Properties

Label 325.6.a.j
Level $325$
Weight $6$
Character orbit 325.a
Self dual yes
Analytic conductor $52.125$
Analytic rank $0$
Dimension $11$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,6,Mod(1,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 325.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.1247414392\)
Analytic rank: \(0\)
Dimension: \(11\)
Coefficient field: \(\mathbb{Q}[x]/(x^{11} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{11} - 5 x^{10} - 257 x^{9} + 1165 x^{8} + 22234 x^{7} - 90282 x^{6} - 751180 x^{5} + 2564400 x^{4} + \cdots + 44115200 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6}\cdot 5^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{10}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + (\beta_{3} - \beta_1 - 1) q^{3} + (\beta_{2} + 17) q^{4} + ( - \beta_{6} + 2 \beta_{3} + \cdots + 30) q^{6}+ \cdots + (\beta_{9} + \beta_{7} - \beta_{6} + \cdots + 131) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - \beta_1 q^{2} + (\beta_{3} - \beta_1 - 1) q^{3} + (\beta_{2} + 17) q^{4} + ( - \beta_{6} + 2 \beta_{3} + \cdots + 30) q^{6}+ \cdots + (182 \beta_{10} + 259 \beta_{9} + \cdots + 41835) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 11 q - 5 q^{2} - 11 q^{3} + 187 q^{4} + 351 q^{6} - 208 q^{7} - 165 q^{8} + 1372 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 11 q - 5 q^{2} - 11 q^{3} + 187 q^{4} + 351 q^{6} - 208 q^{7} - 165 q^{8} + 1372 q^{9} + 1276 q^{11} - 1533 q^{12} - 1859 q^{13} + 578 q^{14} + 5707 q^{16} - 2218 q^{17} + 6776 q^{18} + 3520 q^{19} + 1706 q^{21} + 6785 q^{22} + 1215 q^{23} + 7723 q^{24} + 845 q^{26} - 161 q^{27} - 12746 q^{28} + 18425 q^{29} + 9068 q^{31} - 21165 q^{32} - 19748 q^{33} - 14455 q^{34} + 37684 q^{36} + 2280 q^{37} + 23783 q^{38} + 1859 q^{39} - 10010 q^{41} + 44184 q^{42} - 6763 q^{43} + 60651 q^{44} - 9858 q^{46} - 4110 q^{47} - 63289 q^{48} + 73313 q^{49} + 36606 q^{51} - 31603 q^{52} - 15633 q^{53} + 48013 q^{54} - 1262 q^{56} + 205974 q^{57} - 77652 q^{58} + 131642 q^{59} - 43365 q^{61} + 115940 q^{62} - 218466 q^{63} + 180071 q^{64} - 58607 q^{66} + 100904 q^{67} - 371277 q^{68} + 59345 q^{69} + 68420 q^{71} + 210708 q^{72} - 124436 q^{73} + 371396 q^{74} + 22517 q^{76} + 150978 q^{77} - 59319 q^{78} + 52239 q^{79} + 107507 q^{81} + 351137 q^{82} - 211538 q^{83} + 852716 q^{84} + 202246 q^{86} + 28273 q^{87} + 28107 q^{88} + 327712 q^{89} + 35152 q^{91} + 413252 q^{92} - 243338 q^{93} + 649974 q^{94} + 899663 q^{96} + 110796 q^{97} - 27143 q^{98} + 426698 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{11} - 5 x^{10} - 257 x^{9} + 1165 x^{8} + 22234 x^{7} - 90282 x^{6} - 751180 x^{5} + 2564400 x^{4} + \cdots + 44115200 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 49 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 8351315 \nu^{10} - 62345059 \nu^{9} + 2150889153 \nu^{8} + 15801380623 \nu^{7} + \cdots + 69560356278400 ) / 6153930604800 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 14779564 \nu^{10} - 63760673 \nu^{9} + 3564258525 \nu^{8} + 19680597269 \nu^{7} + \cdots - 266861708622400 ) / 3076965302400 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 1457477 \nu^{10} + 4958145 \nu^{9} - 365671467 \nu^{8} - 1356282429 \nu^{7} + \cdots + 2986895958400 ) / 93241372800 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 5033511 \nu^{10} - 5003705 \nu^{9} + 1243018371 \nu^{8} + 1816203137 \nu^{7} + \cdots + 16275665106400 ) / 256413775200 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 136014289 \nu^{10} - 83517389 \nu^{9} + 35623272087 \nu^{8} + 35249071601 \nu^{7} + \cdots + 39\!\cdots\!00 ) / 6153930604800 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 9140405 \nu^{10} - 17080841 \nu^{9} - 2343707873 \nu^{8} + 3438961437 \nu^{7} + \cdots - 64143233480960 ) / 410262040320 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 85970113 \nu^{10} - 45374565 \nu^{9} - 21662686333 \nu^{8} + 2665182089 \nu^{7} + \cdots - 541179137126400 ) / 2051310201600 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 308037113 \nu^{10} + 24595469 \nu^{9} + 76517962005 \nu^{8} + 25107723103 \nu^{7} + \cdots + 14\!\cdots\!00 ) / 6153930604800 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 49 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{9} + \beta_{8} - \beta_{6} + \beta_{2} + 85\beta _1 + 5 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 5 \beta_{10} + 6 \beta_{8} + 3 \beta_{7} - 8 \beta_{6} + \beta_{5} - \beta_{4} - 4 \beta_{3} + \cdots + 4181 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 20 \beta_{10} - 133 \beta_{9} + 157 \beta_{8} + 12 \beta_{7} - 179 \beta_{6} - 24 \beta_{5} + \cdots + 2303 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 885 \beta_{10} - 146 \beta_{9} + 1110 \beta_{8} + 461 \beta_{7} - 1724 \beta_{6} + 37 \beta_{5} + \cdots + 415083 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 4704 \beta_{10} - 15449 \beta_{9} + 20835 \beta_{8} + 2822 \beta_{7} - 26521 \beta_{6} - 4944 \beta_{5} + \cdots + 539521 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 124967 \beta_{10} - 35680 \beta_{9} + 162426 \beta_{8} + 61441 \beta_{7} - 279588 \beta_{6} + \cdots + 43863969 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 802652 \beta_{10} - 1767337 \beta_{9} + 2651997 \beta_{8} + 474136 \beta_{7} - 3670911 \beta_{6} + \cdots + 97501055 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( 16504085 \beta_{10} - 6232822 \beta_{9} + 22193634 \beta_{8} + 7926229 \beta_{7} - 40588944 \beta_{6} + \cdots + 4800223251 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
11.2252
9.27946
6.07859
5.83767
2.89241
0.979695
−1.96479
−3.78432
−5.84001
−9.60154
−10.1023
−11.2252 −19.1897 94.0044 0 215.408 −70.9909 −696.009 125.246 0
1.2 −9.27946 5.85765 54.1083 0 −54.3558 90.4001 −205.153 −208.688 0
1.3 −6.07859 −25.6203 4.94922 0 155.735 −137.301 164.431 413.398 0
1.4 −5.83767 12.7661 2.07840 0 −74.5243 −231.930 174.672 −80.0268 0
1.5 −2.89241 3.45730 −23.6340 0 −9.99993 148.288 160.916 −231.047 0
1.6 −0.979695 −20.7822 −31.0402 0 20.3602 233.896 61.7601 188.898 0
1.7 1.96479 29.7675 −28.1396 0 58.4868 −176.972 −118.162 643.103 0
1.8 3.78432 −8.20788 −17.6789 0 −31.0612 −88.9969 −188.001 −175.631 0
1.9 5.84001 12.3562 2.10573 0 72.1603 135.041 −174.583 −90.3246 0
1.10 9.60154 −25.9222 60.1895 0 −248.893 −181.554 270.662 428.963 0
1.11 10.1023 24.5176 70.0572 0 247.685 72.1186 384.466 358.110 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.11
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 325.6.a.j 11
5.b even 2 1 325.6.a.k yes 11
5.c odd 4 2 325.6.b.i 22
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
325.6.a.j 11 1.a even 1 1 trivial
325.6.a.k yes 11 5.b even 2 1
325.6.b.i 22 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{11} + 5 T_{2}^{10} - 257 T_{2}^{9} - 1165 T_{2}^{8} + 22234 T_{2}^{7} + 90282 T_{2}^{6} + \cdots - 44115200 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(325))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{11} + 5 T^{10} + \cdots - 44115200 \) Copy content Toggle raw display
$3$ \( T^{11} + \cdots + 5068375276032 \) Copy content Toggle raw display
$5$ \( T^{11} \) Copy content Toggle raw display
$7$ \( T^{11} + \cdots - 19\!\cdots\!28 \) Copy content Toggle raw display
$11$ \( T^{11} + \cdots + 58\!\cdots\!12 \) Copy content Toggle raw display
$13$ \( (T + 169)^{11} \) Copy content Toggle raw display
$17$ \( T^{11} + \cdots - 14\!\cdots\!08 \) Copy content Toggle raw display
$19$ \( T^{11} + \cdots - 54\!\cdots\!60 \) Copy content Toggle raw display
$23$ \( T^{11} + \cdots - 22\!\cdots\!24 \) Copy content Toggle raw display
$29$ \( T^{11} + \cdots + 33\!\cdots\!60 \) Copy content Toggle raw display
$31$ \( T^{11} + \cdots - 29\!\cdots\!80 \) Copy content Toggle raw display
$37$ \( T^{11} + \cdots + 17\!\cdots\!44 \) Copy content Toggle raw display
$41$ \( T^{11} + \cdots + 22\!\cdots\!72 \) Copy content Toggle raw display
$43$ \( T^{11} + \cdots + 86\!\cdots\!40 \) Copy content Toggle raw display
$47$ \( T^{11} + \cdots + 16\!\cdots\!80 \) Copy content Toggle raw display
$53$ \( T^{11} + \cdots - 13\!\cdots\!36 \) Copy content Toggle raw display
$59$ \( T^{11} + \cdots + 27\!\cdots\!40 \) Copy content Toggle raw display
$61$ \( T^{11} + \cdots - 99\!\cdots\!24 \) Copy content Toggle raw display
$67$ \( T^{11} + \cdots + 27\!\cdots\!64 \) Copy content Toggle raw display
$71$ \( T^{11} + \cdots + 64\!\cdots\!72 \) Copy content Toggle raw display
$73$ \( T^{11} + \cdots - 11\!\cdots\!92 \) Copy content Toggle raw display
$79$ \( T^{11} + \cdots - 18\!\cdots\!20 \) Copy content Toggle raw display
$83$ \( T^{11} + \cdots - 18\!\cdots\!88 \) Copy content Toggle raw display
$89$ \( T^{11} + \cdots - 24\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{11} + \cdots + 74\!\cdots\!40 \) Copy content Toggle raw display
show more
show less