2451 \nu^{8} + 7725 \nu^{7} - 18906 \nu^{6} + 36256 \nu^{5} + \cdots - 7174 ) / 549 Copy content Toggle raw display
β7\beta_{7}== (49ν11+361ν102090ν9+8253ν825218ν7+62646ν6++38729)/1647 ( - 49 \nu^{11} + 361 \nu^{10} - 2090 \nu^{9} + 8253 \nu^{8} - 25218 \nu^{7} + 62646 \nu^{6} + \cdots + 38729 ) / 1647 Copy content Toggle raw display
β8\beta_{8}== (104ν11572ν10+3562ν911739ν8+36912ν778414ν6+16888)/1647 ( 104 \nu^{11} - 572 \nu^{10} + 3562 \nu^{9} - 11739 \nu^{8} + 36912 \nu^{7} - 78414 \nu^{6} + \cdots - 16888 ) / 1647 Copy content Toggle raw display
β9\beta_{9}== (37ν11+234ν101374ν9+4855ν814629ν7+32389ν6++9992)/549 ( - 37 \nu^{11} + 234 \nu^{10} - 1374 \nu^{9} + 4855 \nu^{8} - 14629 \nu^{7} + 32389 \nu^{6} + \cdots + 9992 ) / 549 Copy content Toggle raw display
β10\beta_{10}== (175ν11+871ν105399ν9+16482ν851033ν7+101178ν6++13721)/1647 ( - 175 \nu^{11} + 871 \nu^{10} - 5399 \nu^{9} + 16482 \nu^{8} - 51033 \nu^{7} + 101178 \nu^{6} + \cdots + 13721 ) / 1647 Copy content Toggle raw display
β11\beta_{11}== (227ν11+1157ν107180ν9+22077ν868391ν7+134346ν6++6793)/1647 ( - 227 \nu^{11} + 1157 \nu^{10} - 7180 \nu^{9} + 22077 \nu^{8} - 68391 \nu^{7} + 134346 \nu^{6} + \cdots + 6793 ) / 1647 Copy content Toggle raw display
ν\nu== β8+β6+β3+1 -\beta_{8} + \beta_{6} + \beta_{3} + 1 Copy content Toggle raw display
ν2\nu^{2}== β11+β10β8+β6β5+β43 -\beta_{11} + \beta_{10} - \beta_{8} + \beta_{6} - \beta_{5} + \beta_{4} - 3 Copy content Toggle raw display
ν3\nu^{3}== β11+2β10+β9+7β85β6β5+4β46β3+3β29 -\beta_{11} + 2\beta_{10} + \beta_{9} + 7\beta_{8} - 5\beta_{6} - \beta_{5} + 4\beta_{4} - 6\beta_{3} + 3\beta_{2} - 9 Copy content Toggle raw display
ν4\nu^{4}== 9β117β10+2β9+15β89β6+8β52β4++10 9 \beta_{11} - 7 \beta_{10} + 2 \beta_{9} + 15 \beta_{8} - 9 \beta_{6} + 8 \beta_{5} - 2 \beta_{4} + \cdots + 10 Copy content Toggle raw display
ν5\nu^{5}== 19β1126β1010β938β8+3β7+29β6+15β5++75 19 \beta_{11} - 26 \beta_{10} - 10 \beta_{9} - 38 \beta_{8} + 3 \beta_{7} + 29 \beta_{6} + 15 \beta_{5} + \cdots + 75 Copy content Toggle raw display
ν6\nu^{6}== 58β11+32β1035β9152β8+12β7+84β656β5++8 - 58 \beta_{11} + 32 \beta_{10} - 35 \beta_{9} - 152 \beta_{8} + 12 \beta_{7} + 84 \beta_{6} - 56 \beta_{5} + \cdots + 8 Copy content Toggle raw display
ν7\nu^{7}== 225β11+251β10+65β9+146β89β7154β6+554 - 225 \beta_{11} + 251 \beta_{10} + 65 \beta_{9} + 146 \beta_{8} - 9 \beta_{7} - 154 \beta_{6} + \cdots - 554 Copy content Toggle raw display
ν8\nu^{8}== 246β1116β10+428β9+1329β8144β7754β6+635 246 \beta_{11} - 16 \beta_{10} + 428 \beta_{9} + 1329 \beta_{8} - 144 \beta_{7} - 754 \beta_{6} + \cdots - 635 Copy content Toggle raw display
ν9\nu^{9}== 2131β112099β10121β9+137β8135β7+587β6++3643 2131 \beta_{11} - 2099 \beta_{10} - 121 \beta_{9} + 137 \beta_{8} - 135 \beta_{7} + 587 \beta_{6} + \cdots + 3643 Copy content Toggle raw display
ν10\nu^{10}== 183β111940β104070β910423β8+1152β7+6403β6++8649 183 \beta_{11} - 1940 \beta_{10} - 4070 \beta_{9} - 10423 \beta_{8} + 1152 \beta_{7} + 6403 \beta_{6} + \cdots + 8649 Copy content Toggle raw display
ν11\nu^{11}== 17402β11+15444β103458β911198β8+2688β7+20208 - 17402 \beta_{11} + 15444 \beta_{10} - 3458 \beta_{9} - 11198 \beta_{8} + 2688 \beta_{7} + \cdots - 20208 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3276Z)×\left(\mathbb{Z}/3276\mathbb{Z}\right)^\times.

nn 16391639 20172017 23412341 25492549
χ(n)\chi(n) 11 β8\beta_{8} 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1765.1
0.500000 + 2.25481i
0.500000 + 2.83442i
0.500000 + 0.754996i
0.500000 2.14378i
0.500000 0.610858i
0.500000 1.35754i
0.500000 + 1.35754i
0.500000 + 0.610858i
0.500000 + 2.14378i
0.500000 0.754996i
0.500000 2.83442i
0.500000 2.25481i
0 0 0 2.38879i 0 −0.866025 0.500000i 0 0 0
1765.2 0 0 0 0.968396i 0 0.866025 + 0.500000i 0 0 0
1765.3 0 0 0 0.888970i 0 −0.866025 0.500000i 0 0 0
1765.4 0 0 0 2.00981i 0 −0.866025 0.500000i 0 0 0
1765.5 0 0 0 2.47688i 0 0.866025 + 0.500000i 0 0 0
1765.6 0 0 0 3.22356i 0 0.866025 + 0.500000i 0 0 0
2773.1 0 0 0 3.22356i 0 0.866025 0.500000i 0 0 0
2773.2 0 0 0 2.47688i 0 0.866025 0.500000i 0 0 0
2773.3 0 0 0 2.00981i 0 −0.866025 + 0.500000i 0 0 0
2773.4 0 0 0 0.888970i 0 −0.866025 + 0.500000i 0 0 0
2773.5 0 0 0 0.968396i 0 0.866025 0.500000i 0 0 0
2773.6 0 0 0 2.38879i 0 −0.866025 + 0.500000i 0 0 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1765.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.e even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3276.2.cf.b 12
3.b odd 2 1 1092.2.bg.a 12
13.e even 6 1 inner 3276.2.cf.b 12
39.h odd 6 1 1092.2.bg.a 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1092.2.bg.a 12 3.b odd 2 1
1092.2.bg.a 12 39.h odd 6 1
3276.2.cf.b 12 1.a even 1 1 trivial
3276.2.cf.b 12 13.e even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T512+28T510+294T58+1450T56+3385T54+3282T52+1089 T_{5}^{12} + 28T_{5}^{10} + 294T_{5}^{8} + 1450T_{5}^{6} + 3385T_{5}^{4} + 3282T_{5}^{2} + 1089 acting on S2new(3276,[χ])S_{2}^{\mathrm{new}}(3276, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T12 T^{12} Copy content Toggle raw display
33 T12 T^{12} Copy content Toggle raw display
55 T12+28T10++1089 T^{12} + 28 T^{10} + \cdots + 1089 Copy content Toggle raw display
77 (T4T2+1)3 (T^{4} - T^{2} + 1)^{3} Copy content Toggle raw display
1111 T1212T11++729 T^{12} - 12 T^{11} + \cdots + 729 Copy content Toggle raw display
1313 T12+10T11++4826809 T^{12} + 10 T^{11} + \cdots + 4826809 Copy content Toggle raw display
1717 T124T11++131769 T^{12} - 4 T^{11} + \cdots + 131769 Copy content Toggle raw display
1919 T1259T10++3101121 T^{12} - 59 T^{10} + \cdots + 3101121 Copy content Toggle raw display
2323 T12+6T11++31169889 T^{12} + 6 T^{11} + \cdots + 31169889 Copy content Toggle raw display
2929 T122T11++5489649 T^{12} - 2 T^{11} + \cdots + 5489649 Copy content Toggle raw display
3131 T12++210221001 T^{12} + \cdots + 210221001 Copy content Toggle raw display
3737 T12+12T11++5329 T^{12} + 12 T^{11} + \cdots + 5329 Copy content Toggle raw display
4141 T12++504631296 T^{12} + \cdots + 504631296 Copy content Toggle raw display
4343 T12+2T11++218089 T^{12} + 2 T^{11} + \cdots + 218089 Copy content Toggle raw display
4747 T12++1244466729 T^{12} + \cdots + 1244466729 Copy content Toggle raw display
5353 (T6+12T5+1119)2 (T^{6} + 12 T^{5} + \cdots - 1119)^{2} Copy content Toggle raw display
5959 T12149T10++22268961 T^{12} - 149 T^{10} + \cdots + 22268961 Copy content Toggle raw display
6161 T12++578739249 T^{12} + \cdots + 578739249 Copy content Toggle raw display
6767 T126T11++1062961 T^{12} - 6 T^{11} + \cdots + 1062961 Copy content Toggle raw display
7171 T12++1009904841 T^{12} + \cdots + 1009904841 Copy content Toggle raw display
7373 T12+192T10++54804409 T^{12} + 192 T^{10} + \cdots + 54804409 Copy content Toggle raw display
7979 (T6+18T5+20331)2 (T^{6} + 18 T^{5} + \cdots - 20331)^{2} Copy content Toggle raw display
8383 T12+148T10++23242041 T^{12} + 148 T^{10} + \cdots + 23242041 Copy content Toggle raw display
8989 T12++6347468241 T^{12} + \cdots + 6347468241 Copy content Toggle raw display
9797 T12++6400160001 T^{12} + \cdots + 6400160001 Copy content Toggle raw display
show more
show less