Properties

Label 325.6.a
Level $325$
Weight $6$
Character orbit 325.a
Rep. character $\chi_{325}(1,\cdot)$
Character field $\Q$
Dimension $95$
Newform subspaces $13$
Sturm bound $210$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 325.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 13 \)
Sturm bound: \(210\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(325))\).

Total New Old
Modular forms 180 95 85
Cusp forms 168 95 73
Eisenstein series 12 0 12

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(5\)\(13\)FrickeDim
\(+\)\(+\)\(+\)\(21\)
\(+\)\(-\)\(-\)\(24\)
\(-\)\(+\)\(-\)\(26\)
\(-\)\(-\)\(+\)\(24\)
Plus space\(+\)\(45\)
Minus space\(-\)\(50\)

Trace form

\( 95 q + 2 q^{2} - 24 q^{3} + 1478 q^{4} + 196 q^{6} + 292 q^{7} + 60 q^{8} + 7947 q^{9} + O(q^{10}) \) \( 95 q + 2 q^{2} - 24 q^{3} + 1478 q^{4} + 196 q^{6} + 292 q^{7} + 60 q^{8} + 7947 q^{9} - 472 q^{11} + 302 q^{12} + 169 q^{13} + 1610 q^{14} + 25122 q^{16} - 1418 q^{17} - 5714 q^{18} + 1668 q^{19} - 916 q^{21} - 7016 q^{22} - 1744 q^{23} + 4184 q^{24} - 2028 q^{26} + 780 q^{27} - 9436 q^{28} + 11106 q^{29} + 1840 q^{31} + 4312 q^{32} + 21012 q^{33} - 24564 q^{34} + 147008 q^{36} + 8762 q^{37} + 6440 q^{38} - 6084 q^{39} - 52134 q^{41} + 43794 q^{42} + 1516 q^{43} + 85300 q^{44} + 11744 q^{46} + 12892 q^{47} + 16226 q^{48} + 246559 q^{49} + 81944 q^{51} - 11492 q^{52} + 15626 q^{53} - 60676 q^{54} - 61146 q^{56} + 66460 q^{57} + 170860 q^{58} - 40932 q^{59} - 39710 q^{61} - 108636 q^{62} - 18244 q^{63} + 211282 q^{64} - 98180 q^{66} + 133832 q^{67} - 10526 q^{68} + 133028 q^{69} + 27060 q^{71} - 157680 q^{72} + 60486 q^{73} - 64866 q^{74} - 9900 q^{76} - 107636 q^{77} - 36842 q^{78} - 7100 q^{79} + 417343 q^{81} + 72384 q^{82} - 140224 q^{83} + 602148 q^{84} - 697424 q^{86} - 198140 q^{87} - 11540 q^{88} - 245614 q^{89} + 4056 q^{91} - 355288 q^{92} - 186148 q^{93} + 678938 q^{94} + 1021752 q^{96} - 430118 q^{97} + 24874 q^{98} - 1077416 q^{99} + O(q^{100}) \)

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(325))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 5 13
325.6.a.a 325.a 1.a $1$ $52.125$ \(\Q\) None 65.6.a.a \(-5\) \(-6\) \(0\) \(244\) $+$ $-$ $\mathrm{SU}(2)$ \(q-5q^{2}-6q^{3}-7q^{4}+30q^{6}+244q^{7}+\cdots\)
325.6.a.b 325.a 1.a $2$ $52.125$ \(\Q(\sqrt{17}) \) None 13.6.a.a \(5\) \(28\) \(0\) \(36\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(3-\beta )q^{2}+(11+6\beta )q^{3}+(-19-5\beta )q^{4}+\cdots\)
325.6.a.c 325.a 1.a $3$ $52.125$ 3.3.168897.1 None 13.6.a.b \(-7\) \(-8\) \(0\) \(60\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(-2-\beta _{1})q^{2}+(-3+\beta _{1}+\beta _{2})q^{3}+\cdots\)
325.6.a.d 325.a 1.a $3$ $52.125$ 3.3.49857.1 None 65.6.a.b \(2\) \(16\) \(0\) \(208\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+(5+\beta _{2})q^{3}+(-4+\beta _{1}+\cdots)q^{4}+\cdots\)
325.6.a.e 325.a 1.a $4$ $52.125$ 4.4.1878612.1 None 65.6.a.c \(9\) \(4\) \(0\) \(136\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(2-\beta _{1}-\beta _{2})q^{2}+(1+\beta _{2}+\beta _{3})q^{3}+\cdots\)
325.6.a.f 325.a 1.a $6$ $52.125$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 65.6.a.e \(-2\) \(-20\) \(0\) \(-172\) $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(-3+\beta _{2})q^{3}+(23-\beta _{1}+\cdots)q^{4}+\cdots\)
325.6.a.g 325.a 1.a $6$ $52.125$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 65.6.a.d \(0\) \(-38\) \(0\) \(-220\) $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(-6-\beta _{1}-\beta _{2})q^{3}+(22+\cdots)q^{4}+\cdots\)
325.6.a.h 325.a 1.a $9$ $52.125$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 325.6.a.h \(-5\) \(-11\) \(0\) \(12\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}+(-1-\beta _{4})q^{3}+(11+\cdots)q^{4}+\cdots\)
325.6.a.i 325.a 1.a $9$ $52.125$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 325.6.a.h \(5\) \(11\) \(0\) \(-12\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+(1+\beta _{4})q^{3}+(11-2\beta _{1}+\cdots)q^{4}+\cdots\)
325.6.a.j 325.a 1.a $11$ $52.125$ \(\mathbb{Q}[x]/(x^{11} - \cdots)\) None 325.6.a.j \(-5\) \(-11\) \(0\) \(-208\) $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(-1-\beta _{1}+\beta _{3})q^{3}+(17+\cdots)q^{4}+\cdots\)
325.6.a.k 325.a 1.a $11$ $52.125$ \(\mathbb{Q}[x]/(x^{11} - \cdots)\) None 325.6.a.j \(5\) \(11\) \(0\) \(208\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(1+\beta _{1}-\beta _{3})q^{3}+(17+\beta _{2}+\cdots)q^{4}+\cdots\)
325.6.a.l 325.a 1.a $15$ $52.125$ \(\mathbb{Q}[x]/(x^{15} - \cdots)\) None 65.6.b.a \(-12\) \(-36\) \(0\) \(-306\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}+(-2-\beta _{2})q^{3}+(2^{4}+\cdots)q^{4}+\cdots\)
325.6.a.m 325.a 1.a $15$ $52.125$ \(\mathbb{Q}[x]/(x^{15} - \cdots)\) None 65.6.b.a \(12\) \(36\) \(0\) \(306\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+(2+\beta _{2})q^{3}+(2^{4}-\beta _{1}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(325))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_0(325)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(13))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(25))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(65))\)\(^{\oplus 2}\)