Properties

Label 325.2.x.c.93.7
Level $325$
Weight $2$
Character 325.93
Analytic conductor $2.595$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [325,2,Mod(7,325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(325, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([3, 11])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("325.7"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 325.x (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.59513806569\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 93.7
Character \(\chi\) \(=\) 325.93
Dual form 325.2.x.c.7.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.10480 - 0.637857i) q^{2} +(-0.381652 + 1.42434i) q^{3} +(-0.186277 + 0.322641i) q^{4} +(0.486878 + 1.81705i) q^{6} +(0.0287274 - 0.0497573i) q^{7} +3.02670i q^{8} +(0.714982 + 0.412795i) q^{9} +(-0.181334 + 0.676748i) q^{11} +(-0.388459 - 0.388459i) q^{12} +(-2.57529 + 2.52346i) q^{13} -0.0732958i q^{14} +(1.55805 + 2.69862i) q^{16} +(-1.30506 + 0.349689i) q^{17} +1.05322 q^{18} +(3.88248 - 1.04031i) q^{19} +(0.0599076 + 0.0599076i) q^{21} +(0.231330 + 0.863337i) q^{22} +(2.25440 + 0.604066i) q^{23} +(-4.31106 - 1.15514i) q^{24} +(-1.23558 + 4.43059i) q^{26} +(-3.98891 + 3.98891i) q^{27} +(0.0107025 + 0.0185373i) q^{28} +(7.78617 - 4.49535i) q^{29} +(3.85405 - 3.85405i) q^{31} +(-1.79973 - 1.03908i) q^{32} +(-0.894715 - 0.516564i) q^{33} +(-1.21878 + 1.21878i) q^{34} +(-0.266369 + 0.153788i) q^{36} +(-1.96095 - 3.39647i) q^{37} +(3.62580 - 3.62580i) q^{38} +(-2.61141 - 4.63119i) q^{39} +(-8.25736 - 2.21255i) q^{41} +(0.104398 + 0.0279735i) q^{42} +(-1.80016 - 6.71830i) q^{43} +(-0.184569 - 0.184569i) q^{44} +(2.87597 - 0.770615i) q^{46} +6.66428 q^{47} +(-4.43839 + 1.18926i) q^{48} +(3.49835 + 6.05932i) q^{49} -1.99231i q^{51} +(-0.334455 - 1.30096i) q^{52} +(-3.35108 - 3.35108i) q^{53} +(-1.86260 + 6.95130i) q^{54} +(0.150600 + 0.0869492i) q^{56} +5.92701i q^{57} +(5.73478 - 9.93293i) q^{58} +(-0.783616 - 2.92449i) q^{59} +(3.32298 - 5.75557i) q^{61} +(1.79963 - 6.71629i) q^{62} +(0.0410791 - 0.0237170i) q^{63} -8.88332 q^{64} -1.31798 q^{66} +(13.2550 - 7.65276i) q^{67} +(0.130278 - 0.486205i) q^{68} +(-1.72079 + 2.98050i) q^{69} +(-1.68888 - 6.30298i) q^{71} +(-1.24941 + 2.16403i) q^{72} +8.03602i q^{73} +(-4.33293 - 2.50162i) q^{74} +(-0.387571 + 1.44643i) q^{76} +(0.0284639 + 0.0284639i) q^{77} +(-5.83912 - 3.45083i) q^{78} +15.0122i q^{79} +(-2.92082 - 5.05900i) q^{81} +(-10.5340 + 2.82259i) q^{82} +12.7028 q^{83} +(-0.0304881 + 0.00816925i) q^{84} +(-6.27414 - 6.27414i) q^{86} +(3.43131 + 12.8058i) q^{87} +(-2.04831 - 0.548844i) q^{88} +(-12.8161 - 3.43407i) q^{89} +(0.0515791 + 0.200632i) q^{91} +(-0.614840 + 0.614840i) q^{92} +(4.01859 + 6.96040i) q^{93} +(7.36270 - 4.25086i) q^{94} +(2.16687 - 2.16687i) q^{96} +(-1.42718 - 0.823984i) q^{97} +(7.72996 + 4.46289i) q^{98} +(-0.409009 + 0.409009i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 24 q^{4} - 12 q^{6} - 24 q^{9} + 8 q^{11} - 32 q^{16} + 24 q^{19} + 32 q^{21} - 56 q^{24} + 76 q^{26} + 36 q^{29} + 8 q^{31} - 44 q^{34} - 60 q^{36} - 44 q^{39} - 52 q^{41} + 80 q^{44} - 60 q^{46}+ \cdots - 208 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{1}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.10480 0.637857i 0.781212 0.451033i −0.0556477 0.998450i \(-0.517722\pi\)
0.836860 + 0.547418i \(0.184389\pi\)
\(3\) −0.381652 + 1.42434i −0.220347 + 0.822345i 0.763869 + 0.645371i \(0.223297\pi\)
−0.984216 + 0.176973i \(0.943369\pi\)
\(4\) −0.186277 + 0.322641i −0.0931385 + 0.161321i
\(5\) 0 0
\(6\) 0.486878 + 1.81705i 0.198767 + 0.741809i
\(7\) 0.0287274 0.0497573i 0.0108579 0.0188065i −0.860545 0.509374i \(-0.829877\pi\)
0.871403 + 0.490567i \(0.163210\pi\)
\(8\) 3.02670i 1.07010i
\(9\) 0.714982 + 0.412795i 0.238327 + 0.137598i
\(10\) 0 0
\(11\) −0.181334 + 0.676748i −0.0546743 + 0.204047i −0.987860 0.155348i \(-0.950350\pi\)
0.933186 + 0.359395i \(0.117017\pi\)
\(12\) −0.388459 0.388459i −0.112138 0.112138i
\(13\) −2.57529 + 2.52346i −0.714258 + 0.699882i
\(14\) 0.0732958i 0.0195891i
\(15\) 0 0
\(16\) 1.55805 + 2.69862i 0.389512 + 0.674654i
\(17\) −1.30506 + 0.349689i −0.316523 + 0.0848122i −0.413583 0.910466i \(-0.635723\pi\)
0.0970598 + 0.995279i \(0.469056\pi\)
\(18\) 1.05322 0.248245
\(19\) 3.88248 1.04031i 0.890702 0.238663i 0.215683 0.976463i \(-0.430802\pi\)
0.675019 + 0.737801i \(0.264136\pi\)
\(20\) 0 0
\(21\) 0.0599076 + 0.0599076i 0.0130729 + 0.0130729i
\(22\) 0.231330 + 0.863337i 0.0493198 + 0.184064i
\(23\) 2.25440 + 0.604066i 0.470076 + 0.125956i 0.486078 0.873916i \(-0.338427\pi\)
−0.0160022 + 0.999872i \(0.505094\pi\)
\(24\) −4.31106 1.15514i −0.879991 0.235793i
\(25\) 0 0
\(26\) −1.23558 + 4.43059i −0.242317 + 0.868910i
\(27\) −3.98891 + 3.98891i −0.767666 + 0.767666i
\(28\) 0.0107025 + 0.0185373i 0.00202258 + 0.00350322i
\(29\) 7.78617 4.49535i 1.44586 0.834765i 0.447625 0.894221i \(-0.352270\pi\)
0.998231 + 0.0594560i \(0.0189366\pi\)
\(30\) 0 0
\(31\) 3.85405 3.85405i 0.692208 0.692208i −0.270509 0.962717i \(-0.587192\pi\)
0.962717 + 0.270509i \(0.0871921\pi\)
\(32\) −1.79973 1.03908i −0.318151 0.183685i
\(33\) −0.894715 0.516564i −0.155750 0.0899222i
\(34\) −1.21878 + 1.21878i −0.209019 + 0.209019i
\(35\) 0 0
\(36\) −0.266369 + 0.153788i −0.0443949 + 0.0256314i
\(37\) −1.96095 3.39647i −0.322379 0.558377i 0.658600 0.752494i \(-0.271149\pi\)
−0.980978 + 0.194117i \(0.937816\pi\)
\(38\) 3.62580 3.62580i 0.588182 0.588182i
\(39\) −2.61141 4.63119i −0.418160 0.741583i
\(40\) 0 0
\(41\) −8.25736 2.21255i −1.28958 0.345543i −0.452081 0.891977i \(-0.649318\pi\)
−0.837502 + 0.546434i \(0.815985\pi\)
\(42\) 0.104398 + 0.0279735i 0.0161090 + 0.00431640i
\(43\) −1.80016 6.71830i −0.274522 1.02453i −0.956161 0.292842i \(-0.905399\pi\)
0.681638 0.731689i \(-0.261268\pi\)
\(44\) −0.184569 0.184569i −0.0278247 0.0278247i
\(45\) 0 0
\(46\) 2.87597 0.770615i 0.424039 0.113621i
\(47\) 6.66428 0.972086 0.486043 0.873935i \(-0.338440\pi\)
0.486043 + 0.873935i \(0.338440\pi\)
\(48\) −4.43839 + 1.18926i −0.640626 + 0.171655i
\(49\) 3.49835 + 6.05932i 0.499764 + 0.865617i
\(50\) 0 0
\(51\) 1.99231i 0.278979i
\(52\) −0.334455 1.30096i −0.0463805 0.180411i
\(53\) −3.35108 3.35108i −0.460307 0.460307i 0.438449 0.898756i \(-0.355528\pi\)
−0.898756 + 0.438449i \(0.855528\pi\)
\(54\) −1.86260 + 6.95130i −0.253467 + 0.945952i
\(55\) 0 0
\(56\) 0.150600 + 0.0869492i 0.0201248 + 0.0116191i
\(57\) 5.92701i 0.785052i
\(58\) 5.73478 9.93293i 0.753013 1.30426i
\(59\) −0.783616 2.92449i −0.102018 0.380737i 0.895972 0.444111i \(-0.146480\pi\)
−0.997990 + 0.0633744i \(0.979814\pi\)
\(60\) 0 0
\(61\) 3.32298 5.75557i 0.425464 0.736925i −0.571000 0.820950i \(-0.693444\pi\)
0.996464 + 0.0840254i \(0.0267777\pi\)
\(62\) 1.79963 6.71629i 0.228553 0.852970i
\(63\) 0.0410791 0.0237170i 0.00517548 0.00298806i
\(64\) −8.88332 −1.11042
\(65\) 0 0
\(66\) −1.31798 −0.162232
\(67\) 13.2550 7.65276i 1.61935 0.934933i 0.632265 0.774753i \(-0.282126\pi\)
0.987088 0.160181i \(-0.0512078\pi\)
\(68\) 0.130278 0.486205i 0.0157986 0.0589610i
\(69\) −1.72079 + 2.98050i −0.207159 + 0.358810i
\(70\) 0 0
\(71\) −1.68888 6.30298i −0.200433 0.748026i −0.990793 0.135384i \(-0.956773\pi\)
0.790360 0.612642i \(-0.209893\pi\)
\(72\) −1.24941 + 2.16403i −0.147244 + 0.255034i
\(73\) 8.03602i 0.940546i 0.882521 + 0.470273i \(0.155844\pi\)
−0.882521 + 0.470273i \(0.844156\pi\)
\(74\) −4.33293 2.50162i −0.503692 0.290807i
\(75\) 0 0
\(76\) −0.387571 + 1.44643i −0.0444574 + 0.165917i
\(77\) 0.0284639 + 0.0284639i 0.00324376 + 0.00324376i
\(78\) −5.83912 3.45083i −0.661150 0.390730i
\(79\) 15.0122i 1.68901i 0.535551 + 0.844503i \(0.320104\pi\)
−0.535551 + 0.844503i \(0.679896\pi\)
\(80\) 0 0
\(81\) −2.92082 5.05900i −0.324535 0.562111i
\(82\) −10.5340 + 2.82259i −1.16329 + 0.311702i
\(83\) 12.7028 1.39432 0.697159 0.716916i \(-0.254447\pi\)
0.697159 + 0.716916i \(0.254447\pi\)
\(84\) −0.0304881 + 0.00816925i −0.00332652 + 0.000891339i
\(85\) 0 0
\(86\) −6.27414 6.27414i −0.676558 0.676558i
\(87\) 3.43131 + 12.8058i 0.367875 + 1.37293i
\(88\) −2.04831 0.548844i −0.218351 0.0585069i
\(89\) −12.8161 3.43407i −1.35851 0.364011i −0.495240 0.868756i \(-0.664920\pi\)
−0.863268 + 0.504745i \(0.831586\pi\)
\(90\) 0 0
\(91\) 0.0515791 + 0.200632i 0.00540696 + 0.0210320i
\(92\) −0.614840 + 0.614840i −0.0641015 + 0.0641015i
\(93\) 4.01859 + 6.96040i 0.416708 + 0.721759i
\(94\) 7.36270 4.25086i 0.759405 0.438443i
\(95\) 0 0
\(96\) 2.16687 2.16687i 0.221156 0.221156i
\(97\) −1.42718 0.823984i −0.144908 0.0836629i 0.425793 0.904821i \(-0.359995\pi\)
−0.570701 + 0.821158i \(0.693329\pi\)
\(98\) 7.72996 + 4.46289i 0.780844 + 0.450820i
\(99\) −0.409009 + 0.409009i −0.0411069 + 0.0411069i
\(100\) 0 0
\(101\) −14.5474 + 8.39894i −1.44752 + 0.835725i −0.998333 0.0577129i \(-0.981619\pi\)
−0.449186 + 0.893438i \(0.648286\pi\)
\(102\) −1.27081 2.20111i −0.125829 0.217942i
\(103\) 0.243419 0.243419i 0.0239848 0.0239848i −0.695013 0.718997i \(-0.744601\pi\)
0.718997 + 0.695013i \(0.244601\pi\)
\(104\) −7.63776 7.79464i −0.748944 0.764328i
\(105\) 0 0
\(106\) −5.83979 1.56477i −0.567211 0.151984i
\(107\) 5.99327 + 1.60589i 0.579392 + 0.155248i 0.536600 0.843837i \(-0.319708\pi\)
0.0427913 + 0.999084i \(0.486375\pi\)
\(108\) −0.543945 2.03003i −0.0523411 0.195340i
\(109\) 8.07848 + 8.07848i 0.773778 + 0.773778i 0.978765 0.204986i \(-0.0657150\pi\)
−0.204986 + 0.978765i \(0.565715\pi\)
\(110\) 0 0
\(111\) 5.58614 1.49680i 0.530213 0.142070i
\(112\) 0.179034 0.0169172
\(113\) −15.8437 + 4.24531i −1.49045 + 0.399365i −0.909889 0.414852i \(-0.863833\pi\)
−0.580561 + 0.814217i \(0.697167\pi\)
\(114\) 3.78059 + 6.54817i 0.354084 + 0.613292i
\(115\) 0 0
\(116\) 3.34952i 0.310995i
\(117\) −2.88296 + 0.741161i −0.266530 + 0.0685203i
\(118\) −2.73115 2.73115i −0.251423 0.251423i
\(119\) −0.0200913 + 0.0749818i −0.00184177 + 0.00687357i
\(120\) 0 0
\(121\) 9.10117 + 5.25457i 0.827379 + 0.477688i
\(122\) 8.47834i 0.767593i
\(123\) 6.30287 10.9169i 0.568311 0.984343i
\(124\) 0.525555 + 1.96140i 0.0471962 + 0.176139i
\(125\) 0 0
\(126\) 0.0302561 0.0524052i 0.00269543 0.00466862i
\(127\) −1.53945 + 5.74529i −0.136604 + 0.509812i 0.863382 + 0.504550i \(0.168342\pi\)
−0.999986 + 0.00526200i \(0.998325\pi\)
\(128\) −6.21483 + 3.58813i −0.549318 + 0.317149i
\(129\) 10.2562 0.903008
\(130\) 0 0
\(131\) 6.72010 0.587138 0.293569 0.955938i \(-0.405157\pi\)
0.293569 + 0.955938i \(0.405157\pi\)
\(132\) 0.333330 0.192448i 0.0290126 0.0167504i
\(133\) 0.0597706 0.223067i 0.00518277 0.0193423i
\(134\) 9.76273 16.9095i 0.843372 1.46076i
\(135\) 0 0
\(136\) −1.05841 3.95002i −0.0907575 0.338712i
\(137\) 5.35943 9.28281i 0.457887 0.793084i −0.540962 0.841047i \(-0.681940\pi\)
0.998849 + 0.0479633i \(0.0152730\pi\)
\(138\) 4.39048i 0.373742i
\(139\) −16.0903 9.28976i −1.36476 0.787947i −0.374511 0.927223i \(-0.622189\pi\)
−0.990254 + 0.139275i \(0.955523\pi\)
\(140\) 0 0
\(141\) −2.54343 + 9.49222i −0.214196 + 0.799389i
\(142\) −5.88627 5.88627i −0.493965 0.493965i
\(143\) −1.24076 2.20041i −0.103757 0.184008i
\(144\) 2.57262i 0.214385i
\(145\) 0 0
\(146\) 5.12583 + 8.87820i 0.424217 + 0.734765i
\(147\) −9.96570 + 2.67030i −0.821957 + 0.220243i
\(148\) 1.46112 0.120104
\(149\) 15.3810 4.12133i 1.26006 0.337632i 0.433846 0.900987i \(-0.357156\pi\)
0.826215 + 0.563355i \(0.190490\pi\)
\(150\) 0 0
\(151\) 11.5286 + 11.5286i 0.938183 + 0.938183i 0.998198 0.0600146i \(-0.0191147\pi\)
−0.0600146 + 0.998198i \(0.519115\pi\)
\(152\) 3.14870 + 11.7511i 0.255393 + 0.953140i
\(153\) −1.07744 0.288700i −0.0871061 0.0233400i
\(154\) 0.0496028 + 0.0132910i 0.00399711 + 0.00107102i
\(155\) 0 0
\(156\) 1.98066 + 0.0201348i 0.158580 + 0.00161208i
\(157\) −4.09090 + 4.09090i −0.326489 + 0.326489i −0.851250 0.524761i \(-0.824155\pi\)
0.524761 + 0.851250i \(0.324155\pi\)
\(158\) 9.57564 + 16.5855i 0.761797 + 1.31947i
\(159\) 6.05204 3.49415i 0.479958 0.277104i
\(160\) 0 0
\(161\) 0.0948197 0.0948197i 0.00747284 0.00747284i
\(162\) −6.45384 3.72613i −0.507062 0.292752i
\(163\) −0.0172791 0.00997608i −0.00135340 0.000781387i 0.499323 0.866416i \(-0.333582\pi\)
−0.500677 + 0.865634i \(0.666915\pi\)
\(164\) 2.25202 2.25202i 0.175853 0.175853i
\(165\) 0 0
\(166\) 14.0341 8.10260i 1.08926 0.628884i
\(167\) −5.20569 9.01652i −0.402828 0.697719i 0.591238 0.806497i \(-0.298640\pi\)
−0.994066 + 0.108778i \(0.965306\pi\)
\(168\) −0.181322 + 0.181322i −0.0139893 + 0.0139893i
\(169\) 0.264282 12.9973i 0.0203294 0.999793i
\(170\) 0 0
\(171\) 3.20533 + 0.858867i 0.245118 + 0.0656792i
\(172\) 2.50293 + 0.670658i 0.190847 + 0.0511372i
\(173\) −3.93459 14.6841i −0.299141 1.11641i −0.937873 0.346980i \(-0.887207\pi\)
0.638731 0.769430i \(-0.279460\pi\)
\(174\) 11.9592 + 11.9592i 0.906625 + 0.906625i
\(175\) 0 0
\(176\) −2.10881 + 0.565054i −0.158958 + 0.0425926i
\(177\) 4.46455 0.335576
\(178\) −16.3497 + 4.38090i −1.22546 + 0.328362i
\(179\) −1.81815 3.14913i −0.135895 0.235377i 0.790044 0.613050i \(-0.210058\pi\)
−0.925939 + 0.377673i \(0.876724\pi\)
\(180\) 0 0
\(181\) 12.2156i 0.907977i 0.891008 + 0.453989i \(0.149999\pi\)
−0.891008 + 0.453989i \(0.850001\pi\)
\(182\) 0.184959 + 0.188758i 0.0137101 + 0.0139917i
\(183\) 6.92968 + 6.92968i 0.512257 + 0.512257i
\(184\) −1.82833 + 6.82340i −0.134786 + 0.503028i
\(185\) 0 0
\(186\) 8.87947 + 5.12657i 0.651075 + 0.375898i
\(187\) 0.946607i 0.0692227i
\(188\) −1.24140 + 2.15017i −0.0905386 + 0.156818i
\(189\) 0.0838864 + 0.313068i 0.00610183 + 0.0227724i
\(190\) 0 0
\(191\) 1.46354 2.53493i 0.105898 0.183421i −0.808207 0.588899i \(-0.799562\pi\)
0.914105 + 0.405478i \(0.132895\pi\)
\(192\) 3.39033 12.6529i 0.244676 0.913144i
\(193\) −8.83674 + 5.10190i −0.636083 + 0.367242i −0.783104 0.621891i \(-0.786365\pi\)
0.147021 + 0.989133i \(0.453031\pi\)
\(194\) −2.10234 −0.150939
\(195\) 0 0
\(196\) −2.60665 −0.186189
\(197\) 10.6347 6.13993i 0.757689 0.437452i −0.0707763 0.997492i \(-0.522548\pi\)
0.828465 + 0.560040i \(0.189214\pi\)
\(198\) −0.190984 + 0.712762i −0.0135726 + 0.0506538i
\(199\) 0.0397692 0.0688822i 0.00281916 0.00488293i −0.864612 0.502439i \(-0.832436\pi\)
0.867432 + 0.497557i \(0.165769\pi\)
\(200\) 0 0
\(201\) 5.84138 + 21.8003i 0.412019 + 1.53768i
\(202\) −10.7146 + 18.5583i −0.753879 + 1.30576i
\(203\) 0.516558i 0.0362553i
\(204\) 0.642802 + 0.371122i 0.0450051 + 0.0259837i
\(205\) 0 0
\(206\) 0.113663 0.424196i 0.00791927 0.0295551i
\(207\) 1.36250 + 1.36250i 0.0947004 + 0.0947004i
\(208\) −10.8223 3.01806i −0.750391 0.209265i
\(209\) 2.81610i 0.194794i
\(210\) 0 0
\(211\) −7.92558 13.7275i −0.545619 0.945041i −0.998568 0.0535038i \(-0.982961\pi\)
0.452948 0.891537i \(-0.350372\pi\)
\(212\) 1.70543 0.456968i 0.117129 0.0313847i
\(213\) 9.62217 0.659300
\(214\) 7.64570 2.04866i 0.522649 0.140044i
\(215\) 0 0
\(216\) −12.0732 12.0732i −0.821479 0.821479i
\(217\) −0.0810503 0.302484i −0.00550205 0.0205339i
\(218\) 14.0780 + 3.77220i 0.953485 + 0.255485i
\(219\) −11.4461 3.06696i −0.773453 0.207246i
\(220\) 0 0
\(221\) 2.47848 4.19382i 0.166721 0.282107i
\(222\) 5.21683 5.21683i 0.350131 0.350131i
\(223\) 9.53099 + 16.5082i 0.638242 + 1.10547i 0.985818 + 0.167816i \(0.0536715\pi\)
−0.347576 + 0.937652i \(0.612995\pi\)
\(224\) −0.103403 + 0.0596999i −0.00690893 + 0.00398887i
\(225\) 0 0
\(226\) −14.7962 + 14.7962i −0.984231 + 0.984231i
\(227\) −7.13540 4.11962i −0.473593 0.273429i 0.244150 0.969738i \(-0.421491\pi\)
−0.717743 + 0.696309i \(0.754825\pi\)
\(228\) −1.91230 1.10407i −0.126645 0.0731186i
\(229\) −8.86778 + 8.86778i −0.586000 + 0.586000i −0.936546 0.350546i \(-0.885996\pi\)
0.350546 + 0.936546i \(0.385996\pi\)
\(230\) 0 0
\(231\) −0.0514056 + 0.0296790i −0.00338224 + 0.00195274i
\(232\) 13.6061 + 23.5664i 0.893283 + 1.54721i
\(233\) −8.18840 + 8.18840i −0.536440 + 0.536440i −0.922481 0.386042i \(-0.873842\pi\)
0.386042 + 0.922481i \(0.373842\pi\)
\(234\) −2.71234 + 2.65775i −0.177311 + 0.173743i
\(235\) 0 0
\(236\) 1.08953 + 0.291939i 0.0709225 + 0.0190036i
\(237\) −21.3825 5.72943i −1.38894 0.372167i
\(238\) 0.0256308 + 0.0956554i 0.00166140 + 0.00620042i
\(239\) −7.20287 7.20287i −0.465915 0.465915i 0.434673 0.900588i \(-0.356864\pi\)
−0.900588 + 0.434673i \(0.856864\pi\)
\(240\) 0 0
\(241\) −19.2690 + 5.16310i −1.24122 + 0.332585i −0.818940 0.573880i \(-0.805438\pi\)
−0.422283 + 0.906464i \(0.638771\pi\)
\(242\) 13.4066 0.861812
\(243\) −8.02637 + 2.15066i −0.514892 + 0.137965i
\(244\) 1.23799 + 2.14426i 0.0792541 + 0.137272i
\(245\) 0 0
\(246\) 16.0813i 1.02531i
\(247\) −7.37335 + 12.4764i −0.469155 + 0.793853i
\(248\) 11.6651 + 11.6651i 0.740732 + 0.740732i
\(249\) −4.84806 + 18.0932i −0.307233 + 1.14661i
\(250\) 0 0
\(251\) −14.7445 8.51274i −0.930664 0.537319i −0.0436425 0.999047i \(-0.513896\pi\)
−0.887022 + 0.461728i \(0.847230\pi\)
\(252\) 0.0176718i 0.00111322i
\(253\) −0.817600 + 1.41613i −0.0514021 + 0.0890310i
\(254\) 1.96389 + 7.32935i 0.123226 + 0.459884i
\(255\) 0 0
\(256\) 4.30589 7.45802i 0.269118 0.466126i
\(257\) −1.64915 + 6.15471i −0.102871 + 0.383920i −0.998095 0.0616965i \(-0.980349\pi\)
0.895224 + 0.445617i \(0.147016\pi\)
\(258\) 11.3311 6.54199i 0.705441 0.407286i
\(259\) −0.225332 −0.0140015
\(260\) 0 0
\(261\) 7.42263 0.459449
\(262\) 7.42438 4.28647i 0.458679 0.264819i
\(263\) 6.70958 25.0405i 0.413730 1.54406i −0.373635 0.927576i \(-0.621889\pi\)
0.787366 0.616486i \(-0.211444\pi\)
\(264\) 1.56348 2.70803i 0.0962258 0.166668i
\(265\) 0 0
\(266\) −0.0762502 0.284569i −0.00467520 0.0174481i
\(267\) 9.78260 16.9440i 0.598685 1.03695i
\(268\) 5.70214i 0.348313i
\(269\) −12.5106 7.22300i −0.762785 0.440394i 0.0675100 0.997719i \(-0.478495\pi\)
−0.830295 + 0.557325i \(0.811828\pi\)
\(270\) 0 0
\(271\) 4.84782 18.0923i 0.294484 1.09903i −0.647143 0.762369i \(-0.724036\pi\)
0.941626 0.336660i \(-0.109297\pi\)
\(272\) −2.97702 2.97702i −0.180508 0.180508i
\(273\) −0.305454 0.00310517i −0.0184869 0.000187933i
\(274\) 13.6742i 0.826089i
\(275\) 0 0
\(276\) −0.641089 1.11040i −0.0385890 0.0668381i
\(277\) 1.87974 0.503675i 0.112943 0.0302629i −0.201905 0.979405i \(-0.564713\pi\)
0.314848 + 0.949142i \(0.398047\pi\)
\(278\) −23.7022 −1.42156
\(279\) 4.34651 1.16464i 0.260219 0.0697254i
\(280\) 0 0
\(281\) 2.02512 + 2.02512i 0.120808 + 0.120808i 0.764926 0.644118i \(-0.222775\pi\)
−0.644118 + 0.764926i \(0.722775\pi\)
\(282\) 3.24469 + 12.1094i 0.193219 + 0.721102i
\(283\) 31.2190 + 8.36511i 1.85578 + 0.497254i 0.999805 0.0197668i \(-0.00629239\pi\)
0.855973 + 0.517021i \(0.172959\pi\)
\(284\) 2.34820 + 0.629199i 0.139340 + 0.0373361i
\(285\) 0 0
\(286\) −2.77434 1.63959i −0.164050 0.0969512i
\(287\) −0.347303 + 0.347303i −0.0205006 + 0.0205006i
\(288\) −0.857852 1.48584i −0.0505494 0.0875541i
\(289\) −13.1415 + 7.58727i −0.773032 + 0.446310i
\(290\) 0 0
\(291\) 1.71832 1.71832i 0.100730 0.100730i
\(292\) −2.59275 1.49693i −0.151729 0.0876010i
\(293\) −17.7843 10.2678i −1.03897 0.599851i −0.119430 0.992843i \(-0.538107\pi\)
−0.919542 + 0.392992i \(0.871440\pi\)
\(294\) −9.30684 + 9.30684i −0.542786 + 0.542786i
\(295\) 0 0
\(296\) 10.2801 5.93522i 0.597519 0.344978i
\(297\) −1.97616 3.42281i −0.114668 0.198612i
\(298\) 14.3641 14.3641i 0.832092 0.832092i
\(299\) −7.33009 + 4.13325i −0.423910 + 0.239032i
\(300\) 0 0
\(301\) −0.385998 0.103428i −0.0222486 0.00596149i
\(302\) 20.0904 + 5.38320i 1.15607 + 0.309768i
\(303\) −6.41093 23.9259i −0.368299 1.37451i
\(304\) 8.85648 + 8.85648i 0.507954 + 0.507954i
\(305\) 0 0
\(306\) −1.37451 + 0.368299i −0.0785755 + 0.0210542i
\(307\) −5.46579 −0.311949 −0.155975 0.987761i \(-0.549852\pi\)
−0.155975 + 0.987761i \(0.549852\pi\)
\(308\) −0.0144858 + 0.00388146i −0.000825405 + 0.000221167i
\(309\) 0.253811 + 0.439613i 0.0144388 + 0.0250087i
\(310\) 0 0
\(311\) 10.1997i 0.578372i −0.957273 0.289186i \(-0.906615\pi\)
0.957273 0.289186i \(-0.0933845\pi\)
\(312\) 14.0172 7.90395i 0.793568 0.447473i
\(313\) −14.2117 14.2117i −0.803291 0.803291i 0.180318 0.983608i \(-0.442287\pi\)
−0.983608 + 0.180318i \(0.942287\pi\)
\(314\) −1.91022 + 7.12904i −0.107800 + 0.402315i
\(315\) 0 0
\(316\) −4.84356 2.79643i −0.272471 0.157311i
\(317\) 19.6481i 1.10355i −0.833993 0.551775i \(-0.813951\pi\)
0.833993 0.551775i \(-0.186049\pi\)
\(318\) 4.45753 7.72067i 0.249966 0.432954i
\(319\) 1.63032 + 6.08444i 0.0912804 + 0.340663i
\(320\) 0 0
\(321\) −4.57468 + 7.92359i −0.255334 + 0.442251i
\(322\) 0.0442755 0.165238i 0.00246738 0.00920837i
\(323\) −4.70308 + 2.71532i −0.261686 + 0.151085i
\(324\) 2.17632 0.120907
\(325\) 0 0
\(326\) −0.0254532 −0.00140972
\(327\) −14.5897 + 8.42336i −0.806812 + 0.465813i
\(328\) 6.69674 24.9926i 0.369765 1.37998i
\(329\) 0.191447 0.331597i 0.0105548 0.0182815i
\(330\) 0 0
\(331\) 1.15149 + 4.29744i 0.0632919 + 0.236208i 0.990324 0.138773i \(-0.0443158\pi\)
−0.927032 + 0.374981i \(0.877649\pi\)
\(332\) −2.36625 + 4.09846i −0.129865 + 0.224932i
\(333\) 3.23789i 0.177435i
\(334\) −11.5025 6.64097i −0.629389 0.363378i
\(335\) 0 0
\(336\) −0.0683288 + 0.255006i −0.00372764 + 0.0139117i
\(337\) −1.54472 1.54472i −0.0841463 0.0841463i 0.663781 0.747927i \(-0.268951\pi\)
−0.747927 + 0.663781i \(0.768951\pi\)
\(338\) −7.99845 14.5280i −0.435058 0.790220i
\(339\) 24.1871i 1.31366i
\(340\) 0 0
\(341\) 1.90935 + 3.30709i 0.103397 + 0.179089i
\(342\) 4.08909 1.09567i 0.221113 0.0592469i
\(343\) 0.804177 0.0434215
\(344\) 20.3343 5.44856i 1.09635 0.293766i
\(345\) 0 0
\(346\) −13.7133 13.7133i −0.737230 0.737230i
\(347\) −5.35439 19.9829i −0.287439 1.07274i −0.947039 0.321119i \(-0.895941\pi\)
0.659600 0.751617i \(-0.270726\pi\)
\(348\) −4.77087 1.27835i −0.255745 0.0685268i
\(349\) 16.6859 + 4.47097i 0.893175 + 0.239325i 0.676083 0.736826i \(-0.263676\pi\)
0.217092 + 0.976151i \(0.430343\pi\)
\(350\) 0 0
\(351\) 0.206756 20.3385i 0.0110358 1.08559i
\(352\) 1.02955 1.02955i 0.0548750 0.0548750i
\(353\) 0.622765 + 1.07866i 0.0331464 + 0.0574113i 0.882123 0.471020i \(-0.156114\pi\)
−0.848976 + 0.528431i \(0.822781\pi\)
\(354\) 4.93244 2.84774i 0.262156 0.151356i
\(355\) 0 0
\(356\) 3.49533 3.49533i 0.185252 0.185252i
\(357\) −0.0991320 0.0572339i −0.00524662 0.00302914i
\(358\) −4.01739 2.31944i −0.212326 0.122586i
\(359\) −21.0186 + 21.0186i −1.10932 + 1.10932i −0.116082 + 0.993240i \(0.537033\pi\)
−0.993240 + 0.116082i \(0.962967\pi\)
\(360\) 0 0
\(361\) −2.46308 + 1.42206i −0.129636 + 0.0748454i
\(362\) 7.79179 + 13.4958i 0.409528 + 0.709323i
\(363\) −10.9578 + 10.9578i −0.575134 + 0.575134i
\(364\) −0.0743402 0.0207316i −0.00389649 0.00108663i
\(365\) 0 0
\(366\) 12.0761 + 3.23577i 0.631226 + 0.169136i
\(367\) −21.5186 5.76588i −1.12326 0.300977i −0.351058 0.936354i \(-0.614178\pi\)
−0.772202 + 0.635377i \(0.780845\pi\)
\(368\) 1.88233 + 7.02493i 0.0981230 + 0.366200i
\(369\) −4.99053 4.99053i −0.259797 0.259797i
\(370\) 0 0
\(371\) −0.263009 + 0.0704730i −0.0136547 + 0.00365877i
\(372\) −2.99428 −0.155246
\(373\) 27.0325 7.24333i 1.39969 0.375045i 0.521455 0.853279i \(-0.325389\pi\)
0.878233 + 0.478233i \(0.158723\pi\)
\(374\) −0.603800 1.04581i −0.0312217 0.0540776i
\(375\) 0 0
\(376\) 20.1708i 1.04023i
\(377\) −8.70785 + 31.2250i −0.448477 + 1.60817i
\(378\) 0.292370 + 0.292370i 0.0150379 + 0.0150379i
\(379\) 2.26804 8.46443i 0.116501 0.434789i −0.882894 0.469573i \(-0.844408\pi\)
0.999395 + 0.0347845i \(0.0110745\pi\)
\(380\) 0 0
\(381\) −7.59573 4.38540i −0.389141 0.224671i
\(382\) 3.73412i 0.191054i
\(383\) 6.56975 11.3791i 0.335699 0.581447i −0.647920 0.761708i \(-0.724361\pi\)
0.983619 + 0.180261i \(0.0576943\pi\)
\(384\) −2.73883 10.2215i −0.139765 0.521612i
\(385\) 0 0
\(386\) −6.50856 + 11.2732i −0.331277 + 0.573788i
\(387\) 1.48620 5.54656i 0.0755476 0.281948i
\(388\) 0.531703 0.306979i 0.0269931 0.0155845i
\(389\) 22.2271 1.12696 0.563479 0.826130i \(-0.309463\pi\)
0.563479 + 0.826130i \(0.309463\pi\)
\(390\) 0 0
\(391\) −3.15336 −0.159472
\(392\) −18.3397 + 10.5885i −0.926297 + 0.534798i
\(393\) −2.56474 + 9.57173i −0.129374 + 0.482830i
\(394\) 7.83280 13.5668i 0.394611 0.683486i
\(395\) 0 0
\(396\) −0.0557742 0.208152i −0.00280276 0.0104600i
\(397\) 0.584332 1.01209i 0.0293268 0.0507955i −0.850990 0.525183i \(-0.823997\pi\)
0.880316 + 0.474387i \(0.157330\pi\)
\(398\) 0.101468i 0.00508614i
\(399\) 0.294912 + 0.170268i 0.0147641 + 0.00852404i
\(400\) 0 0
\(401\) 4.15809 15.5182i 0.207645 0.774941i −0.780982 0.624553i \(-0.785281\pi\)
0.988627 0.150388i \(-0.0480523\pi\)
\(402\) 20.3590 + 20.3590i 1.01542 + 1.01542i
\(403\) −0.199766 + 19.6509i −0.00995103 + 0.978880i
\(404\) 6.25812i 0.311353i
\(405\) 0 0
\(406\) −0.329490 0.570694i −0.0163523 0.0283231i
\(407\) 2.65414 0.711176i 0.131561 0.0352517i
\(408\) 6.03013 0.298536
\(409\) −1.48123 + 0.396894i −0.0732420 + 0.0196251i −0.295254 0.955419i \(-0.595404\pi\)
0.222012 + 0.975044i \(0.428738\pi\)
\(410\) 0 0
\(411\) 11.1765 + 11.1765i 0.551294 + 0.551294i
\(412\) 0.0331937 + 0.123880i 0.00163533 + 0.00610315i
\(413\) −0.168026 0.0450225i −0.00826802 0.00221541i
\(414\) 2.37437 + 0.636212i 0.116694 + 0.0312681i
\(415\) 0 0
\(416\) 7.25692 1.86563i 0.355800 0.0914701i
\(417\) 19.3727 19.3727i 0.948685 0.948685i
\(418\) 1.79627 + 3.11123i 0.0878584 + 0.152175i
\(419\) −25.4519 + 14.6947i −1.24341 + 0.717882i −0.969786 0.243955i \(-0.921555\pi\)
−0.273622 + 0.961837i \(0.588222\pi\)
\(420\) 0 0
\(421\) −22.3691 + 22.3691i −1.09021 + 1.09021i −0.0946994 + 0.995506i \(0.530189\pi\)
−0.995506 + 0.0946994i \(0.969811\pi\)
\(422\) −17.5124 10.1108i −0.852489 0.492185i
\(423\) 4.76484 + 2.75098i 0.231674 + 0.133757i
\(424\) 10.1427 10.1427i 0.492574 0.492574i
\(425\) 0 0
\(426\) 10.6306 6.13757i 0.515053 0.297366i
\(427\) −0.190921 0.330685i −0.00923931 0.0160030i
\(428\) −1.63454 + 1.63454i −0.0790083 + 0.0790083i
\(429\) 3.60768 0.927474i 0.174181 0.0447789i
\(430\) 0 0
\(431\) 11.6063 + 3.10991i 0.559057 + 0.149799i 0.527273 0.849696i \(-0.323214\pi\)
0.0317839 + 0.999495i \(0.489881\pi\)
\(432\) −16.9794 4.54963i −0.816924 0.218894i
\(433\) 6.72363 + 25.0929i 0.323117 + 1.20589i 0.916191 + 0.400742i \(0.131248\pi\)
−0.593074 + 0.805148i \(0.702086\pi\)
\(434\) −0.282486 0.282486i −0.0135598 0.0135598i
\(435\) 0 0
\(436\) −4.11129 + 1.10162i −0.196895 + 0.0527579i
\(437\) 9.38108 0.448758
\(438\) −14.6019 + 3.91256i −0.697705 + 0.186950i
\(439\) 1.61924 + 2.80461i 0.0772823 + 0.133857i 0.902077 0.431576i \(-0.142042\pi\)
−0.824794 + 0.565433i \(0.808709\pi\)
\(440\) 0 0
\(441\) 5.77640i 0.275067i
\(442\) 0.0631725 6.21425i 0.00300481 0.295582i
\(443\) 6.02880 + 6.02880i 0.286437 + 0.286437i 0.835669 0.549233i \(-0.185080\pi\)
−0.549233 + 0.835669i \(0.685080\pi\)
\(444\) −0.557640 + 2.08114i −0.0264644 + 0.0987666i
\(445\) 0 0
\(446\) 21.0597 + 12.1588i 0.997205 + 0.575737i
\(447\) 23.4807i 1.11060i
\(448\) −0.255195 + 0.442010i −0.0120568 + 0.0208830i
\(449\) −1.09717 4.09470i −0.0517788 0.193241i 0.935192 0.354141i \(-0.115227\pi\)
−0.986971 + 0.160900i \(0.948560\pi\)
\(450\) 0 0
\(451\) 2.99468 5.18694i 0.141014 0.244244i
\(452\) 1.58161 5.90264i 0.0743925 0.277637i
\(453\) −20.8206 + 12.0208i −0.978235 + 0.564784i
\(454\) −10.5109 −0.493302
\(455\) 0 0
\(456\) −17.9393 −0.840085
\(457\) 5.69781 3.28963i 0.266532 0.153882i −0.360779 0.932652i \(-0.617489\pi\)
0.627311 + 0.778769i \(0.284156\pi\)
\(458\) −4.14076 + 15.4535i −0.193485 + 0.722095i
\(459\) 3.81088 6.60064i 0.177877 0.308092i
\(460\) 0 0
\(461\) 2.16031 + 8.06240i 0.100616 + 0.375503i 0.997811 0.0661310i \(-0.0210655\pi\)
−0.897195 + 0.441634i \(0.854399\pi\)
\(462\) −0.0378620 + 0.0655788i −0.00176150 + 0.00305100i
\(463\) 25.1969i 1.17100i 0.810673 + 0.585499i \(0.199101\pi\)
−0.810673 + 0.585499i \(0.800899\pi\)
\(464\) 24.2625 + 14.0079i 1.12636 + 0.650302i
\(465\) 0 0
\(466\) −3.82352 + 14.2696i −0.177121 + 0.661025i
\(467\) −8.08282 8.08282i −0.374028 0.374028i 0.494914 0.868942i \(-0.335200\pi\)
−0.868942 + 0.494914i \(0.835200\pi\)
\(468\) 0.297900 1.06822i 0.0137704 0.0493786i
\(469\) 0.879375i 0.0406058i
\(470\) 0 0
\(471\) −4.26555 7.38814i −0.196546 0.340428i
\(472\) 8.85157 2.37177i 0.407426 0.109170i
\(473\) 4.87303 0.224062
\(474\) −27.2780 + 7.30911i −1.25292 + 0.335719i
\(475\) 0 0
\(476\) −0.0204497 0.0204497i −0.000937310 0.000937310i
\(477\) −1.01265 3.77927i −0.0463662 0.173041i
\(478\) −12.5521 3.36334i −0.574122 0.153835i
\(479\) 34.2136 + 9.16752i 1.56326 + 0.418874i 0.933694 0.358072i \(-0.116566\pi\)
0.629567 + 0.776946i \(0.283232\pi\)
\(480\) 0 0
\(481\) 13.6209 + 3.79852i 0.621060 + 0.173198i
\(482\) −17.9950 + 17.9950i −0.819651 + 0.819651i
\(483\) 0.0988677 + 0.171244i 0.00449864 + 0.00779187i
\(484\) −3.39068 + 1.95761i −0.154122 + 0.0889823i
\(485\) 0 0
\(486\) −7.49572 + 7.49572i −0.340013 + 0.340013i
\(487\) 18.4466 + 10.6502i 0.835897 + 0.482606i 0.855868 0.517195i \(-0.173024\pi\)
−0.0199702 + 0.999801i \(0.506357\pi\)
\(488\) 17.4204 + 10.0577i 0.788583 + 0.455289i
\(489\) 0.0208039 0.0208039i 0.000940787 0.000940787i
\(490\) 0 0
\(491\) −30.1957 + 17.4335i −1.36271 + 0.786762i −0.989984 0.141178i \(-0.954911\pi\)
−0.372728 + 0.927941i \(0.621578\pi\)
\(492\) 2.34816 + 4.06713i 0.105863 + 0.183361i
\(493\) −8.58944 + 8.58944i −0.386849 + 0.386849i
\(494\) −0.187935 + 18.4871i −0.00845558 + 0.831772i
\(495\) 0 0
\(496\) 16.4054 + 4.39582i 0.736625 + 0.197378i
\(497\) −0.362136 0.0970341i −0.0162440 0.00435257i
\(498\) 6.18474 + 23.0818i 0.277145 + 1.03432i
\(499\) −19.4100 19.4100i −0.868911 0.868911i 0.123441 0.992352i \(-0.460607\pi\)
−0.992352 + 0.123441i \(0.960607\pi\)
\(500\) 0 0
\(501\) 14.8294 3.97352i 0.662528 0.177524i
\(502\) −21.7196 −0.969395
\(503\) −14.4408 + 3.86939i −0.643882 + 0.172528i −0.565961 0.824432i \(-0.691495\pi\)
−0.0779206 + 0.996960i \(0.524828\pi\)
\(504\) 0.0717843 + 0.124334i 0.00319753 + 0.00553828i
\(505\) 0 0
\(506\) 2.08605i 0.0927361i
\(507\) 18.4118 + 5.33687i 0.817695 + 0.237019i
\(508\) −1.56691 1.56691i −0.0695202 0.0695202i
\(509\) −2.30775 + 8.61262i −0.102289 + 0.381748i −0.998024 0.0628415i \(-0.979984\pi\)
0.895734 + 0.444589i \(0.146650\pi\)
\(510\) 0 0
\(511\) 0.399851 + 0.230854i 0.0176884 + 0.0102124i
\(512\) 25.3387i 1.11982i
\(513\) −11.3372 + 19.6365i −0.500548 + 0.866975i
\(514\) 2.10384 + 7.85165i 0.0927965 + 0.346321i
\(515\) 0 0
\(516\) −1.91050 + 3.30907i −0.0841049 + 0.145674i
\(517\) −1.20846 + 4.51004i −0.0531481 + 0.198351i
\(518\) −0.248947 + 0.143730i −0.0109381 + 0.00631512i
\(519\) 22.4168 0.983988
\(520\) 0 0
\(521\) 0.624957 0.0273798 0.0136899 0.999906i \(-0.495642\pi\)
0.0136899 + 0.999906i \(0.495642\pi\)
\(522\) 8.20052 4.73457i 0.358927 0.207227i
\(523\) 0.562515 2.09934i 0.0245971 0.0917976i −0.952536 0.304425i \(-0.901536\pi\)
0.977133 + 0.212628i \(0.0682022\pi\)
\(524\) −1.25180 + 2.16818i −0.0546852 + 0.0947176i
\(525\) 0 0
\(526\) −8.55950 31.9445i −0.373212 1.39285i
\(527\) −3.68204 + 6.37749i −0.160392 + 0.277808i
\(528\) 3.21932i 0.140103i
\(529\) −15.2011 8.77639i −0.660919 0.381582i
\(530\) 0 0
\(531\) 0.646945 2.41443i 0.0280750 0.104777i
\(532\) 0.0608367 + 0.0608367i 0.00263761 + 0.00263761i
\(533\) 26.8484 15.1392i 1.16293 0.655750i
\(534\) 24.9596i 1.08011i
\(535\) 0 0
\(536\) 23.1626 + 40.1188i 1.00047 + 1.73287i
\(537\) 5.17934 1.38780i 0.223505 0.0598880i
\(538\) −18.4290 −0.794529
\(539\) −4.73500 + 1.26874i −0.203951 + 0.0546485i
\(540\) 0 0
\(541\) 31.2159 + 31.2159i 1.34208 + 1.34208i 0.893991 + 0.448084i \(0.147894\pi\)
0.448084 + 0.893991i \(0.352106\pi\)
\(542\) −6.18442 23.0806i −0.265644 0.991396i
\(543\) −17.3992 4.66210i −0.746670 0.200070i
\(544\) 2.71211 + 0.726709i 0.116281 + 0.0311574i
\(545\) 0 0
\(546\) −0.339447 + 0.191405i −0.0145270 + 0.00819140i
\(547\) 31.5617 31.5617i 1.34948 1.34948i 0.463255 0.886225i \(-0.346681\pi\)
0.886225 0.463255i \(-0.153319\pi\)
\(548\) 1.99668 + 3.45835i 0.0852939 + 0.147733i
\(549\) 4.75174 2.74342i 0.202799 0.117086i
\(550\) 0 0
\(551\) 25.5531 25.5531i 1.08860 1.08860i
\(552\) −9.02108 5.20832i −0.383963 0.221681i
\(553\) 0.746967 + 0.431261i 0.0317642 + 0.0183391i
\(554\) 1.75547 1.75547i 0.0745826 0.0745826i
\(555\) 0 0
\(556\) 5.99452 3.46094i 0.254224 0.146777i
\(557\) 10.2609 + 17.7724i 0.434769 + 0.753042i 0.997277 0.0737502i \(-0.0234968\pi\)
−0.562508 + 0.826792i \(0.690163\pi\)
\(558\) 4.05915 4.05915i 0.171838 0.171838i
\(559\) 21.5893 + 12.7590i 0.913131 + 0.539647i
\(560\) 0 0
\(561\) 1.34829 + 0.361274i 0.0569249 + 0.0152530i
\(562\) 3.52909 + 0.945617i 0.148866 + 0.0398884i
\(563\) −1.45298 5.42258i −0.0612356 0.228534i 0.928525 0.371269i \(-0.121077\pi\)
−0.989761 + 0.142734i \(0.954411\pi\)
\(564\) −2.58880 2.58880i −0.109008 0.109008i
\(565\) 0 0
\(566\) 39.8265 10.6715i 1.67403 0.448556i
\(567\) −0.335630 −0.0140951
\(568\) 19.0772 5.11173i 0.800463 0.214483i
\(569\) 7.35274 + 12.7353i 0.308243 + 0.533893i 0.977978 0.208708i \(-0.0669257\pi\)
−0.669735 + 0.742600i \(0.733592\pi\)
\(570\) 0 0
\(571\) 11.3169i 0.473598i −0.971559 0.236799i \(-0.923902\pi\)
0.971559 0.236799i \(-0.0760983\pi\)
\(572\) 0.941070 + 0.00956667i 0.0393481 + 0.000400003i
\(573\) 3.05204 + 3.05204i 0.127501 + 0.127501i
\(574\) −0.162171 + 0.605230i −0.00676888 + 0.0252618i
\(575\) 0 0
\(576\) −6.35141 3.66699i −0.264642 0.152791i
\(577\) 1.11042i 0.0462273i 0.999733 + 0.0231137i \(0.00735796\pi\)
−0.999733 + 0.0231137i \(0.992642\pi\)
\(578\) −9.67918 + 16.7648i −0.402601 + 0.697325i
\(579\) −3.89429 14.5337i −0.161841 0.604000i
\(580\) 0 0
\(581\) 0.364920 0.632059i 0.0151394 0.0262222i
\(582\) 0.802360 2.99445i 0.0332589 0.124124i
\(583\) 2.87550 1.66017i 0.119091 0.0687574i
\(584\) −24.3226 −1.00648
\(585\) 0 0
\(586\) −26.1975 −1.08221
\(587\) −36.2015 + 20.9010i −1.49420 + 0.862675i −0.999978 0.00666302i \(-0.997879\pi\)
−0.494219 + 0.869338i \(0.664546\pi\)
\(588\) 0.994832 3.71276i 0.0410262 0.153112i
\(589\) 10.9539 18.9727i 0.451347 0.781755i
\(590\) 0 0
\(591\) 4.68663 + 17.4907i 0.192782 + 0.719473i
\(592\) 6.11052 10.5837i 0.251141 0.434989i
\(593\) 44.5360i 1.82887i −0.404730 0.914436i \(-0.632634\pi\)
0.404730 0.914436i \(-0.367366\pi\)
\(594\) −4.36653 2.52102i −0.179161 0.103439i
\(595\) 0 0
\(596\) −1.53542 + 5.73026i −0.0628932 + 0.234721i
\(597\) 0.0829339 + 0.0829339i 0.00339426 + 0.00339426i
\(598\) −5.46186 + 9.24197i −0.223352 + 0.377932i
\(599\) 18.2350i 0.745060i 0.928020 + 0.372530i \(0.121510\pi\)
−0.928020 + 0.372530i \(0.878490\pi\)
\(600\) 0 0
\(601\) −4.87099 8.43680i −0.198692 0.344144i 0.749413 0.662103i \(-0.230336\pi\)
−0.948105 + 0.317959i \(0.897003\pi\)
\(602\) −0.492424 + 0.131944i −0.0200697 + 0.00537766i
\(603\) 12.6361 0.514581
\(604\) −5.86711 + 1.57209i −0.238729 + 0.0639673i
\(605\) 0 0
\(606\) −22.3441 22.3441i −0.907668 0.907668i
\(607\) −0.161882 0.604153i −0.00657060 0.0245218i 0.962563 0.271059i \(-0.0873739\pi\)
−0.969133 + 0.246537i \(0.920707\pi\)
\(608\) −8.06839 2.16192i −0.327216 0.0876774i
\(609\) 0.735756 + 0.197145i 0.0298143 + 0.00798873i
\(610\) 0 0
\(611\) −17.1625 + 16.8171i −0.694320 + 0.680346i
\(612\) 0.293850 0.293850i 0.0118782 0.0118782i
\(613\) −22.1012 38.2803i −0.892657 1.54613i −0.836678 0.547696i \(-0.815505\pi\)
−0.0559794 0.998432i \(-0.517828\pi\)
\(614\) −6.03861 + 3.48639i −0.243698 + 0.140699i
\(615\) 0 0
\(616\) −0.0861516 + 0.0861516i −0.00347115 + 0.00347115i
\(617\) 32.7814 + 18.9264i 1.31973 + 0.761946i 0.983685 0.179900i \(-0.0575773\pi\)
0.336045 + 0.941846i \(0.390911\pi\)
\(618\) 0.560821 + 0.323790i 0.0225595 + 0.0130247i
\(619\) 31.2469 31.2469i 1.25592 1.25592i 0.302892 0.953025i \(-0.402048\pi\)
0.953025 0.302892i \(-0.0979522\pi\)
\(620\) 0 0
\(621\) −11.4022 + 6.58305i −0.457553 + 0.264169i
\(622\) −6.50595 11.2686i −0.260865 0.451831i
\(623\) −0.539044 + 0.539044i −0.0215963 + 0.0215963i
\(624\) 8.42910 14.2628i 0.337434 0.570969i
\(625\) 0 0
\(626\) −24.7661 6.63605i −0.989851 0.265230i
\(627\) −4.01109 1.07477i −0.160188 0.0429222i
\(628\) −0.557853 2.08193i −0.0222607 0.0830782i
\(629\) 3.74687 + 3.74687i 0.149398 + 0.149398i
\(630\) 0 0
\(631\) −13.3999 + 3.59050i −0.533443 + 0.142936i −0.515478 0.856903i \(-0.672386\pi\)
−0.0179655 + 0.999839i \(0.505719\pi\)
\(632\) −45.4374 −1.80740
\(633\) 22.5775 6.04962i 0.897375 0.240451i
\(634\) −12.5327 21.7073i −0.497737 0.862106i
\(635\) 0 0
\(636\) 2.60352i 0.103236i
\(637\) −24.2997 6.77658i −0.962791 0.268498i
\(638\) 5.68218 + 5.68218i 0.224960 + 0.224960i
\(639\) 1.39432 5.20368i 0.0551585 0.205854i
\(640\) 0 0
\(641\) −25.1285 14.5079i −0.992516 0.573029i −0.0864905 0.996253i \(-0.527565\pi\)
−0.906025 + 0.423223i \(0.860899\pi\)
\(642\) 11.6720i 0.460656i
\(643\) 16.0252 27.7565i 0.631974 1.09461i −0.355174 0.934800i \(-0.615578\pi\)
0.987148 0.159811i \(-0.0510883\pi\)
\(644\) 0.0129300 + 0.0482555i 0.000509514 + 0.00190153i
\(645\) 0 0
\(646\) −3.46398 + 5.99978i −0.136288 + 0.236058i
\(647\) −12.3435 + 46.0665i −0.485272 + 1.81106i 0.0935595 + 0.995614i \(0.470175\pi\)
−0.578832 + 0.815447i \(0.696491\pi\)
\(648\) 15.3121 8.84044i 0.601515 0.347285i
\(649\) 2.12124 0.0832660
\(650\) 0 0
\(651\) 0.461774 0.0180983
\(652\) 0.00643739 0.00371663i 0.000252108 0.000145554i
\(653\) −2.87396 + 10.7258i −0.112467 + 0.419731i −0.999085 0.0427708i \(-0.986381\pi\)
0.886618 + 0.462502i \(0.153048\pi\)
\(654\) −10.7458 + 18.6123i −0.420194 + 0.727798i
\(655\) 0 0
\(656\) −6.89453 25.7307i −0.269186 1.00462i
\(657\) −3.31723 + 5.74561i −0.129417 + 0.224158i
\(658\) 0.488464i 0.0190423i
\(659\) 18.9606 + 10.9469i 0.738601 + 0.426432i 0.821561 0.570121i \(-0.193104\pi\)
−0.0829592 + 0.996553i \(0.526437\pi\)
\(660\) 0 0
\(661\) 10.3265 38.5390i 0.401654 1.49899i −0.408490 0.912763i \(-0.633945\pi\)
0.810144 0.586230i \(-0.199389\pi\)
\(662\) 4.01332 + 4.01332i 0.155982 + 0.155982i
\(663\) 5.02752 + 5.13079i 0.195253 + 0.199263i
\(664\) 38.4477i 1.49206i
\(665\) 0 0
\(666\) −2.06531 3.57722i −0.0800291 0.138614i
\(667\) 20.2687 5.43097i 0.784806 0.210288i
\(668\) 3.87880 0.150075
\(669\) −27.1508 + 7.27503i −1.04971 + 0.281269i
\(670\) 0 0
\(671\) 3.29250 + 3.29250i 0.127105 + 0.127105i
\(672\) −0.0455691 0.170066i −0.00175787 0.00656045i
\(673\) −23.4947 6.29539i −0.905655 0.242670i −0.224212 0.974540i \(-0.571981\pi\)
−0.681443 + 0.731871i \(0.738647\pi\)
\(674\) −2.69192 0.721298i −0.103689 0.0277834i
\(675\) 0 0
\(676\) 4.14424 + 2.50637i 0.159394 + 0.0963988i
\(677\) −12.9788 + 12.9788i −0.498814 + 0.498814i −0.911069 0.412255i \(-0.864741\pi\)
0.412255 + 0.911069i \(0.364741\pi\)
\(678\) −15.4279 26.7219i −0.592505 1.02625i
\(679\) −0.0819984 + 0.0473418i −0.00314681 + 0.00181681i
\(680\) 0 0
\(681\) 8.59099 8.59099i 0.329208 0.329208i
\(682\) 4.21890 + 2.43579i 0.161550 + 0.0932710i
\(683\) −8.90541 5.14154i −0.340756 0.196736i 0.319850 0.947468i \(-0.396367\pi\)
−0.660606 + 0.750733i \(0.729701\pi\)
\(684\) −0.874186 + 0.874186i −0.0334253 + 0.0334253i
\(685\) 0 0
\(686\) 0.888455 0.512950i 0.0339214 0.0195845i
\(687\) −9.24636 16.0152i −0.352771 0.611017i
\(688\) 15.3254 15.3254i 0.584275 0.584275i
\(689\) 17.0864 + 0.173695i 0.650938 + 0.00661727i
\(690\) 0 0
\(691\) −4.71419 1.26316i −0.179336 0.0480530i 0.168033 0.985781i \(-0.446258\pi\)
−0.347370 + 0.937728i \(0.612925\pi\)
\(692\) 5.47061 + 1.46585i 0.207962 + 0.0557231i
\(693\) 0.00860141 + 0.0321009i 0.000326740 + 0.00121941i
\(694\) −18.6617 18.6617i −0.708390 0.708390i
\(695\) 0 0
\(696\) −38.7594 + 10.3856i −1.46917 + 0.393664i
\(697\) 11.5501 0.437489
\(698\) 21.2864 5.70368i 0.805702 0.215887i
\(699\) −8.53797 14.7882i −0.322936 0.559341i
\(700\) 0 0
\(701\) 26.9621i 1.01834i −0.860665 0.509172i \(-0.829952\pi\)
0.860665 0.509172i \(-0.170048\pi\)
\(702\) −12.7446 22.6018i −0.481014 0.853051i
\(703\) −11.1467 11.1467i −0.420407 0.420407i
\(704\) 1.61085 6.01177i 0.0607111 0.226577i
\(705\) 0 0
\(706\) 1.37606 + 0.794470i 0.0517888 + 0.0299003i
\(707\) 0.965118i 0.0362970i
\(708\) −0.831644 + 1.44045i −0.0312551 + 0.0541354i
\(709\) 1.93480 + 7.22076i 0.0726629 + 0.271181i 0.992693 0.120666i \(-0.0385029\pi\)
−0.920030 + 0.391847i \(0.871836\pi\)
\(710\) 0 0
\(711\) −6.19696 + 10.7335i −0.232404 + 0.402536i
\(712\) 10.3939 38.7906i 0.389528 1.45374i
\(713\) 11.0167 6.36049i 0.412578 0.238202i
\(714\) −0.146028 −0.00546496
\(715\) 0 0
\(716\) 1.35472 0.0506283
\(717\) 13.0084 7.51037i 0.485806 0.280480i
\(718\) −9.81452 + 36.6283i −0.366275 + 1.36696i
\(719\) −17.6129 + 30.5065i −0.656852 + 1.13770i 0.324574 + 0.945860i \(0.394779\pi\)
−0.981426 + 0.191841i \(0.938554\pi\)
\(720\) 0 0
\(721\) −0.00511908 0.0191047i −0.000190644 0.000711494i
\(722\) −1.81414 + 3.14219i −0.0675155 + 0.116940i
\(723\) 29.4161i 1.09400i
\(724\) −3.94125 2.27548i −0.146475 0.0845677i
\(725\) 0 0
\(726\) −5.11667 + 19.0957i −0.189897 + 0.708706i
\(727\) 21.6956 + 21.6956i 0.804645 + 0.804645i 0.983818 0.179173i \(-0.0573420\pi\)
−0.179173 + 0.983818i \(0.557342\pi\)
\(728\) −0.607253 + 0.156115i −0.0225063 + 0.00578599i
\(729\) 29.7780i 1.10289i
\(730\) 0 0
\(731\) 4.69864 + 8.13828i 0.173785 + 0.301005i
\(732\) −3.52664 + 0.944961i −0.130348 + 0.0349268i
\(733\) 26.5141 0.979322 0.489661 0.871913i \(-0.337121\pi\)
0.489661 + 0.871913i \(0.337121\pi\)
\(734\) −27.4515 + 7.35562i −1.01325 + 0.271501i
\(735\) 0 0
\(736\) −3.42966 3.42966i −0.126419 0.126419i
\(737\) 2.77541 + 10.3580i 0.102234 + 0.381541i
\(738\) −8.69679 2.33030i −0.320133 0.0857794i
\(739\) 7.93547 + 2.12630i 0.291911 + 0.0782173i 0.401803 0.915726i \(-0.368384\pi\)
−0.109892 + 0.993944i \(0.535050\pi\)
\(740\) 0 0
\(741\) −14.9566 15.2638i −0.549444 0.560730i
\(742\) −0.245620 + 0.245620i −0.00901701 + 0.00901701i
\(743\) −9.77400 16.9291i −0.358573 0.621067i 0.629149 0.777284i \(-0.283403\pi\)
−0.987723 + 0.156217i \(0.950070\pi\)
\(744\) −21.0670 + 12.1631i −0.772355 + 0.445919i
\(745\) 0 0
\(746\) 25.2453 25.2453i 0.924295 0.924295i
\(747\) 9.08230 + 5.24367i 0.332304 + 0.191856i
\(748\) 0.305414 + 0.176331i 0.0111671 + 0.00644730i
\(749\) 0.252076 0.252076i 0.00921065 0.00921065i
\(750\) 0 0
\(751\) 25.1699 14.5318i 0.918463 0.530275i 0.0353184 0.999376i \(-0.488755\pi\)
0.883144 + 0.469101i \(0.155422\pi\)
\(752\) 10.3833 + 17.9843i 0.378639 + 0.655822i
\(753\) 17.7523 17.7523i 0.646930 0.646930i
\(754\) 10.2966 + 40.0517i 0.374981 + 1.45860i
\(755\) 0 0
\(756\) −0.116635 0.0312522i −0.00424197 0.00113663i
\(757\) 7.12278 + 1.90854i 0.258882 + 0.0693671i 0.385925 0.922530i \(-0.373882\pi\)
−0.127044 + 0.991897i \(0.540549\pi\)
\(758\) −2.89337 10.7982i −0.105092 0.392208i
\(759\) −1.70501 1.70501i −0.0618879 0.0618879i
\(760\) 0 0
\(761\) 18.8118 5.04060i 0.681926 0.182722i 0.0988050 0.995107i \(-0.468498\pi\)
0.583121 + 0.812385i \(0.301831\pi\)
\(762\) −11.1890 −0.405336
\(763\) 0.634037 0.169890i 0.0229537 0.00615042i
\(764\) 0.545249 + 0.944398i 0.0197264 + 0.0341671i
\(765\) 0 0
\(766\) 16.7622i 0.605645i
\(767\) 9.39789 + 5.55401i 0.339338 + 0.200544i
\(768\) 8.97943 + 8.97943i 0.324017 + 0.324017i
\(769\) 0.929962 3.47067i 0.0335353 0.125155i −0.947129 0.320853i \(-0.896030\pi\)
0.980664 + 0.195698i \(0.0626971\pi\)
\(770\) 0 0
\(771\) −8.13702 4.69791i −0.293047 0.169191i
\(772\) 3.80147i 0.136818i
\(773\) −23.5940 + 40.8660i −0.848616 + 1.46985i 0.0338268 + 0.999428i \(0.489231\pi\)
−0.882443 + 0.470419i \(0.844103\pi\)
\(774\) −1.89596 7.07582i −0.0681489 0.254335i
\(775\) 0 0
\(776\) 2.49395 4.31965i 0.0895277 0.155067i
\(777\) 0.0859984 0.320950i 0.00308518 0.0115140i
\(778\) 24.5565 14.1777i 0.880393 0.508295i
\(779\) −34.3608 −1.23110
\(780\) 0 0
\(781\) 4.57178 0.163591
\(782\) −3.48384 + 2.01140i −0.124582 + 0.0719273i
\(783\) −13.1268 + 48.9899i −0.469113 + 1.75076i
\(784\) −10.9012 + 18.8814i −0.389328 + 0.674336i
\(785\) 0 0
\(786\) 3.27187 + 12.2108i 0.116704 + 0.435545i
\(787\) 9.80272 16.9788i 0.349429 0.605229i −0.636719 0.771096i \(-0.719709\pi\)
0.986148 + 0.165867i \(0.0530422\pi\)
\(788\) 4.57491i 0.162975i
\(789\) 33.1055 + 19.1135i 1.17859 + 0.680458i
\(790\) 0 0
\(791\) −0.243913 + 0.910296i −0.00867255 + 0.0323664i
\(792\) −1.23795 1.23795i −0.0439885 0.0439885i
\(793\) 5.96631 + 23.2077i 0.211870 + 0.824129i
\(794\) 1.49088i 0.0529094i
\(795\) 0 0
\(796\) 0.0148162 + 0.0256624i 0.000525145 + 0.000909578i
\(797\) 1.95111 0.522798i 0.0691118 0.0185185i −0.224097 0.974567i \(-0.571943\pi\)
0.293209 + 0.956048i \(0.405277\pi\)
\(798\) 0.434425 0.0153785
\(799\) −8.69728 + 2.33043i −0.307688 + 0.0824447i
\(800\) 0 0
\(801\) −7.74573 7.74573i −0.273682 0.273682i
\(802\) −5.30453 19.7968i −0.187309 0.699048i
\(803\) −5.43836 1.45720i −0.191916 0.0514236i
\(804\) −8.12180 2.17623i −0.286434 0.0767497i
\(805\) 0 0
\(806\) 12.3137 + 21.8377i 0.433733 + 0.769201i
\(807\) 15.0627 15.0627i 0.530233 0.530233i
\(808\) −25.4211 44.0306i −0.894310 1.54899i
\(809\) 12.4850 7.20824i 0.438950 0.253428i −0.264202 0.964467i \(-0.585109\pi\)
0.703152 + 0.711039i \(0.251775\pi\)
\(810\) 0 0
\(811\) −13.7132 + 13.7132i −0.481537 + 0.481537i −0.905622 0.424085i \(-0.860596\pi\)
0.424085 + 0.905622i \(0.360596\pi\)
\(812\) 0.166663 + 0.0962230i 0.00584873 + 0.00337676i
\(813\) 23.9195 + 13.8099i 0.838892 + 0.484334i
\(814\) 2.47867 2.47867i 0.0868774 0.0868774i
\(815\) 0 0
\(816\) 5.37648 3.10411i 0.188215 0.108666i
\(817\) −13.9782 24.2109i −0.489035 0.847034i
\(818\) −1.38330 + 1.38330i −0.0483659 + 0.0483659i
\(819\) −0.0459417 + 0.164740i −0.00160533 + 0.00575648i
\(820\) 0 0
\(821\) −37.1425 9.95230i −1.29628 0.347338i −0.456239 0.889857i \(-0.650804\pi\)
−0.840043 + 0.542520i \(0.817470\pi\)
\(822\) 19.4768 + 5.21878i 0.679330 + 0.182026i
\(823\) 1.38319 + 5.16215i 0.0482151 + 0.179941i 0.985834 0.167723i \(-0.0536415\pi\)
−0.937619 + 0.347664i \(0.886975\pi\)
\(824\) 0.736756 + 0.736756i 0.0256661 + 0.0256661i
\(825\) 0 0
\(826\) −0.214353 + 0.0574358i −0.00745830 + 0.00199845i
\(827\) 31.8700 1.10823 0.554114 0.832440i \(-0.313057\pi\)
0.554114 + 0.832440i \(0.313057\pi\)
\(828\) −0.693402 + 0.185797i −0.0240974 + 0.00645688i
\(829\) −17.8848 30.9773i −0.621164 1.07589i −0.989269 0.146103i \(-0.953327\pi\)
0.368105 0.929784i \(-0.380007\pi\)
\(830\) 0 0
\(831\) 2.86962i 0.0995461i
\(832\) 22.8772 22.4167i 0.793123 0.777160i
\(833\) −6.68443 6.68443i −0.231602 0.231602i
\(834\) 9.04596 33.7600i 0.313236 1.16901i
\(835\) 0 0
\(836\) −0.908591 0.524575i −0.0314243 0.0181428i
\(837\) 30.7469i 1.06277i
\(838\) −18.7462 + 32.4694i −0.647577 + 1.12164i
\(839\) 11.0135 + 41.1030i 0.380229 + 1.41903i 0.845553 + 0.533892i \(0.179271\pi\)
−0.465324 + 0.885140i \(0.654062\pi\)
\(840\) 0 0
\(841\) 25.9163 44.8884i 0.893666 1.54788i
\(842\) −10.4451 + 38.9818i −0.359963 + 1.34340i
\(843\) −3.65735 + 2.11157i −0.125966 + 0.0727265i
\(844\) 5.90542 0.203273
\(845\) 0 0
\(846\) 7.01893 0.241316
\(847\) 0.522906 0.301900i 0.0179673 0.0103734i
\(848\) 3.82215 14.2644i 0.131253 0.489843i
\(849\) −23.8296 + 41.2740i −0.817828 + 1.41652i
\(850\) 0 0
\(851\) −2.36909 8.84156i −0.0812113 0.303085i
\(852\) −1.79239 + 3.10451i −0.0614063 + 0.106359i
\(853\) 9.37861i 0.321117i 0.987026 + 0.160559i \(0.0513296\pi\)
−0.987026 + 0.160559i \(0.948670\pi\)
\(854\) −0.421859 0.243560i −0.0144357 0.00833447i
\(855\) 0 0
\(856\) −4.86056 + 18.1398i −0.166130 + 0.620007i
\(857\) −37.8273 37.8273i −1.29216 1.29216i −0.933451 0.358705i \(-0.883218\pi\)
−0.358705 0.933451i \(-0.616782\pi\)
\(858\) 3.39417 3.32586i 0.115875 0.113543i
\(859\) 34.3962i 1.17358i 0.809738 + 0.586791i \(0.199609\pi\)
−0.809738 + 0.586791i \(0.800391\pi\)
\(860\) 0 0
\(861\) −0.362130 0.627227i −0.0123414 0.0213758i
\(862\) 14.8063 3.96735i 0.504306 0.135128i
\(863\) −25.9429 −0.883106 −0.441553 0.897235i \(-0.645572\pi\)
−0.441553 + 0.897235i \(0.645572\pi\)
\(864\) 11.3238 3.03419i 0.385242 0.103225i
\(865\) 0 0
\(866\) 23.4340 + 23.4340i 0.796319 + 0.796319i
\(867\) −5.79139 21.6137i −0.196686 0.734041i
\(868\) 0.112692 + 0.0301956i 0.00382500 + 0.00102491i
\(869\) −10.1595 2.72222i −0.344637 0.0923451i
\(870\) 0 0
\(871\) −14.8240 + 53.1565i −0.502292 + 1.80114i
\(872\) −24.4511 + 24.4511i −0.828020 + 0.828020i
\(873\) −0.680273 1.17827i −0.0230237 0.0398783i
\(874\) 10.3642 5.98379i 0.350575 0.202405i
\(875\) 0 0
\(876\) 3.12167 3.12167i 0.105471 0.105471i
\(877\) 16.2245 + 9.36723i 0.547863 + 0.316309i 0.748260 0.663406i \(-0.230890\pi\)
−0.200397 + 0.979715i \(0.564223\pi\)
\(878\) 3.57789 + 2.06569i 0.120748 + 0.0697138i
\(879\) 21.4123 21.4123i 0.722218 0.722218i
\(880\) 0 0
\(881\) −26.3934 + 15.2382i −0.889216 + 0.513389i −0.873686 0.486490i \(-0.838277\pi\)
−0.0155302 + 0.999879i \(0.504944\pi\)
\(882\) 3.68452 + 6.38177i 0.124064 + 0.214885i
\(883\) −32.3672 + 32.3672i −1.08924 + 1.08924i −0.0936348 + 0.995607i \(0.529849\pi\)
−0.995607 + 0.0936348i \(0.970151\pi\)
\(884\) 0.891415 + 1.58087i 0.0299815 + 0.0531705i
\(885\) 0 0
\(886\) 10.5061 + 2.81511i 0.352960 + 0.0945754i
\(887\) 16.9889 + 4.55216i 0.570432 + 0.152847i 0.532495 0.846433i \(-0.321255\pi\)
0.0379371 + 0.999280i \(0.487921\pi\)
\(888\) 4.53037 + 16.9076i 0.152029 + 0.567381i
\(889\) 0.241646 + 0.241646i 0.00810454 + 0.00810454i
\(890\) 0 0
\(891\) 3.95331 1.05929i 0.132441 0.0354874i
\(892\) −7.10162 −0.237780
\(893\) 25.8739 6.93290i 0.865838 0.232001i
\(894\) 14.9774 + 25.9415i 0.500918 + 0.867615i
\(895\) 0 0
\(896\) 0.412311i 0.0137743i
\(897\) −3.08963 12.0180i −0.103160 0.401270i
\(898\) −3.82399 3.82399i −0.127608 0.127608i
\(899\) 12.6830 47.3336i 0.423002 1.57866i
\(900\) 0 0
\(901\) 5.54520 + 3.20152i 0.184737 + 0.106658i
\(902\) 7.64071i 0.254408i
\(903\) 0.294634 0.510321i 0.00980480 0.0169824i
\(904\) −12.8493 47.9541i −0.427360 1.59493i
\(905\) 0 0
\(906\) −15.3350 + 26.5611i −0.509473 + 0.882433i
\(907\) 0.355062 1.32511i 0.0117896 0.0439996i −0.959780 0.280752i \(-0.909416\pi\)
0.971570 + 0.236752i \(0.0760829\pi\)
\(908\) 2.65832 1.53478i 0.0882195 0.0509336i
\(909\) −13.8682 −0.459978
\(910\) 0 0
\(911\) 9.14814 0.303092 0.151546 0.988450i \(-0.451575\pi\)
0.151546 + 0.988450i \(0.451575\pi\)
\(912\) −15.9947 + 9.23457i −0.529639 + 0.305787i
\(913\) −2.30346 + 8.59663i −0.0762334 + 0.284507i
\(914\) 4.19663 7.26877i 0.138812 0.240430i
\(915\) 0 0
\(916\) −1.20925 4.51298i −0.0399547 0.149113i
\(917\) 0.193051 0.334374i 0.00637511 0.0110420i
\(918\) 9.72319i 0.320913i
\(919\) 42.0010 + 24.2493i 1.38549 + 0.799911i 0.992803 0.119763i \(-0.0382135\pi\)
0.392683 + 0.919674i \(0.371547\pi\)
\(920\) 0 0
\(921\) 2.08603 7.78516i 0.0687369 0.256530i
\(922\) 7.52937 + 7.52937i 0.247967 + 0.247967i
\(923\) 20.2547 + 11.9702i 0.666691 + 0.394004i
\(924\) 0.0221141i 0.000727501i
\(925\) 0 0
\(926\) 16.0720 + 27.8375i 0.528159 + 0.914798i
\(927\) 0.274522 0.0735580i 0.00901649 0.00241596i
\(928\) −18.6841 −0.613334
\(929\) −4.95450 + 1.32756i −0.162552 + 0.0435557i −0.339177 0.940723i \(-0.610149\pi\)
0.176625 + 0.984278i \(0.443482\pi\)
\(930\) 0 0
\(931\) 19.8858 + 19.8858i 0.651731 + 0.651731i
\(932\) −1.11660 4.16723i −0.0365756 0.136502i
\(933\) 14.5279 + 3.89273i 0.475621 + 0.127442i
\(934\) −14.0856 3.77422i −0.460894 0.123496i
\(935\) 0 0
\(936\) −2.24327 8.72586i −0.0733236 0.285214i
\(937\) −34.8938 + 34.8938i −1.13993 + 1.13993i −0.151470 + 0.988462i \(0.548401\pi\)
−0.988462 + 0.151470i \(0.951599\pi\)
\(938\) −0.560915 0.971534i −0.0183145 0.0317217i
\(939\) 25.6662 14.8184i 0.837585 0.483580i
\(940\) 0 0
\(941\) 19.4771 19.4771i 0.634936 0.634936i −0.314366 0.949302i \(-0.601792\pi\)
0.949302 + 0.314366i \(0.101792\pi\)
\(942\) −9.42516 5.44162i −0.307088 0.177297i
\(943\) −17.2789 9.97597i −0.562678 0.324862i
\(944\) 6.67118 6.67118i 0.217128 0.217128i
\(945\) 0 0
\(946\) 5.38372 3.10829i 0.175040 0.101059i
\(947\) −23.0380 39.9030i −0.748636 1.29667i −0.948477 0.316846i \(-0.897376\pi\)
0.199841 0.979828i \(-0.435957\pi\)
\(948\) 5.83163 5.83163i 0.189402 0.189402i
\(949\) −20.2786 20.6951i −0.658271 0.671792i
\(950\) 0 0
\(951\) 27.9857 + 7.49875i 0.907499 + 0.243163i
\(952\) −0.226948 0.0608104i −0.00735541 0.00197088i
\(953\) 13.9406 + 52.0270i 0.451580 + 1.68532i 0.697951 + 0.716145i \(0.254095\pi\)
−0.246371 + 0.969176i \(0.579238\pi\)
\(954\) −3.52942 3.52942i −0.114269 0.114269i
\(955\) 0 0
\(956\) 3.66568 0.982215i 0.118556 0.0317671i
\(957\) −9.28854 −0.300256
\(958\) 43.6468 11.6951i 1.41016 0.377852i
\(959\) −0.307925 0.533341i −0.00994341 0.0172225i
\(960\) 0 0
\(961\) 1.29257i 0.0416957i
\(962\) 17.4713 4.49158i 0.563297 0.144814i
\(963\) 3.62218 + 3.62218i 0.116723 + 0.116723i
\(964\) 1.92353 7.17873i 0.0619529 0.231211i
\(965\) 0 0
\(966\) 0.218458 + 0.126127i 0.00702878 + 0.00405807i
\(967\) 36.0291i 1.15862i 0.815109 + 0.579308i \(0.196677\pi\)
−0.815109 + 0.579308i \(0.803323\pi\)
\(968\) −15.9040 + 27.5465i −0.511174 + 0.885379i
\(969\) −2.07261 7.73510i −0.0665820 0.248487i
\(970\) 0 0
\(971\) −27.4824 + 47.6009i −0.881952 + 1.52759i −0.0327845 + 0.999462i \(0.510438\pi\)
−0.849168 + 0.528123i \(0.822896\pi\)
\(972\) 0.801237 2.99026i 0.0256997 0.0959125i
\(973\) −0.924466 + 0.533741i −0.0296370 + 0.0171109i
\(974\) 27.1732 0.870684
\(975\) 0 0
\(976\) 20.7094 0.662893
\(977\) −28.0264 + 16.1811i −0.896644 + 0.517678i −0.876110 0.482111i \(-0.839870\pi\)
−0.0205344 + 0.999789i \(0.506537\pi\)
\(978\) 0.00971427 0.0362541i 0.000310628 0.00115928i
\(979\) 4.64800 8.05058i 0.148551 0.257298i
\(980\) 0 0
\(981\) 2.44121 + 9.11072i 0.0779419 + 0.290883i
\(982\) −22.2401 + 38.5211i −0.709712 + 1.22926i
\(983\) 7.09085i 0.226163i −0.993586 0.113082i \(-0.963928\pi\)
0.993586 0.113082i \(-0.0360721\pi\)
\(984\) 33.0422 + 19.0769i 1.05335 + 0.608149i
\(985\) 0 0
\(986\) −4.01078 + 14.9684i −0.127729 + 0.476693i
\(987\) 0.399241 + 0.399241i 0.0127080 + 0.0127080i
\(988\) −2.65191 4.70301i −0.0843685 0.149623i
\(989\) 16.2332i 0.516185i
\(990\) 0 0
\(991\) −23.2558 40.2802i −0.738744 1.27954i −0.953061 0.302778i \(-0.902086\pi\)
0.214317 0.976764i \(-0.431247\pi\)
\(992\) −10.9409 + 2.93161i −0.347375 + 0.0930788i
\(993\) −6.56049 −0.208191
\(994\) −0.461982 + 0.123788i −0.0146532 + 0.00392631i
\(995\) 0 0
\(996\) −4.93454 4.93454i −0.156357 0.156357i
\(997\) −2.75589 10.2851i −0.0872800 0.325733i 0.908456 0.417980i \(-0.137262\pi\)
−0.995736 + 0.0922467i \(0.970595\pi\)
\(998\) −33.8250 9.06338i −1.07071 0.286896i
\(999\) 21.3703 + 5.72615i 0.676126 + 0.181167i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.2.x.c.93.7 yes 40
5.2 odd 4 325.2.s.c.132.7 yes 40
5.3 odd 4 325.2.s.c.132.4 40
5.4 even 2 inner 325.2.x.c.93.4 yes 40
13.7 odd 12 325.2.s.c.293.7 yes 40
65.7 even 12 inner 325.2.x.c.7.7 yes 40
65.33 even 12 inner 325.2.x.c.7.4 yes 40
65.59 odd 12 325.2.s.c.293.4 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.2.s.c.132.4 40 5.3 odd 4
325.2.s.c.132.7 yes 40 5.2 odd 4
325.2.s.c.293.4 yes 40 65.59 odd 12
325.2.s.c.293.7 yes 40 13.7 odd 12
325.2.x.c.7.4 yes 40 65.33 even 12 inner
325.2.x.c.7.7 yes 40 65.7 even 12 inner
325.2.x.c.93.4 yes 40 5.4 even 2 inner
325.2.x.c.93.7 yes 40 1.1 even 1 trivial