L(s) = 1 | + 0.968i·5-s + (0.866 − 0.5i)7-s + (−2.27 − 1.31i)11-s + (−3.60 − 0.0604i)13-s + (−0.986 − 1.70i)17-s + (3.33 − 1.92i)19-s + (−1.68 + 2.91i)23-s + 4.06·25-s + (−2.56 + 4.44i)29-s + 2.80i·31-s + (0.484 + 0.838i)35-s + (−0.265 − 0.153i)37-s + (−2.68 − 1.55i)41-s + (1.78 + 3.09i)43-s + 11.8i·47-s + ⋯ |
L(s) = 1 | + 0.433i·5-s + (0.327 − 0.188i)7-s + (−0.685 − 0.395i)11-s + (−0.999 − 0.0167i)13-s + (−0.239 − 0.414i)17-s + (0.764 − 0.441i)19-s + (−0.351 + 0.608i)23-s + 0.812·25-s + (−0.476 + 0.826i)29-s + 0.503i·31-s + (0.0818 + 0.141i)35-s + (−0.0436 − 0.0251i)37-s + (−0.419 − 0.242i)41-s + (0.272 + 0.472i)43-s + 1.72i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3276 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.496 - 0.867i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3276 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.496 - 0.867i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9029381572\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9029381572\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-0.866 + 0.5i)T \) |
| 13 | \( 1 + (3.60 + 0.0604i)T \) |
good | 5 | \( 1 - 0.968iT - 5T^{2} \) |
| 11 | \( 1 + (2.27 + 1.31i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (0.986 + 1.70i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.33 + 1.92i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (1.68 - 2.91i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (2.56 - 4.44i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 2.80iT - 31T^{2} \) |
| 37 | \( 1 + (0.265 + 0.153i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (2.68 + 1.55i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-1.78 - 3.09i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 11.8iT - 47T^{2} \) |
| 53 | \( 1 + 4.44T + 53T^{2} \) |
| 59 | \( 1 + (1.47 - 0.853i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-7.20 - 12.4i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.09 - 1.20i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (13.6 - 7.87i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 7.47iT - 73T^{2} \) |
| 79 | \( 1 - 0.738T + 79T^{2} \) |
| 83 | \( 1 - 5.59iT - 83T^{2} \) |
| 89 | \( 1 + (6.77 + 3.91i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-7.75 + 4.47i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.911146766727701772617742377690, −8.047295397157054024237466282273, −7.29773140182071923440506635860, −6.92081485205352061224416752575, −5.72678533252942311919463497623, −5.12974124344878887824108652063, −4.33626957759550742204033710017, −3.13173010699035818333028082874, −2.59852409253865668274120300153, −1.24944990725363801973922542617,
0.27699417621681705043920812998, 1.78502187748449291308413981852, 2.57508211382709089248288594086, 3.71782704132540311574855757001, 4.72845347726372881724969148649, 5.17635481057688505659181646708, 6.06433434739409060171416952430, 7.00926102238274508368347591543, 7.75418825779812731018261405908, 8.293582660036717933512047835679