Properties

Label 325.2.x.c.7.1
Level $325$
Weight $2$
Character 325.7
Analytic conductor $2.595$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [325,2,Mod(7,325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(325, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([3, 11])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("325.7"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 325.x (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.59513806569\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 7.1
Character \(\chi\) \(=\) 325.7
Dual form 325.2.x.c.93.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.20489 - 1.27299i) q^{2} +(-0.473014 - 1.76531i) q^{3} +(2.24102 + 3.88157i) q^{4} +(-1.20429 + 4.49446i) q^{6} +(1.77897 + 3.08127i) q^{7} -6.31926i q^{8} +(-0.294506 + 0.170033i) q^{9} +(-1.44584 - 5.39595i) q^{11} +(5.79214 - 5.79214i) q^{12} +(-2.23526 - 2.82906i) q^{13} -9.05848i q^{14} +(-3.56233 + 6.17014i) q^{16} +(-0.522966 - 0.140128i) q^{17} +0.865803 q^{18} +(-3.16517 - 0.848105i) q^{19} +(4.59792 - 4.59792i) q^{21} +(-3.68109 + 13.7380i) q^{22} +(5.62291 - 1.50665i) q^{23} +(-11.1555 + 2.98910i) q^{24} +(1.32713 + 9.08325i) q^{26} +(-3.43743 - 3.43743i) q^{27} +(-7.97344 + 13.8104i) q^{28} +(0.795717 + 0.459408i) q^{29} +(-0.614354 - 0.614354i) q^{31} +(4.76381 - 2.75038i) q^{32} +(-8.84162 + 5.10471i) q^{33} +(0.974699 + 0.974699i) q^{34} +(-1.31999 - 0.762095i) q^{36} +(2.52362 - 4.37103i) q^{37} +(5.89922 + 5.89922i) q^{38} +(-3.93687 + 5.28412i) q^{39} +(-6.34129 + 1.69914i) q^{41} +(-15.9910 + 4.28479i) q^{42} +(1.46927 - 5.48340i) q^{43} +(17.7046 - 17.7046i) q^{44} +(-14.3159 - 3.83592i) q^{46} -10.9051 q^{47} +(12.5772 + 3.37006i) q^{48} +(-2.82949 + 4.90082i) q^{49} +0.989479i q^{51} +(5.97193 - 15.0163i) q^{52} +(1.91524 - 1.91524i) q^{53} +(3.20332 + 11.9550i) q^{54} +(19.4714 - 11.2418i) q^{56} +5.98868i q^{57} +(-1.16965 - 2.02589i) q^{58} +(-0.0766522 + 0.286070i) q^{59} +(1.24398 + 2.15463i) q^{61} +(0.572514 + 2.13665i) q^{62} +(-1.04783 - 0.604968i) q^{63} +0.244439 q^{64} +25.9931 q^{66} +(6.17586 + 3.56563i) q^{67} +(-0.628061 - 2.34396i) q^{68} +(-5.31943 - 9.21352i) q^{69} +(3.36393 - 12.5544i) q^{71} +(1.07448 + 1.86106i) q^{72} +3.87546i q^{73} +(-11.1286 + 6.42509i) q^{74} +(-3.80125 - 14.1865i) q^{76} +(14.0543 - 14.0543i) q^{77} +(15.4070 - 6.63929i) q^{78} -8.77296i q^{79} +(-4.95228 + 8.57759i) q^{81} +(16.1448 + 4.32600i) q^{82} -5.05855 q^{83} +(28.1512 + 7.54310i) q^{84} +(-10.2199 + 10.2199i) q^{86} +(0.434612 - 1.62199i) q^{87} +(-34.0984 + 9.13664i) q^{88} +(0.609451 - 0.163302i) q^{89} +(4.74064 - 11.9203i) q^{91} +(18.4493 + 18.4493i) q^{92} +(-0.793928 + 1.37512i) q^{93} +(24.0445 + 13.8821i) q^{94} +(-7.10863 - 7.10863i) q^{96} +(-2.55465 + 1.47493i) q^{97} +(12.4774 - 7.20384i) q^{98} +(1.34330 + 1.34330i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 24 q^{4} - 12 q^{6} - 24 q^{9} + 8 q^{11} - 32 q^{16} + 24 q^{19} + 32 q^{21} - 56 q^{24} + 76 q^{26} + 36 q^{29} + 8 q^{31} - 44 q^{34} - 60 q^{36} - 44 q^{39} - 52 q^{41} + 80 q^{44} - 60 q^{46}+ \cdots - 208 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{11}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.20489 1.27299i −1.55909 0.900142i −0.997344 0.0728338i \(-0.976796\pi\)
−0.561748 0.827308i \(-0.689871\pi\)
\(3\) −0.473014 1.76531i −0.273095 1.01920i −0.957108 0.289733i \(-0.906433\pi\)
0.684013 0.729470i \(-0.260233\pi\)
\(4\) 2.24102 + 3.88157i 1.12051 + 1.94078i
\(5\) 0 0
\(6\) −1.20429 + 4.49446i −0.491648 + 1.83486i
\(7\) 1.77897 + 3.08127i 0.672389 + 1.16461i 0.977225 + 0.212206i \(0.0680649\pi\)
−0.304836 + 0.952405i \(0.598602\pi\)
\(8\) 6.31926i 2.23420i
\(9\) −0.294506 + 0.170033i −0.0981685 + 0.0566776i
\(10\) 0 0
\(11\) −1.44584 5.39595i −0.435937 1.62694i −0.738814 0.673909i \(-0.764614\pi\)
0.302877 0.953030i \(-0.402053\pi\)
\(12\) 5.79214 5.79214i 1.67205 1.67205i
\(13\) −2.23526 2.82906i −0.619950 0.784641i
\(14\) 9.05848i 2.42098i
\(15\) 0 0
\(16\) −3.56233 + 6.17014i −0.890583 + 1.54253i
\(17\) −0.522966 0.140128i −0.126838 0.0339861i 0.194842 0.980835i \(-0.437581\pi\)
−0.321679 + 0.946849i \(0.604247\pi\)
\(18\) 0.865803 0.204072
\(19\) −3.16517 0.848105i −0.726140 0.194569i −0.123230 0.992378i \(-0.539325\pi\)
−0.602910 + 0.797809i \(0.705992\pi\)
\(20\) 0 0
\(21\) 4.59792 4.59792i 1.00335 1.00335i
\(22\) −3.68109 + 13.7380i −0.784811 + 2.92895i
\(23\) 5.62291 1.50665i 1.17246 0.314159i 0.380527 0.924770i \(-0.375743\pi\)
0.791931 + 0.610610i \(0.209076\pi\)
\(24\) −11.1555 + 2.98910i −2.27710 + 0.610147i
\(25\) 0 0
\(26\) 1.32713 + 9.08325i 0.260271 + 1.78137i
\(27\) −3.43743 3.43743i −0.661533 0.661533i
\(28\) −7.97344 + 13.8104i −1.50684 + 2.60992i
\(29\) 0.795717 + 0.459408i 0.147761 + 0.0853098i 0.572058 0.820213i \(-0.306145\pi\)
−0.424297 + 0.905523i \(0.639479\pi\)
\(30\) 0 0
\(31\) −0.614354 0.614354i −0.110341 0.110341i 0.649781 0.760122i \(-0.274861\pi\)
−0.760122 + 0.649781i \(0.774861\pi\)
\(32\) 4.76381 2.75038i 0.842130 0.486204i
\(33\) −8.84162 + 5.10471i −1.53913 + 0.888616i
\(34\) 0.974699 + 0.974699i 0.167159 + 0.167159i
\(35\) 0 0
\(36\) −1.31999 0.762095i −0.219998 0.127016i
\(37\) 2.52362 4.37103i 0.414880 0.718593i −0.580536 0.814235i \(-0.697157\pi\)
0.995416 + 0.0956417i \(0.0304903\pi\)
\(38\) 5.89922 + 5.89922i 0.956980 + 0.956980i
\(39\) −3.93687 + 5.28412i −0.630403 + 0.846136i
\(40\) 0 0
\(41\) −6.34129 + 1.69914i −0.990343 + 0.265362i −0.717395 0.696667i \(-0.754666\pi\)
−0.272948 + 0.962029i \(0.587999\pi\)
\(42\) −15.9910 + 4.28479i −2.46747 + 0.661157i
\(43\) 1.46927 5.48340i 0.224062 0.836211i −0.758716 0.651421i \(-0.774173\pi\)
0.982778 0.184789i \(-0.0591603\pi\)
\(44\) 17.7046 17.7046i 2.66906 2.66906i
\(45\) 0 0
\(46\) −14.3159 3.83592i −2.11076 0.565576i
\(47\) −10.9051 −1.59067 −0.795334 0.606171i \(-0.792705\pi\)
−0.795334 + 0.606171i \(0.792705\pi\)
\(48\) 12.5772 + 3.37006i 1.81537 + 0.486427i
\(49\) −2.82949 + 4.90082i −0.404213 + 0.700117i
\(50\) 0 0
\(51\) 0.989479i 0.138555i
\(52\) 5.97193 15.0163i 0.828157 2.08239i
\(53\) 1.91524 1.91524i 0.263079 0.263079i −0.563225 0.826304i \(-0.690439\pi\)
0.826304 + 0.563225i \(0.190439\pi\)
\(54\) 3.20332 + 11.9550i 0.435917 + 1.62686i
\(55\) 0 0
\(56\) 19.4714 11.2418i 2.60197 1.50225i
\(57\) 5.98868i 0.793220i
\(58\) −1.16965 2.02589i −0.153582 0.266012i
\(59\) −0.0766522 + 0.286070i −0.00997926 + 0.0372431i −0.970736 0.240149i \(-0.922804\pi\)
0.960757 + 0.277392i \(0.0894702\pi\)
\(60\) 0 0
\(61\) 1.24398 + 2.15463i 0.159275 + 0.275872i 0.934607 0.355681i \(-0.115751\pi\)
−0.775333 + 0.631553i \(0.782418\pi\)
\(62\) 0.572514 + 2.13665i 0.0727093 + 0.271355i
\(63\) −1.04783 0.604968i −0.132015 0.0762188i
\(64\) 0.244439 0.0305549
\(65\) 0 0
\(66\) 25.9931 3.19952
\(67\) 6.17586 + 3.56563i 0.754501 + 0.435612i 0.827318 0.561734i \(-0.189865\pi\)
−0.0728167 + 0.997345i \(0.523199\pi\)
\(68\) −0.628061 2.34396i −0.0761636 0.284247i
\(69\) −5.31943 9.21352i −0.640384 1.10918i
\(70\) 0 0
\(71\) 3.36393 12.5544i 0.399225 1.48993i −0.415237 0.909713i \(-0.636301\pi\)
0.814462 0.580216i \(-0.197032\pi\)
\(72\) 1.07448 + 1.86106i 0.126629 + 0.219328i
\(73\) 3.87546i 0.453588i 0.973943 + 0.226794i \(0.0728244\pi\)
−0.973943 + 0.226794i \(0.927176\pi\)
\(74\) −11.1286 + 6.42509i −1.29367 + 0.746902i
\(75\) 0 0
\(76\) −3.80125 14.1865i −0.436033 1.62730i
\(77\) 14.0543 14.0543i 1.60163 1.60163i
\(78\) 15.4070 6.63929i 1.74450 0.751752i
\(79\) 8.77296i 0.987035i −0.869736 0.493517i \(-0.835711\pi\)
0.869736 0.493517i \(-0.164289\pi\)
\(80\) 0 0
\(81\) −4.95228 + 8.57759i −0.550253 + 0.953066i
\(82\) 16.1448 + 4.32600i 1.78290 + 0.477726i
\(83\) −5.05855 −0.555248 −0.277624 0.960690i \(-0.589547\pi\)
−0.277624 + 0.960690i \(0.589547\pi\)
\(84\) 28.1512 + 7.54310i 3.07155 + 0.823019i
\(85\) 0 0
\(86\) −10.2199 + 10.2199i −1.10204 + 1.10204i
\(87\) 0.434612 1.62199i 0.0465953 0.173896i
\(88\) −34.0984 + 9.13664i −3.63490 + 0.973969i
\(89\) 0.609451 0.163302i 0.0646017 0.0173100i −0.226373 0.974041i \(-0.572687\pi\)
0.290975 + 0.956731i \(0.406020\pi\)
\(90\) 0 0
\(91\) 4.74064 11.9203i 0.496954 1.24958i
\(92\) 18.4493 + 18.4493i 1.92347 + 1.92347i
\(93\) −0.793928 + 1.37512i −0.0823265 + 0.142594i
\(94\) 24.0445 + 13.8821i 2.48000 + 1.43183i
\(95\) 0 0
\(96\) −7.10863 7.10863i −0.725521 0.725521i
\(97\) −2.55465 + 1.47493i −0.259385 + 0.149756i −0.624054 0.781381i \(-0.714515\pi\)
0.364669 + 0.931137i \(0.381182\pi\)
\(98\) 12.4774 7.20384i 1.26041 0.727698i
\(99\) 1.34330 + 1.34330i 0.135006 + 0.135006i
\(100\) 0 0
\(101\) 10.0555 + 5.80554i 1.00056 + 0.577673i 0.908413 0.418073i \(-0.137294\pi\)
0.0921450 + 0.995746i \(0.470628\pi\)
\(102\) 1.25960 2.18169i 0.124719 0.216020i
\(103\) 4.94517 + 4.94517i 0.487263 + 0.487263i 0.907441 0.420179i \(-0.138033\pi\)
−0.420179 + 0.907441i \(0.638033\pi\)
\(104\) −17.8776 + 14.1252i −1.75304 + 1.38509i
\(105\) 0 0
\(106\) −6.66099 + 1.78481i −0.646973 + 0.173356i
\(107\) −0.547587 + 0.146725i −0.0529372 + 0.0141845i −0.285190 0.958471i \(-0.592057\pi\)
0.232253 + 0.972655i \(0.425390\pi\)
\(108\) 5.63925 21.0460i 0.542637 2.02515i
\(109\) −7.63903 + 7.63903i −0.731686 + 0.731686i −0.970954 0.239267i \(-0.923093\pi\)
0.239267 + 0.970954i \(0.423093\pi\)
\(110\) 0 0
\(111\) −8.90993 2.38741i −0.845693 0.226603i
\(112\) −25.3492 −2.39527
\(113\) 2.44331 + 0.654684i 0.229847 + 0.0615874i 0.371904 0.928271i \(-0.378705\pi\)
−0.142057 + 0.989858i \(0.545372\pi\)
\(114\) 7.62355 13.2044i 0.714011 1.23670i
\(115\) 0 0
\(116\) 4.11817i 0.382363i
\(117\) 1.13933 + 0.453107i 0.105331 + 0.0418897i
\(118\) 0.533174 0.533174i 0.0490827 0.0490827i
\(119\) −0.498568 1.86068i −0.0457037 0.170569i
\(120\) 0 0
\(121\) −17.4995 + 10.1033i −1.59086 + 0.918486i
\(122\) 6.33429i 0.573480i
\(123\) 5.99903 + 10.3906i 0.540915 + 0.936892i
\(124\) 1.00787 3.76144i 0.0905098 0.337787i
\(125\) 0 0
\(126\) 1.54024 + 2.66777i 0.137215 + 0.237664i
\(127\) −3.19516 11.9245i −0.283525 1.05813i −0.949910 0.312522i \(-0.898826\pi\)
0.666385 0.745607i \(-0.267841\pi\)
\(128\) −10.0666 5.81194i −0.889768 0.513708i
\(129\) −10.3749 −0.913459
\(130\) 0 0
\(131\) 1.00566 0.0878646 0.0439323 0.999035i \(-0.486011\pi\)
0.0439323 + 0.999035i \(0.486011\pi\)
\(132\) −39.6286 22.8796i −3.44923 1.99141i
\(133\) −3.01751 11.2615i −0.261651 0.976496i
\(134\) −9.07806 15.7237i −0.784225 1.35832i
\(135\) 0 0
\(136\) −0.885507 + 3.30476i −0.0759316 + 0.283381i
\(137\) 4.45219 + 7.71142i 0.380376 + 0.658831i 0.991116 0.133000i \(-0.0424611\pi\)
−0.610740 + 0.791831i \(0.709128\pi\)
\(138\) 27.0864i 2.30575i
\(139\) 14.4284 8.33023i 1.22380 0.706561i 0.258073 0.966125i \(-0.416912\pi\)
0.965726 + 0.259565i \(0.0835791\pi\)
\(140\) 0 0
\(141\) 5.15825 + 19.2509i 0.434403 + 1.62121i
\(142\) −23.3987 + 23.3987i −1.96358 + 1.96358i
\(143\) −12.0336 + 16.1517i −1.00630 + 1.35068i
\(144\) 2.42285i 0.201904i
\(145\) 0 0
\(146\) 4.93343 8.54495i 0.408293 0.707185i
\(147\) 9.98986 + 2.67677i 0.823949 + 0.220777i
\(148\) 22.6219 1.85951
\(149\) 5.96188 + 1.59748i 0.488416 + 0.130871i 0.494619 0.869110i \(-0.335308\pi\)
−0.00620243 + 0.999981i \(0.501974\pi\)
\(150\) 0 0
\(151\) −1.74107 + 1.74107i −0.141687 + 0.141687i −0.774392 0.632706i \(-0.781944\pi\)
0.632706 + 0.774392i \(0.281944\pi\)
\(152\) −5.35940 + 20.0015i −0.434705 + 1.62234i
\(153\) 0.177843 0.0476528i 0.0143777 0.00385250i
\(154\) −48.8791 + 13.0971i −3.93879 + 1.05540i
\(155\) 0 0
\(156\) −29.3333 3.43938i −2.34854 0.275371i
\(157\) 4.01877 + 4.01877i 0.320732 + 0.320732i 0.849048 0.528316i \(-0.177176\pi\)
−0.528316 + 0.849048i \(0.677176\pi\)
\(158\) −11.1679 + 19.3434i −0.888472 + 1.53888i
\(159\) −4.28694 2.47507i −0.339976 0.196285i
\(160\) 0 0
\(161\) 14.6454 + 14.6454i 1.15422 + 1.15422i
\(162\) 21.8384 12.6084i 1.71579 0.990612i
\(163\) 20.1892 11.6562i 1.58134 0.912986i 0.586673 0.809824i \(-0.300437\pi\)
0.994665 0.103162i \(-0.0328959\pi\)
\(164\) −20.8063 20.8063i −1.62470 1.62470i
\(165\) 0 0
\(166\) 11.1535 + 6.43950i 0.865683 + 0.499802i
\(167\) 10.3506 17.9278i 0.800956 1.38730i −0.118031 0.993010i \(-0.537658\pi\)
0.918987 0.394287i \(-0.129008\pi\)
\(168\) −29.0555 29.0555i −2.24168 2.24168i
\(169\) −3.00720 + 12.6474i −0.231323 + 0.972877i
\(170\) 0 0
\(171\) 1.07637 0.288411i 0.0823118 0.0220554i
\(172\) 24.5769 6.58535i 1.87397 0.502128i
\(173\) −2.48803 + 9.28545i −0.189161 + 0.705960i 0.804540 + 0.593899i \(0.202412\pi\)
−0.993701 + 0.112061i \(0.964255\pi\)
\(174\) −3.02306 + 3.02306i −0.229178 + 0.229178i
\(175\) 0 0
\(176\) 38.4443 + 10.3011i 2.89785 + 0.776476i
\(177\) 0.541260 0.0406836
\(178\) −1.55166 0.415765i −0.116301 0.0311629i
\(179\) 8.68658 15.0456i 0.649266 1.12456i −0.334033 0.942561i \(-0.608410\pi\)
0.983299 0.182000i \(-0.0582570\pi\)
\(180\) 0 0
\(181\) 10.7285i 0.797446i −0.917071 0.398723i \(-0.869453\pi\)
0.917071 0.398723i \(-0.130547\pi\)
\(182\) −25.6270 + 20.2481i −1.89960 + 1.50089i
\(183\) 3.21518 3.21518i 0.237673 0.237673i
\(184\) −9.52095 35.5327i −0.701894 2.61950i
\(185\) 0 0
\(186\) 3.50105 2.02133i 0.256709 0.148211i
\(187\) 3.02450i 0.221173i
\(188\) −24.4385 42.3288i −1.78236 3.08714i
\(189\) 4.47656 16.7067i 0.325621 1.21524i
\(190\) 0 0
\(191\) 2.72984 + 4.72822i 0.197524 + 0.342122i 0.947725 0.319088i \(-0.103377\pi\)
−0.750201 + 0.661210i \(0.770043\pi\)
\(192\) −0.115623 0.431512i −0.00834439 0.0311417i
\(193\) 19.2652 + 11.1228i 1.38674 + 0.800636i 0.992947 0.118563i \(-0.0378287\pi\)
0.393795 + 0.919198i \(0.371162\pi\)
\(194\) 7.51028 0.539207
\(195\) 0 0
\(196\) −25.3638 −1.81170
\(197\) −9.19967 5.31143i −0.655450 0.378424i 0.135091 0.990833i \(-0.456867\pi\)
−0.790541 + 0.612409i \(0.790201\pi\)
\(198\) −1.25181 4.67183i −0.0889624 0.332012i
\(199\) 11.4195 + 19.7791i 0.809504 + 1.40210i 0.913208 + 0.407494i \(0.133597\pi\)
−0.103704 + 0.994608i \(0.533070\pi\)
\(200\) 0 0
\(201\) 3.37319 12.5889i 0.237926 0.887953i
\(202\) −14.7808 25.6011i −1.03998 1.80129i
\(203\) 3.26909i 0.229445i
\(204\) −3.84073 + 2.21745i −0.268905 + 0.155252i
\(205\) 0 0
\(206\) −4.60839 17.1987i −0.321082 1.19829i
\(207\) −1.39980 + 1.39980i −0.0972927 + 0.0972927i
\(208\) 25.4185 3.71382i 1.76245 0.257507i
\(209\) 18.3053i 1.26621i
\(210\) 0 0
\(211\) −10.2452 + 17.7453i −0.705311 + 1.22163i 0.261268 + 0.965266i \(0.415859\pi\)
−0.966579 + 0.256369i \(0.917474\pi\)
\(212\) 11.7263 + 3.14204i 0.805363 + 0.215796i
\(213\) −23.7536 −1.62757
\(214\) 1.39415 + 0.373561i 0.0953020 + 0.0255361i
\(215\) 0 0
\(216\) −21.7220 + 21.7220i −1.47799 + 1.47799i
\(217\) 0.800072 2.98591i 0.0543124 0.202697i
\(218\) 26.5676 7.11878i 1.79939 0.482145i
\(219\) 6.84138 1.83314i 0.462298 0.123872i
\(220\) 0 0
\(221\) 0.772534 + 1.79273i 0.0519662 + 0.120592i
\(222\) 16.6063 + 16.6063i 1.11454 + 1.11454i
\(223\) 9.38179 16.2497i 0.628251 1.08816i −0.359651 0.933087i \(-0.617104\pi\)
0.987903 0.155076i \(-0.0495623\pi\)
\(224\) 16.9494 + 9.78572i 1.13248 + 0.653836i
\(225\) 0 0
\(226\) −4.55382 4.55382i −0.302916 0.302916i
\(227\) −15.4463 + 8.91793i −1.02521 + 0.591904i −0.915608 0.402072i \(-0.868290\pi\)
−0.109599 + 0.993976i \(0.534957\pi\)
\(228\) −23.2455 + 13.4208i −1.53947 + 0.888812i
\(229\) 17.9844 + 17.9844i 1.18844 + 1.18844i 0.977498 + 0.210944i \(0.0676539\pi\)
0.210944 + 0.977498i \(0.432346\pi\)
\(230\) 0 0
\(231\) −31.4580 18.1623i −2.06979 1.19499i
\(232\) 2.90312 5.02835i 0.190599 0.330127i
\(233\) 2.78064 + 2.78064i 0.182166 + 0.182166i 0.792299 0.610133i \(-0.208884\pi\)
−0.610133 + 0.792299i \(0.708884\pi\)
\(234\) −1.93530 2.44941i −0.126514 0.160123i
\(235\) 0 0
\(236\) −1.28218 + 0.343559i −0.0834627 + 0.0223638i
\(237\) −15.4870 + 4.14973i −1.00599 + 0.269554i
\(238\) −1.26935 + 4.73727i −0.0822797 + 0.307072i
\(239\) 0.237179 0.237179i 0.0153418 0.0153418i −0.699394 0.714736i \(-0.746547\pi\)
0.714736 + 0.699394i \(0.246547\pi\)
\(240\) 0 0
\(241\) 20.4856 + 5.48909i 1.31959 + 0.353583i 0.848825 0.528675i \(-0.177311\pi\)
0.470766 + 0.882258i \(0.343977\pi\)
\(242\) 51.4460 3.30707
\(243\) 3.39778 + 0.910433i 0.217968 + 0.0584043i
\(244\) −5.57556 + 9.65716i −0.356939 + 0.618236i
\(245\) 0 0
\(246\) 30.5469i 1.94760i
\(247\) 4.67564 + 10.8502i 0.297504 + 0.690382i
\(248\) −3.88226 + 3.88226i −0.246524 + 0.246524i
\(249\) 2.39276 + 8.92992i 0.151635 + 0.565910i
\(250\) 0 0
\(251\) −10.0366 + 5.79465i −0.633507 + 0.365755i −0.782109 0.623142i \(-0.785856\pi\)
0.148602 + 0.988897i \(0.452523\pi\)
\(252\) 5.42299i 0.341616i
\(253\) −16.2597 28.1626i −1.02224 1.77056i
\(254\) −8.13485 + 30.3597i −0.510426 + 1.90493i
\(255\) 0 0
\(256\) 14.5527 + 25.2060i 0.909542 + 1.57537i
\(257\) 5.44551 + 20.3229i 0.339681 + 1.26771i 0.898704 + 0.438556i \(0.144510\pi\)
−0.559023 + 0.829152i \(0.688824\pi\)
\(258\) 22.8755 + 13.2072i 1.42417 + 0.822243i
\(259\) 17.9578 1.11584
\(260\) 0 0
\(261\) −0.312458 −0.0193406
\(262\) −2.21736 1.28019i −0.136989 0.0790907i
\(263\) 1.48177 + 5.53006i 0.0913701 + 0.340998i 0.996444 0.0842561i \(-0.0268514\pi\)
−0.905074 + 0.425254i \(0.860185\pi\)
\(264\) 32.2580 + 55.8725i 1.98534 + 3.43872i
\(265\) 0 0
\(266\) −7.68254 + 28.6716i −0.471047 + 1.75797i
\(267\) −0.576558 0.998627i −0.0352848 0.0611150i
\(268\) 31.9627i 1.95243i
\(269\) −8.60187 + 4.96629i −0.524465 + 0.302800i −0.738760 0.673969i \(-0.764588\pi\)
0.214294 + 0.976769i \(0.431255\pi\)
\(270\) 0 0
\(271\) 2.57752 + 9.61945i 0.156573 + 0.584340i 0.998965 + 0.0454748i \(0.0144801\pi\)
−0.842392 + 0.538865i \(0.818853\pi\)
\(272\) 2.72759 2.72759i 0.165384 0.165384i
\(273\) −23.2854 2.73025i −1.40930 0.165242i
\(274\) 22.6704i 1.36957i
\(275\) 0 0
\(276\) 23.8419 41.2955i 1.43512 2.48569i
\(277\) −6.44661 1.72737i −0.387340 0.103787i 0.0598935 0.998205i \(-0.480924\pi\)
−0.447233 + 0.894417i \(0.647591\pi\)
\(278\) −42.4173 −2.54402
\(279\) 0.285391 + 0.0764703i 0.0170859 + 0.00457815i
\(280\) 0 0
\(281\) 10.2459 10.2459i 0.611217 0.611217i −0.332047 0.943263i \(-0.607739\pi\)
0.943263 + 0.332047i \(0.107739\pi\)
\(282\) 13.1328 49.0124i 0.782049 2.91865i
\(283\) −4.20616 + 1.12704i −0.250030 + 0.0669953i −0.381657 0.924304i \(-0.624646\pi\)
0.131627 + 0.991299i \(0.457980\pi\)
\(284\) 56.2693 15.0773i 3.33897 0.894674i
\(285\) 0 0
\(286\) 47.0939 20.2940i 2.78472 1.20001i
\(287\) −16.5165 16.5165i −0.974938 0.974938i
\(288\) −0.935311 + 1.62001i −0.0551137 + 0.0954598i
\(289\) −14.4686 8.35344i −0.851093 0.491379i
\(290\) 0 0
\(291\) 3.81208 + 3.81208i 0.223468 + 0.223468i
\(292\) −15.0428 + 8.68499i −0.880316 + 0.508251i
\(293\) 9.00804 5.20079i 0.526255 0.303834i −0.213235 0.977001i \(-0.568400\pi\)
0.739490 + 0.673167i \(0.235067\pi\)
\(294\) −18.6190 18.6190i −1.08588 1.08588i
\(295\) 0 0
\(296\) −27.6217 15.9474i −1.60548 0.926923i
\(297\) −13.5782 + 23.5181i −0.787887 + 1.36466i
\(298\) −11.1117 11.1117i −0.643684 0.643684i
\(299\) −16.8311 12.5398i −0.973368 0.725196i
\(300\) 0 0
\(301\) 19.5096 5.22759i 1.12452 0.301313i
\(302\) 6.05525 1.62250i 0.348440 0.0933643i
\(303\) 5.49220 20.4972i 0.315519 1.17753i
\(304\) 16.5083 16.5083i 0.946817 0.946817i
\(305\) 0 0
\(306\) −0.452785 0.121323i −0.0258840 0.00693560i
\(307\) 8.32839 0.475326 0.237663 0.971348i \(-0.423619\pi\)
0.237663 + 0.971348i \(0.423619\pi\)
\(308\) 86.0485 + 23.0566i 4.90307 + 1.31377i
\(309\) 6.39064 11.0689i 0.363551 0.629688i
\(310\) 0 0
\(311\) 28.0328i 1.58960i −0.606873 0.794799i \(-0.707576\pi\)
0.606873 0.794799i \(-0.292424\pi\)
\(312\) 33.3917 + 24.8781i 1.89044 + 1.40845i
\(313\) 7.96555 7.96555i 0.450240 0.450240i −0.445194 0.895434i \(-0.646865\pi\)
0.895434 + 0.445194i \(0.146865\pi\)
\(314\) −3.74507 13.9768i −0.211347 0.788756i
\(315\) 0 0
\(316\) 34.0528 19.6604i 1.91562 1.10598i
\(317\) 8.97791i 0.504249i 0.967695 + 0.252125i \(0.0811293\pi\)
−0.967695 + 0.252125i \(0.918871\pi\)
\(318\) 6.30148 + 10.9145i 0.353370 + 0.612054i
\(319\) 1.32846 4.95788i 0.0743794 0.277588i
\(320\) 0 0
\(321\) 0.518032 + 0.897258i 0.0289137 + 0.0500800i
\(322\) −13.6480 50.9351i −0.760574 2.83850i
\(323\) 1.53643 + 0.887059i 0.0854894 + 0.0493573i
\(324\) −44.3927 −2.46626
\(325\) 0 0
\(326\) −59.3532 −3.28727
\(327\) 17.0986 + 9.87190i 0.945556 + 0.545917i
\(328\) 10.7373 + 40.0723i 0.592870 + 2.21262i
\(329\) −19.3998 33.6015i −1.06955 1.85251i
\(330\) 0 0
\(331\) 6.85543 25.5848i 0.376808 1.40627i −0.473876 0.880591i \(-0.657146\pi\)
0.850685 0.525676i \(-0.176188\pi\)
\(332\) −11.3363 19.6351i −0.622162 1.07762i
\(333\) 1.71639i 0.0940576i
\(334\) −45.6440 + 26.3526i −2.49753 + 1.44195i
\(335\) 0 0
\(336\) 11.9905 + 44.7492i 0.654135 + 2.44127i
\(337\) −7.90748 + 7.90748i −0.430748 + 0.430748i −0.888883 0.458135i \(-0.848518\pi\)
0.458135 + 0.888883i \(0.348518\pi\)
\(338\) 22.7306 24.0580i 1.23638 1.30858i
\(339\) 4.62288i 0.251080i
\(340\) 0 0
\(341\) −2.42676 + 4.20328i −0.131417 + 0.227620i
\(342\) −2.74041 0.734292i −0.148185 0.0397059i
\(343\) 4.77129 0.257625
\(344\) −34.6511 9.28472i −1.86826 0.500599i
\(345\) 0 0
\(346\) 17.3062 17.3062i 0.930384 0.930384i
\(347\) −9.09230 + 33.9329i −0.488100 + 1.82161i 0.0775746 + 0.996987i \(0.475282\pi\)
−0.565675 + 0.824628i \(0.691384\pi\)
\(348\) 7.26986 1.94795i 0.389705 0.104421i
\(349\) 14.6583 3.92769i 0.784643 0.210244i 0.155812 0.987787i \(-0.450201\pi\)
0.628831 + 0.777542i \(0.283534\pi\)
\(350\) 0 0
\(351\) −2.04115 + 17.4082i −0.108948 + 0.929184i
\(352\) −21.7286 21.7286i −1.15814 1.15814i
\(353\) −15.2374 + 26.3920i −0.811007 + 1.40471i 0.101153 + 0.994871i \(0.467747\pi\)
−0.912160 + 0.409835i \(0.865586\pi\)
\(354\) −1.19342 0.689020i −0.0634294 0.0366210i
\(355\) 0 0
\(356\) 1.99966 + 1.99966i 0.105982 + 0.105982i
\(357\) −3.04885 + 1.76026i −0.161363 + 0.0931627i
\(358\) −38.3059 + 22.1159i −2.02453 + 1.16886i
\(359\) 24.2548 + 24.2548i 1.28012 + 1.28012i 0.940598 + 0.339523i \(0.110266\pi\)
0.339523 + 0.940598i \(0.389734\pi\)
\(360\) 0 0
\(361\) −7.15546 4.13120i −0.376603 0.217432i
\(362\) −13.6574 + 23.6553i −0.717815 + 1.24329i
\(363\) 26.1130 + 26.1130i 1.37058 + 1.37058i
\(364\) 56.8933 8.31251i 2.98202 0.435694i
\(365\) 0 0
\(366\) −11.1820 + 2.99621i −0.584493 + 0.156614i
\(367\) 6.18372 1.65692i 0.322787 0.0864906i −0.0937869 0.995592i \(-0.529897\pi\)
0.416574 + 0.909102i \(0.363231\pi\)
\(368\) −10.7344 + 40.0613i −0.559570 + 2.08834i
\(369\) 1.57863 1.57863i 0.0821804 0.0821804i
\(370\) 0 0
\(371\) 9.30855 + 2.49422i 0.483276 + 0.129493i
\(372\) −7.11685 −0.368991
\(373\) −34.2706 9.18277i −1.77446 0.475466i −0.784906 0.619614i \(-0.787289\pi\)
−0.989556 + 0.144148i \(0.953956\pi\)
\(374\) 3.85016 6.66868i 0.199087 0.344829i
\(375\) 0 0
\(376\) 68.9120i 3.55387i
\(377\) −0.478944 3.27803i −0.0246669 0.168827i
\(378\) −31.1379 + 31.1379i −1.60156 + 1.60156i
\(379\) −8.72914 32.5776i −0.448386 1.67340i −0.706838 0.707375i \(-0.749879\pi\)
0.258452 0.966024i \(-0.416788\pi\)
\(380\) 0 0
\(381\) −19.5391 + 11.2809i −1.00102 + 0.577939i
\(382\) 13.9003i 0.711199i
\(383\) 12.2034 + 21.1370i 0.623567 + 1.08005i 0.988816 + 0.149140i \(0.0476505\pi\)
−0.365249 + 0.930910i \(0.619016\pi\)
\(384\) −5.49825 + 20.5198i −0.280582 + 1.04714i
\(385\) 0 0
\(386\) −28.3185 49.0490i −1.44137 2.49653i
\(387\) 0.499649 + 1.86472i 0.0253986 + 0.0947889i
\(388\) −11.4500 6.61069i −0.581288 0.335607i
\(389\) −2.40141 −0.121756 −0.0608782 0.998145i \(-0.519390\pi\)
−0.0608782 + 0.998145i \(0.519390\pi\)
\(390\) 0 0
\(391\) −3.15171 −0.159389
\(392\) 30.9696 + 17.8803i 1.56420 + 0.903091i
\(393\) −0.475689 1.77530i −0.0239954 0.0895519i
\(394\) 13.5228 + 23.4222i 0.681271 + 1.18000i
\(395\) 0 0
\(396\) −2.20374 + 8.22445i −0.110742 + 0.413294i
\(397\) −12.5294 21.7016i −0.628834 1.08917i −0.987786 0.155816i \(-0.950199\pi\)
0.358953 0.933356i \(-0.383134\pi\)
\(398\) 58.1476i 2.91467i
\(399\) −18.4527 + 10.6537i −0.923792 + 0.533352i
\(400\) 0 0
\(401\) −2.48638 9.27930i −0.124164 0.463386i 0.875644 0.482956i \(-0.160437\pi\)
−0.999808 + 0.0195699i \(0.993770\pi\)
\(402\) −23.4631 + 23.4631i −1.17023 + 1.17023i
\(403\) −0.364804 + 3.11129i −0.0181722 + 0.154984i
\(404\) 52.0414i 2.58916i
\(405\) 0 0
\(406\) 4.16154 7.20799i 0.206534 0.357727i
\(407\) −27.2346 7.29748i −1.34997 0.361723i
\(408\) 6.25278 0.309559
\(409\) −15.1555 4.06090i −0.749391 0.200799i −0.136143 0.990689i \(-0.543471\pi\)
−0.613248 + 0.789891i \(0.710137\pi\)
\(410\) 0 0
\(411\) 11.5071 11.5071i 0.567604 0.567604i
\(412\) −8.11277 + 30.2773i −0.399688 + 1.49165i
\(413\) −1.01782 + 0.272724i −0.0500837 + 0.0134199i
\(414\) 4.86833 1.30447i 0.239266 0.0641110i
\(415\) 0 0
\(416\) −18.4294 7.32928i −0.903574 0.359347i
\(417\) −21.5303 21.5303i −1.05434 1.05434i
\(418\) 23.3025 40.3612i 1.13976 1.97413i
\(419\) 10.9632 + 6.32959i 0.535586 + 0.309221i 0.743288 0.668971i \(-0.233265\pi\)
−0.207702 + 0.978192i \(0.566598\pi\)
\(420\) 0 0
\(421\) 7.29559 + 7.29559i 0.355565 + 0.355565i 0.862175 0.506610i \(-0.169102\pi\)
−0.506610 + 0.862175i \(0.669102\pi\)
\(422\) 45.1792 26.0842i 2.19929 1.26976i
\(423\) 3.21161 1.85422i 0.156154 0.0901553i
\(424\) −12.1029 12.1029i −0.587770 0.587770i
\(425\) 0 0
\(426\) 52.3740 + 30.2381i 2.53753 + 1.46504i
\(427\) −4.42600 + 7.66606i −0.214189 + 0.370987i
\(428\) −1.79668 1.79668i −0.0868458 0.0868458i
\(429\) 34.2049 + 13.6031i 1.65143 + 0.656766i
\(430\) 0 0
\(431\) −5.98197 + 1.60286i −0.288141 + 0.0772073i −0.399995 0.916517i \(-0.630988\pi\)
0.111853 + 0.993725i \(0.464321\pi\)
\(432\) 33.4546 8.96414i 1.60959 0.431288i
\(433\) 10.1428 37.8533i 0.487431 1.81912i −0.0814270 0.996679i \(-0.525948\pi\)
0.568857 0.822436i \(-0.307386\pi\)
\(434\) −5.56511 + 5.56511i −0.267134 + 0.267134i
\(435\) 0 0
\(436\) −46.7707 12.5322i −2.23991 0.600182i
\(437\) −19.0753 −0.912495
\(438\) −17.4181 4.66716i −0.832268 0.223005i
\(439\) −10.9109 + 18.8983i −0.520750 + 0.901966i 0.478959 + 0.877837i \(0.341014\pi\)
−0.999709 + 0.0241284i \(0.992319\pi\)
\(440\) 0 0
\(441\) 1.92442i 0.0916392i
\(442\) 0.578777 4.93619i 0.0275296 0.234791i
\(443\) −14.4160 + 14.4160i −0.684925 + 0.684925i −0.961106 0.276180i \(-0.910931\pi\)
0.276180 + 0.961106i \(0.410931\pi\)
\(444\) −10.7005 39.9348i −0.507823 1.89522i
\(445\) 0 0
\(446\) −41.3716 + 23.8859i −1.95900 + 1.13103i
\(447\) 11.2802i 0.533536i
\(448\) 0.434851 + 0.753184i 0.0205448 + 0.0355846i
\(449\) 1.00906 3.76587i 0.0476206 0.177722i −0.938019 0.346583i \(-0.887342\pi\)
0.985640 + 0.168860i \(0.0540087\pi\)
\(450\) 0 0
\(451\) 18.3370 + 31.7606i 0.863454 + 1.49555i
\(452\) 2.93432 + 10.9510i 0.138019 + 0.515094i
\(453\) 3.89709 + 2.24998i 0.183101 + 0.105713i
\(454\) 45.4098 2.13119
\(455\) 0 0
\(456\) 37.8440 1.77221
\(457\) −5.19983 3.00212i −0.243238 0.140433i 0.373426 0.927660i \(-0.378183\pi\)
−0.616664 + 0.787227i \(0.711516\pi\)
\(458\) −16.7596 62.5476i −0.783124 2.92266i
\(459\) 1.31598 + 2.27934i 0.0614245 + 0.106390i
\(460\) 0 0
\(461\) −4.10333 + 15.3138i −0.191111 + 0.713237i 0.802128 + 0.597152i \(0.203701\pi\)
−0.993239 + 0.116085i \(0.962966\pi\)
\(462\) 46.2410 + 80.0917i 2.15132 + 3.72620i
\(463\) 12.0148i 0.558373i 0.960237 + 0.279187i \(0.0900648\pi\)
−0.960237 + 0.279187i \(0.909935\pi\)
\(464\) −5.66922 + 3.27312i −0.263187 + 0.151951i
\(465\) 0 0
\(466\) −2.59127 9.67075i −0.120038 0.447989i
\(467\) 15.3736 15.3736i 0.711403 0.711403i −0.255426 0.966829i \(-0.582216\pi\)
0.966829 + 0.255426i \(0.0822156\pi\)
\(468\) 0.794503 + 5.43781i 0.0367259 + 0.251363i
\(469\) 25.3727i 1.17160i
\(470\) 0 0
\(471\) 5.19344 8.99530i 0.239301 0.414482i
\(472\) 1.80775 + 0.484385i 0.0832084 + 0.0222956i
\(473\) −31.7125 −1.45814
\(474\) 39.4297 + 10.5652i 1.81107 + 0.485274i
\(475\) 0 0
\(476\) 6.10506 6.10506i 0.279825 0.279825i
\(477\) −0.238396 + 0.889704i −0.0109154 + 0.0407368i
\(478\) −0.824880 + 0.221026i −0.0377291 + 0.0101095i
\(479\) 0.0161350 0.00432337i 0.000737228 0.000197540i −0.258450 0.966025i \(-0.583212\pi\)
0.259188 + 0.965827i \(0.416545\pi\)
\(480\) 0 0
\(481\) −18.0069 + 2.63093i −0.821042 + 0.119960i
\(482\) −38.1808 38.1808i −1.73909 1.73909i
\(483\) 18.9262 32.7812i 0.861174 1.49160i
\(484\) −78.4336 45.2837i −3.56516 2.05835i
\(485\) 0 0
\(486\) −6.33276 6.33276i −0.287260 0.287260i
\(487\) 25.0150 14.4424i 1.13354 0.654448i 0.188715 0.982032i \(-0.439568\pi\)
0.944822 + 0.327584i \(0.106234\pi\)
\(488\) 13.6157 7.86101i 0.616353 0.355851i
\(489\) −30.1266 30.1266i −1.36237 1.36237i
\(490\) 0 0
\(491\) −23.4886 13.5611i −1.06003 0.612006i −0.134586 0.990902i \(-0.542970\pi\)
−0.925439 + 0.378896i \(0.876304\pi\)
\(492\) −26.8880 + 46.5713i −1.21220 + 2.09960i
\(493\) −0.351757 0.351757i −0.0158423 0.0158423i
\(494\) 3.50296 29.8756i 0.157606 1.34417i
\(495\) 0 0
\(496\) 5.97918 1.60212i 0.268473 0.0719371i
\(497\) 44.6678 11.9687i 2.00362 0.536869i
\(498\) 6.09194 22.7354i 0.272987 1.01880i
\(499\) −22.8802 + 22.8802i −1.02426 + 1.02426i −0.0245604 + 0.999698i \(0.507819\pi\)
−0.999698 + 0.0245604i \(0.992181\pi\)
\(500\) 0 0
\(501\) −36.5442 9.79199i −1.63267 0.437474i
\(502\) 29.5062 1.31693
\(503\) −12.8789 3.45088i −0.574240 0.153867i −0.0399996 0.999200i \(-0.512736\pi\)
−0.534241 + 0.845333i \(0.679402\pi\)
\(504\) −3.82295 + 6.62154i −0.170288 + 0.294947i
\(505\) 0 0
\(506\) 82.7937i 3.68063i
\(507\) 23.7490 0.673744i 1.05473 0.0299220i
\(508\) 39.1254 39.1254i 1.73591 1.73591i
\(509\) 1.36731 + 5.10285i 0.0606047 + 0.226180i 0.989585 0.143949i \(-0.0459801\pi\)
−0.928980 + 0.370129i \(0.879313\pi\)
\(510\) 0 0
\(511\) −11.9413 + 6.89433i −0.528253 + 0.304987i
\(512\) 50.8541i 2.24745i
\(513\) 7.96474 + 13.7953i 0.351652 + 0.609079i
\(514\) 13.8642 51.7418i 0.611523 2.28224i
\(515\) 0 0
\(516\) −23.2504 40.2709i −1.02354 1.77283i
\(517\) 15.7670 + 58.8432i 0.693431 + 2.58792i
\(518\) −39.5949 22.8601i −1.73970 1.00442i
\(519\) 17.5686 0.771175
\(520\) 0 0
\(521\) 36.2307 1.58730 0.793648 0.608378i \(-0.208179\pi\)
0.793648 + 0.608378i \(0.208179\pi\)
\(522\) 0.688934 + 0.397756i 0.0301538 + 0.0174093i
\(523\) 5.39989 + 20.1527i 0.236121 + 0.881214i 0.977640 + 0.210283i \(0.0674386\pi\)
−0.741520 + 0.670931i \(0.765895\pi\)
\(524\) 2.25370 + 3.90352i 0.0984534 + 0.170526i
\(525\) 0 0
\(526\) 3.77258 14.0795i 0.164492 0.613893i
\(527\) 0.235198 + 0.407374i 0.0102454 + 0.0177455i
\(528\) 72.7387i 3.16555i
\(529\) 9.42855 5.44358i 0.409937 0.236677i
\(530\) 0 0
\(531\) −0.0260668 0.0972825i −0.00113120 0.00422170i
\(532\) 36.9500 36.9500i 1.60199 1.60199i
\(533\) 18.9814 + 14.1419i 0.822177 + 0.612553i
\(534\) 2.93582i 0.127045i
\(535\) 0 0
\(536\) 22.5322 39.0269i 0.973242 1.68570i
\(537\) −30.6690 8.21775i −1.32347 0.354622i
\(538\) 25.2882 1.09025
\(539\) 30.5355 + 8.18197i 1.31526 + 0.352423i
\(540\) 0 0
\(541\) 31.3852 31.3852i 1.34936 1.34936i 0.462998 0.886359i \(-0.346774\pi\)
0.886359 0.462998i \(-0.153226\pi\)
\(542\) 6.56234 24.4910i 0.281877 1.05198i
\(543\) −18.9392 + 5.07475i −0.812760 + 0.217778i
\(544\) −2.87671 + 0.770813i −0.123338 + 0.0330483i
\(545\) 0 0
\(546\) 47.8661 + 35.6621i 2.04848 + 1.52619i
\(547\) 2.86933 + 2.86933i 0.122684 + 0.122684i 0.765783 0.643099i \(-0.222352\pi\)
−0.643099 + 0.765783i \(0.722352\pi\)
\(548\) −19.9549 + 34.5630i −0.852433 + 1.47646i
\(549\) −0.732716 0.423034i −0.0312716 0.0180546i
\(550\) 0 0
\(551\) −2.12896 2.12896i −0.0906966 0.0906966i
\(552\) −58.2227 + 33.6149i −2.47812 + 1.43074i
\(553\) 27.0319 15.6069i 1.14951 0.663671i
\(554\) 12.0151 + 12.0151i 0.510475 + 0.510475i
\(555\) 0 0
\(556\) 64.6687 + 37.3365i 2.74256 + 1.58342i
\(557\) 7.71063 13.3552i 0.326710 0.565878i −0.655147 0.755501i \(-0.727393\pi\)
0.981857 + 0.189623i \(0.0607267\pi\)
\(558\) −0.531909 0.531909i −0.0225175 0.0225175i
\(559\) −18.7971 + 8.10017i −0.795033 + 0.342601i
\(560\) 0 0
\(561\) 5.33918 1.43063i 0.225420 0.0604012i
\(562\) −35.6339 + 9.54807i −1.50312 + 0.402761i
\(563\) 0.0909534 0.339443i 0.00383323 0.0143058i −0.963983 0.265965i \(-0.914309\pi\)
0.967816 + 0.251659i \(0.0809762\pi\)
\(564\) −63.1637 + 63.1637i −2.65967 + 2.65967i
\(565\) 0 0
\(566\) 10.7088 + 2.86942i 0.450125 + 0.120611i
\(567\) −35.2399 −1.47993
\(568\) −79.3344 21.2576i −3.32880 0.891948i
\(569\) −13.0602 + 22.6210i −0.547513 + 0.948320i 0.450931 + 0.892559i \(0.351092\pi\)
−0.998444 + 0.0557615i \(0.982241\pi\)
\(570\) 0 0
\(571\) 7.08928i 0.296677i 0.988937 + 0.148339i \(0.0473925\pi\)
−0.988937 + 0.148339i \(0.952607\pi\)
\(572\) −89.6617 10.5130i −3.74894 0.439570i
\(573\) 7.05552 7.05552i 0.294749 0.294749i
\(574\) 15.3917 + 57.4425i 0.642436 + 2.39760i
\(575\) 0 0
\(576\) −0.0719888 + 0.0415627i −0.00299953 + 0.00173178i
\(577\) 1.22910i 0.0511681i −0.999673 0.0255841i \(-0.991855\pi\)
0.999673 0.0255841i \(-0.00814455\pi\)
\(578\) 21.2677 + 36.8368i 0.884621 + 1.53221i
\(579\) 10.5225 39.2704i 0.437298 1.63202i
\(580\) 0 0
\(581\) −8.99902 15.5868i −0.373342 0.646648i
\(582\) −3.55247 13.2580i −0.147254 0.549561i
\(583\) −13.1037 7.56542i −0.542699 0.313328i
\(584\) 24.4900 1.01340
\(585\) 0 0
\(586\) −26.4823 −1.09397
\(587\) 16.8844 + 9.74820i 0.696893 + 0.402351i 0.806189 0.591658i \(-0.201526\pi\)
−0.109296 + 0.994009i \(0.534860\pi\)
\(588\) 11.9974 + 44.7750i 0.494766 + 1.84649i
\(589\) 1.42350 + 2.46557i 0.0586542 + 0.101592i
\(590\) 0 0
\(591\) −5.02476 + 18.7527i −0.206691 + 0.771382i
\(592\) 17.9799 + 31.1421i 0.738970 + 1.27993i
\(593\) 8.09052i 0.332238i 0.986106 + 0.166119i \(0.0531236\pi\)
−0.986106 + 0.166119i \(0.946876\pi\)
\(594\) 59.8769 34.5699i 2.45678 1.41842i
\(595\) 0 0
\(596\) 7.15999 + 26.7214i 0.293285 + 1.09455i
\(597\) 29.5147 29.5147i 1.20796 1.20796i
\(598\) 21.1476 + 49.0748i 0.864791 + 2.00682i
\(599\) 19.1900i 0.784082i −0.919948 0.392041i \(-0.871769\pi\)
0.919948 0.392041i \(-0.128231\pi\)
\(600\) 0 0
\(601\) −12.1043 + 20.9652i −0.493743 + 0.855189i −0.999974 0.00720945i \(-0.997705\pi\)
0.506231 + 0.862398i \(0.331038\pi\)
\(602\) −49.6713 13.3094i −2.02445 0.542450i
\(603\) −2.42510 −0.0987577
\(604\) −10.6599 2.85631i −0.433744 0.116221i
\(605\) 0 0
\(606\) −38.2024 + 38.2024i −1.55187 + 1.55187i
\(607\) 8.51656 31.7842i 0.345677 1.29008i −0.546143 0.837692i \(-0.683905\pi\)
0.891820 0.452391i \(-0.149429\pi\)
\(608\) −17.4109 + 4.66523i −0.706104 + 0.189200i
\(609\) 5.77097 1.54633i 0.233851 0.0626603i
\(610\) 0 0
\(611\) 24.3757 + 30.8512i 0.986136 + 1.24810i
\(612\) 0.583517 + 0.583517i 0.0235873 + 0.0235873i
\(613\) −15.1843 + 26.3000i −0.613287 + 1.06225i 0.377395 + 0.926052i \(0.376820\pi\)
−0.990682 + 0.136193i \(0.956513\pi\)
\(614\) −18.3632 10.6020i −0.741078 0.427861i
\(615\) 0 0
\(616\) −88.8126 88.8126i −3.57836 3.57836i
\(617\) 10.3576 5.97999i 0.416983 0.240745i −0.276803 0.960927i \(-0.589275\pi\)
0.693786 + 0.720182i \(0.255942\pi\)
\(618\) −28.1813 + 16.2705i −1.13362 + 0.654495i
\(619\) −16.0012 16.0012i −0.643142 0.643142i 0.308185 0.951326i \(-0.400278\pi\)
−0.951326 + 0.308185i \(0.900278\pi\)
\(620\) 0 0
\(621\) −24.5074 14.1493i −0.983447 0.567793i
\(622\) −35.6856 + 61.8093i −1.43086 + 2.47833i
\(623\) 1.58738 + 1.58738i 0.0635969 + 0.0635969i
\(624\) −18.5793 43.1148i −0.743768 1.72597i
\(625\) 0 0
\(626\) −27.7033 + 7.42307i −1.10724 + 0.296685i
\(627\) 32.3146 8.65867i 1.29052 0.345794i
\(628\) −6.59296 + 24.6053i −0.263088 + 0.981857i
\(629\) −1.93227 + 1.93227i −0.0770446 + 0.0770446i
\(630\) 0 0
\(631\) −20.3559 5.45435i −0.810356 0.217134i −0.170230 0.985404i \(-0.554451\pi\)
−0.640126 + 0.768270i \(0.721118\pi\)
\(632\) −55.4386 −2.20523
\(633\) 36.1721 + 9.69228i 1.43771 + 0.385233i
\(634\) 11.4288 19.7953i 0.453896 0.786171i
\(635\) 0 0
\(636\) 22.1867i 0.879761i
\(637\) 20.1894 2.94981i 0.799932 0.116876i
\(638\) −9.24045 + 9.24045i −0.365833 + 0.365833i
\(639\) 1.14396 + 4.26931i 0.0452543 + 0.168891i
\(640\) 0 0
\(641\) 23.3129 13.4597i 0.920804 0.531627i 0.0369127 0.999318i \(-0.488248\pi\)
0.883892 + 0.467692i \(0.154914\pi\)
\(642\) 2.63781i 0.104106i
\(643\) −7.56614 13.1049i −0.298380 0.516809i 0.677386 0.735628i \(-0.263113\pi\)
−0.975765 + 0.218819i \(0.929779\pi\)
\(644\) −24.0265 + 89.6679i −0.946775 + 3.53341i
\(645\) 0 0
\(646\) −2.25844 3.91174i −0.0888572 0.153905i
\(647\) −0.308952 1.15302i −0.0121462 0.0453301i 0.959587 0.281413i \(-0.0908030\pi\)
−0.971733 + 0.236083i \(0.924136\pi\)
\(648\) 54.2041 + 31.2947i 2.12934 + 1.22937i
\(649\) 1.65444 0.0649426
\(650\) 0 0
\(651\) −5.64950 −0.221422
\(652\) 90.4888 + 52.2437i 3.54382 + 2.04602i
\(653\) −6.13430 22.8935i −0.240054 0.895893i −0.975805 0.218641i \(-0.929838\pi\)
0.735751 0.677252i \(-0.236829\pi\)
\(654\) −25.1337 43.5329i −0.982806 1.70227i
\(655\) 0 0
\(656\) 12.1058 45.1795i 0.472653 1.76396i
\(657\) −0.658955 1.14134i −0.0257083 0.0445280i
\(658\) 98.7834i 3.85098i
\(659\) −17.8428 + 10.3015i −0.695056 + 0.401291i −0.805503 0.592591i \(-0.798105\pi\)
0.110447 + 0.993882i \(0.464772\pi\)
\(660\) 0 0
\(661\) 7.86806 + 29.3640i 0.306032 + 1.14213i 0.932053 + 0.362321i \(0.118016\pi\)
−0.626021 + 0.779806i \(0.715318\pi\)
\(662\) −47.6847 + 47.6847i −1.85332 + 1.85332i
\(663\) 2.79930 2.21175i 0.108716 0.0858971i
\(664\) 31.9663i 1.24053i
\(665\) 0 0
\(666\) 2.18495 3.78445i 0.0846652 0.146644i
\(667\) 5.16642 + 1.38434i 0.200044 + 0.0536018i
\(668\) 92.7841 3.58992
\(669\) −33.1236 8.87543i −1.28063 0.343144i
\(670\) 0 0
\(671\) 9.82768 9.82768i 0.379393 0.379393i
\(672\) 9.25756 34.5497i 0.357118 1.33278i
\(673\) 22.1033 5.92256i 0.852019 0.228298i 0.193722 0.981056i \(-0.437944\pi\)
0.658297 + 0.752759i \(0.271277\pi\)
\(674\) 27.5013 7.36895i 1.05931 0.283841i
\(675\) 0 0
\(676\) −55.8310 + 16.6705i −2.14734 + 0.641172i
\(677\) 15.8670 + 15.8670i 0.609820 + 0.609820i 0.942899 0.333079i \(-0.108088\pi\)
−0.333079 + 0.942899i \(0.608088\pi\)
\(678\) −5.88490 + 10.1929i −0.226008 + 0.391457i
\(679\) −9.08929 5.24770i −0.348815 0.201388i
\(680\) 0 0
\(681\) 23.0492 + 23.0492i 0.883248 + 0.883248i
\(682\) 10.7015 6.17851i 0.409781 0.236587i
\(683\) 2.91771 1.68454i 0.111643 0.0644573i −0.443139 0.896453i \(-0.646135\pi\)
0.554782 + 0.831996i \(0.312802\pi\)
\(684\) 3.53165 + 3.53165i 0.135036 + 0.135036i
\(685\) 0 0
\(686\) −10.5202 6.07381i −0.401661 0.231899i
\(687\) 23.2412 40.2549i 0.886707 1.53582i
\(688\) 28.5993 + 28.5993i 1.09034 + 1.09034i
\(689\) −9.69942 1.13727i −0.369518 0.0433267i
\(690\) 0 0
\(691\) −6.49607 + 1.74062i −0.247122 + 0.0662162i −0.380254 0.924882i \(-0.624163\pi\)
0.133132 + 0.991098i \(0.457497\pi\)
\(692\) −41.6179 + 11.1515i −1.58207 + 0.423915i
\(693\) −1.74937 + 6.52875i −0.0664532 + 0.248007i
\(694\) 63.2439 63.2439i 2.40071 2.40071i
\(695\) 0 0
\(696\) −10.2498 2.74643i −0.388518 0.104103i
\(697\) 3.55437 0.134632
\(698\) −37.3199 9.99985i −1.41258 0.378500i
\(699\) 3.59342 6.22398i 0.135916 0.235413i
\(700\) 0 0
\(701\) 16.0006i 0.604333i −0.953255 0.302166i \(-0.902290\pi\)
0.953255 0.302166i \(-0.0977099\pi\)
\(702\) 26.6611 35.7849i 1.00626 1.35061i
\(703\) −11.6948 + 11.6948i −0.441076 + 0.441076i
\(704\) −0.353420 1.31898i −0.0133200 0.0497110i
\(705\) 0 0
\(706\) 67.1937 38.7943i 2.52887 1.46004i
\(707\) 41.3116i 1.55368i
\(708\) 1.21298 + 2.10094i 0.0455864 + 0.0789580i
\(709\) −2.26954 + 8.47006i −0.0852345 + 0.318100i −0.995359 0.0962364i \(-0.969320\pi\)
0.910124 + 0.414336i \(0.135986\pi\)
\(710\) 0 0
\(711\) 1.49169 + 2.58368i 0.0559428 + 0.0968958i
\(712\) −1.03195 3.85128i −0.0386739 0.144333i
\(713\) −4.38008 2.52884i −0.164035 0.0947057i
\(714\) 8.96318 0.335439
\(715\) 0 0
\(716\) 77.8674 2.91004
\(717\) −0.530883 0.306506i −0.0198262 0.0114467i
\(718\) −22.6030 84.3554i −0.843535 3.14812i
\(719\) −4.30110 7.44972i −0.160404 0.277828i 0.774610 0.632440i \(-0.217946\pi\)
−0.935014 + 0.354612i \(0.884613\pi\)
\(720\) 0 0
\(721\) −6.44009 + 24.0348i −0.239842 + 0.895101i
\(722\) 10.5180 + 18.2177i 0.391439 + 0.677993i
\(723\) 38.7598i 1.44149i
\(724\) 41.6436 24.0429i 1.54767 0.893548i
\(725\) 0 0
\(726\) −24.3346 90.8181i −0.903143 3.37058i
\(727\) −11.6303 + 11.6303i −0.431344 + 0.431344i −0.889085 0.457742i \(-0.848659\pi\)
0.457742 + 0.889085i \(0.348659\pi\)
\(728\) −75.3274 29.9574i −2.79182 1.11029i
\(729\) 23.2849i 0.862402i
\(730\) 0 0
\(731\) −1.53676 + 2.66174i −0.0568391 + 0.0984481i
\(732\) 19.6852 + 5.27464i 0.727586 + 0.194956i
\(733\) −15.5743 −0.575248 −0.287624 0.957743i \(-0.592865\pi\)
−0.287624 + 0.957743i \(0.592865\pi\)
\(734\) −15.7437 4.21850i −0.581109 0.155708i
\(735\) 0 0
\(736\) 22.6426 22.6426i 0.834617 0.834617i
\(737\) 10.3107 38.4799i 0.379798 1.41743i
\(738\) −5.49031 + 1.47112i −0.202101 + 0.0541528i
\(739\) 17.2629 4.62558i 0.635026 0.170155i 0.0730764 0.997326i \(-0.476718\pi\)
0.561949 + 0.827172i \(0.310052\pi\)
\(740\) 0 0
\(741\) 16.9424 13.3863i 0.622393 0.491757i
\(742\) −17.3492 17.3492i −0.636909 0.636909i
\(743\) −0.457869 + 0.793052i −0.0167976 + 0.0290943i −0.874302 0.485382i \(-0.838680\pi\)
0.857504 + 0.514477i \(0.172014\pi\)
\(744\) 8.68977 + 5.01704i 0.318582 + 0.183934i
\(745\) 0 0
\(746\) 63.8732 + 63.8732i 2.33856 + 2.33856i
\(747\) 1.48977 0.860120i 0.0545079 0.0314701i
\(748\) −11.7398 + 6.77797i −0.429249 + 0.247827i
\(749\) −1.42624 1.42624i −0.0521138 0.0521138i
\(750\) 0 0
\(751\) −21.2043 12.2423i −0.773755 0.446728i 0.0604575 0.998171i \(-0.480744\pi\)
−0.834212 + 0.551443i \(0.814077\pi\)
\(752\) 38.8475 67.2858i 1.41662 2.45366i
\(753\) 14.9768 + 14.9768i 0.545786 + 0.545786i
\(754\) −3.11689 + 7.83739i −0.113511 + 0.285421i
\(755\) 0 0
\(756\) 74.8804 20.0641i 2.72337 0.729726i
\(757\) 7.69750 2.06254i 0.279771 0.0749643i −0.116205 0.993225i \(-0.537073\pi\)
0.395976 + 0.918261i \(0.370406\pi\)
\(758\) −22.2243 + 82.9422i −0.807222 + 3.01259i
\(759\) −42.0246 + 42.0246i −1.52540 + 1.52540i
\(760\) 0 0
\(761\) 19.1063 + 5.11951i 0.692602 + 0.185582i 0.587914 0.808923i \(-0.299949\pi\)
0.104687 + 0.994505i \(0.466616\pi\)
\(762\) 57.4421 2.08091
\(763\) −37.1275 9.94830i −1.34411 0.360152i
\(764\) −12.2353 + 21.1921i −0.442656 + 0.766703i
\(765\) 0 0
\(766\) 62.1396i 2.24520i
\(767\) 0.980647 0.422587i 0.0354091 0.0152587i
\(768\) 37.6128 37.6128i 1.35723 1.35723i
\(769\) 6.03319 + 22.5162i 0.217563 + 0.811954i 0.985249 + 0.171128i \(0.0547413\pi\)
−0.767686 + 0.640826i \(0.778592\pi\)
\(770\) 0 0
\(771\) 33.3005 19.2260i 1.19929 0.692408i
\(772\) 99.7057i 3.58849i
\(773\) 10.3043 + 17.8476i 0.370620 + 0.641932i 0.989661 0.143426i \(-0.0458120\pi\)
−0.619041 + 0.785358i \(0.712479\pi\)
\(774\) 1.27210 4.74754i 0.0457247 0.170647i
\(775\) 0 0
\(776\) 9.32044 + 16.1435i 0.334584 + 0.579517i
\(777\) −8.49427 31.7011i −0.304730 1.13727i
\(778\) 5.29484 + 3.05698i 0.189829 + 0.109598i
\(779\) 21.5123 0.770759
\(780\) 0 0
\(781\) −72.6064 −2.59806
\(782\) 6.94918 + 4.01211i 0.248502 + 0.143473i
\(783\) −1.15604 4.31440i −0.0413135 0.154184i
\(784\) −20.1591 34.9167i −0.719970 1.24702i
\(785\) 0 0
\(786\) −1.21110 + 4.51988i −0.0431985 + 0.161219i
\(787\) −23.0726 39.9629i −0.822449 1.42452i −0.903854 0.427842i \(-0.859274\pi\)
0.0814049 0.996681i \(-0.474059\pi\)
\(788\) 47.6122i 1.69611i
\(789\) 9.06137 5.23159i 0.322593 0.186249i
\(790\) 0 0
\(791\) 2.32933 + 8.69317i 0.0828214 + 0.309094i
\(792\) 8.48864 8.48864i 0.301631 0.301631i
\(793\) 3.31497 8.33545i 0.117718 0.296001i
\(794\) 63.7995i 2.26416i
\(795\) 0 0
\(796\) −51.1826 + 88.6508i −1.81412 + 3.14214i
\(797\) 32.1175 + 8.60586i 1.13766 + 0.304835i 0.778010 0.628252i \(-0.216229\pi\)
0.359650 + 0.933087i \(0.382896\pi\)
\(798\) 54.2483 1.92037
\(799\) 5.70298 + 1.52811i 0.201757 + 0.0540606i
\(800\) 0 0
\(801\) −0.151720 + 0.151720i −0.00536077 + 0.00536077i
\(802\) −6.33030 + 23.6250i −0.223531 + 0.834227i
\(803\) 20.9117 5.60329i 0.737960 0.197736i
\(804\) 56.4241 15.1188i 1.98992 0.533199i
\(805\) 0 0
\(806\) 4.76500 6.39565i 0.167840 0.225277i
\(807\) 12.8358 + 12.8358i 0.451843 + 0.451843i
\(808\) 36.6867 63.5433i 1.29063 2.23544i
\(809\) 40.0177 + 23.1042i 1.40695 + 0.812301i 0.995093 0.0989485i \(-0.0315479\pi\)
0.411854 + 0.911250i \(0.364881\pi\)
\(810\) 0 0
\(811\) −22.7481 22.7481i −0.798792 0.798792i 0.184113 0.982905i \(-0.441059\pi\)
−0.982905 + 0.184113i \(0.941059\pi\)
\(812\) −12.6892 + 7.32612i −0.445304 + 0.257096i
\(813\) 15.7621 9.10026i 0.552801 0.319160i
\(814\) 50.7596 + 50.7596i 1.77912 + 1.77912i
\(815\) 0 0
\(816\) −6.10522 3.52485i −0.213726 0.123395i
\(817\) −9.30100 + 16.1098i −0.325401 + 0.563611i
\(818\) 28.2467 + 28.2467i 0.987622 + 0.987622i
\(819\) 0.630694 + 4.31665i 0.0220382 + 0.150836i
\(820\) 0 0
\(821\) 25.6010 6.85976i 0.893480 0.239407i 0.217266 0.976112i \(-0.430286\pi\)
0.676214 + 0.736705i \(0.263619\pi\)
\(822\) −40.0204 + 10.7234i −1.39587 + 0.374022i
\(823\) −3.18945 + 11.9032i −0.111177 + 0.414919i −0.998973 0.0453193i \(-0.985569\pi\)
0.887795 + 0.460239i \(0.152236\pi\)
\(824\) 31.2499 31.2499i 1.08864 1.08864i
\(825\) 0 0
\(826\) 2.59136 + 0.694352i 0.0901649 + 0.0241596i
\(827\) −34.6546 −1.20506 −0.602529 0.798097i \(-0.705840\pi\)
−0.602529 + 0.798097i \(0.705840\pi\)
\(828\) −8.57039 2.29643i −0.297842 0.0798065i
\(829\) 20.9069 36.2119i 0.726128 1.25769i −0.232380 0.972625i \(-0.574651\pi\)
0.958508 0.285066i \(-0.0920155\pi\)
\(830\) 0 0
\(831\) 12.1973i 0.423121i
\(832\) −0.546386 0.691535i −0.0189425 0.0239747i
\(833\) 2.16647 2.16647i 0.0750637 0.0750637i
\(834\) 20.0640 + 74.8797i 0.694758 + 2.59287i
\(835\) 0 0
\(836\) −71.0533 + 41.0227i −2.45743 + 1.41880i
\(837\) 4.22359i 0.145989i
\(838\) −16.1151 27.9121i −0.556685 0.964207i
\(839\) −8.40611 + 31.3720i −0.290211 + 1.08308i 0.654735 + 0.755858i \(0.272780\pi\)
−0.944947 + 0.327225i \(0.893887\pi\)
\(840\) 0 0
\(841\) −14.0779 24.3836i −0.485444 0.840814i
\(842\) −6.79873 25.3732i −0.234300 0.874418i
\(843\) −22.9336 13.2407i −0.789874 0.456034i
\(844\) −91.8393 −3.16124
\(845\) 0 0
\(846\) −9.44165 −0.324610
\(847\) −62.2623 35.9471i −2.13936 1.23516i
\(848\) 4.99459 + 18.6401i 0.171515 + 0.640102i
\(849\) 3.97914 + 6.89207i 0.136564 + 0.236535i
\(850\) 0 0
\(851\) 7.60443 28.3801i 0.260677 0.972859i
\(852\) −53.2323 92.2011i −1.82371 3.15876i
\(853\) 26.3352i 0.901700i 0.892600 + 0.450850i \(0.148879\pi\)
−0.892600 + 0.450850i \(0.851121\pi\)
\(854\) 19.5177 11.2685i 0.667881 0.385601i
\(855\) 0 0
\(856\) 0.927196 + 3.46034i 0.0316909 + 0.118272i
\(857\) 6.68096 6.68096i 0.228217 0.228217i −0.583730 0.811948i \(-0.698407\pi\)
0.811948 + 0.583730i \(0.198407\pi\)
\(858\) −58.1013 73.5360i −1.98355 2.51048i
\(859\) 53.3535i 1.82040i −0.414172 0.910199i \(-0.635929\pi\)
0.414172 0.910199i \(-0.364071\pi\)
\(860\) 0 0
\(861\) −21.3442 + 36.9693i −0.727410 + 1.25991i
\(862\) 15.2300 + 4.08087i 0.518737 + 0.138995i
\(863\) 5.83375 0.198583 0.0992916 0.995058i \(-0.468342\pi\)
0.0992916 + 0.995058i \(0.468342\pi\)
\(864\) −25.8295 6.92099i −0.878737 0.235457i
\(865\) 0 0
\(866\) −70.5507 + 70.5507i −2.39741 + 2.39741i
\(867\) −7.90258 + 29.4928i −0.268386 + 1.00163i
\(868\) 13.3830 3.58596i 0.454248 0.121715i
\(869\) −47.3384 + 12.6843i −1.60585 + 0.430285i
\(870\) 0 0
\(871\) −3.71726 25.4420i −0.125955 0.862070i
\(872\) 48.2730 + 48.2730i 1.63473 + 1.63473i
\(873\) 0.501571 0.868747i 0.0169756 0.0294026i
\(874\) 42.0589 + 24.2827i 1.42266 + 0.821375i
\(875\) 0 0
\(876\) 22.4472 + 22.4472i 0.758420 + 0.758420i
\(877\) −22.5558 + 13.0226i −0.761655 + 0.439742i −0.829890 0.557928i \(-0.811597\pi\)
0.0682348 + 0.997669i \(0.478263\pi\)
\(878\) 48.1148 27.7791i 1.62380 0.937499i
\(879\) −13.4419 13.4419i −0.453386 0.453386i
\(880\) 0 0
\(881\) −29.7404 17.1706i −1.00198 0.578494i −0.0931468 0.995652i \(-0.529693\pi\)
−0.908834 + 0.417159i \(0.863026\pi\)
\(882\) −2.44978 + 4.24314i −0.0824884 + 0.142874i
\(883\) −6.01885 6.01885i −0.202550 0.202550i 0.598541 0.801092i \(-0.295747\pi\)
−0.801092 + 0.598541i \(0.795747\pi\)
\(884\) −5.22732 + 7.01618i −0.175814 + 0.235980i
\(885\) 0 0
\(886\) 50.1372 13.4342i 1.68439 0.451331i
\(887\) −30.0112 + 8.04148i −1.00768 + 0.270006i −0.724659 0.689108i \(-0.758003\pi\)
−0.283019 + 0.959114i \(0.591336\pi\)
\(888\) −15.0867 + 56.3042i −0.506275 + 1.88945i
\(889\) 31.0586 31.0586i 1.04167 1.04167i
\(890\) 0 0
\(891\) 53.4444 + 14.3204i 1.79046 + 0.479751i
\(892\) 84.0993 2.81585
\(893\) 34.5164 + 9.24865i 1.15505 + 0.309494i
\(894\) −14.3596 + 24.8716i −0.480258 + 0.831831i
\(895\) 0 0
\(896\) 41.3571i 1.38164i
\(897\) −14.1753 + 35.6436i −0.473300 + 1.19011i
\(898\) −7.01880 + 7.01880i −0.234220 + 0.234220i
\(899\) −0.206613 0.771091i −0.00689093 0.0257173i
\(900\) 0 0
\(901\) −1.26999 + 0.733227i −0.0423094 + 0.0244273i
\(902\) 93.3714i 3.10893i
\(903\) −18.4567 31.9679i −0.614199 1.06382i
\(904\) 4.13712 15.4399i 0.137598 0.513524i
\(905\) 0 0
\(906\) −5.72843 9.92193i −0.190314 0.329634i
\(907\) 13.1112 + 48.9315i 0.435349 + 1.62474i 0.740230 + 0.672354i \(0.234717\pi\)
−0.304881 + 0.952390i \(0.598617\pi\)
\(908\) −69.2311 39.9706i −2.29751 1.32647i
\(909\) −3.94853 −0.130964
\(910\) 0 0
\(911\) 13.7580 0.455822 0.227911 0.973682i \(-0.426811\pi\)
0.227911 + 0.973682i \(0.426811\pi\)
\(912\) −36.9510 21.3336i −1.22357 0.706428i
\(913\) 7.31385 + 27.2957i 0.242053 + 0.903355i
\(914\) 7.64336 + 13.2387i 0.252820 + 0.437897i
\(915\) 0 0
\(916\) −29.5042 + 110.111i −0.974846 + 3.63817i
\(917\) 1.78904 + 3.09870i 0.0590792 + 0.102328i
\(918\) 6.70091i 0.221163i
\(919\) −30.1005 + 17.3785i −0.992922 + 0.573264i −0.906147 0.422964i \(-0.860990\pi\)
−0.0867759 + 0.996228i \(0.527656\pi\)
\(920\) 0 0
\(921\) −3.93944 14.7022i −0.129809 0.484454i
\(922\) 28.5418 28.5418i 0.939974 0.939974i
\(923\) −43.0364 + 18.5455i −1.41656 + 0.610434i
\(924\) 162.809i 5.35601i
\(925\) 0 0
\(926\) 15.2947 26.4912i 0.502615 0.870555i
\(927\) −2.29722 0.615539i −0.0754507 0.0202170i
\(928\) 5.05419 0.165912
\(929\) −16.6081 4.45014i −0.544895 0.146004i −0.0241374 0.999709i \(-0.507684\pi\)
−0.520758 + 0.853704i \(0.674351\pi\)
\(930\) 0 0
\(931\) 13.1122 13.1122i 0.429736 0.429736i
\(932\) −4.56177 + 17.0247i −0.149426 + 0.557664i
\(933\) −49.4867 + 13.2599i −1.62012 + 0.434110i
\(934\) −53.4674 + 14.3266i −1.74951 + 0.468779i
\(935\) 0 0
\(936\) 2.86330 7.19973i 0.0935899 0.235331i
\(937\) 7.99008 + 7.99008i 0.261025 + 0.261025i 0.825470 0.564446i \(-0.190910\pi\)
−0.564446 + 0.825470i \(0.690910\pi\)
\(938\) 32.2992 55.9439i 1.05461 1.82663i
\(939\) −17.8295 10.2939i −0.581844 0.335928i
\(940\) 0 0
\(941\) −33.6480 33.6480i −1.09689 1.09689i −0.994772 0.102122i \(-0.967437\pi\)
−0.102122 0.994772i \(-0.532563\pi\)
\(942\) −22.9019 + 13.2224i −0.746185 + 0.430810i
\(943\) −33.0965 + 19.1083i −1.07777 + 0.622251i
\(944\) −1.49203 1.49203i −0.0485614 0.0485614i
\(945\) 0 0
\(946\) 69.9225 + 40.3698i 2.27338 + 1.31253i
\(947\) 5.85058 10.1335i 0.190118 0.329294i −0.755171 0.655528i \(-0.772446\pi\)
0.945289 + 0.326233i \(0.105780\pi\)
\(948\) −50.8142 50.8142i −1.65037 1.65037i
\(949\) 10.9639 8.66266i 0.355904 0.281202i
\(950\) 0 0
\(951\) 15.8488 4.24667i 0.513933 0.137708i
\(952\) −11.7581 + 3.15059i −0.381084 + 0.102111i
\(953\) 11.5252 43.0128i 0.373339 1.39332i −0.482417 0.875942i \(-0.660241\pi\)
0.855756 0.517379i \(-0.173092\pi\)
\(954\) 1.65822 1.65822i 0.0536870 0.0536870i
\(955\) 0 0
\(956\) 1.45215 + 0.389102i 0.0469659 + 0.0125845i
\(957\) −9.38058 −0.303231
\(958\) −0.0410796 0.0110072i −0.00132722 0.000355628i
\(959\) −15.8407 + 27.4368i −0.511521 + 0.885981i
\(960\) 0 0
\(961\) 30.2451i 0.975650i
\(962\) 43.0523 + 17.1217i 1.38806 + 0.552026i
\(963\) 0.136319 0.136319i 0.00439282 0.00439282i
\(964\) 24.6024 + 91.8173i 0.792389 + 2.95724i
\(965\) 0 0
\(966\) −83.4605 + 48.1860i −2.68530 + 1.55036i
\(967\) 5.16153i 0.165984i 0.996550 + 0.0829918i \(0.0264475\pi\)
−0.996550 + 0.0829918i \(0.973552\pi\)
\(968\) 63.8457 + 110.584i 2.05208 + 3.55430i
\(969\) 0.839183 3.13187i 0.0269584 0.100610i
\(970\) 0 0
\(971\) 28.4769 + 49.3235i 0.913868 + 1.58287i 0.808550 + 0.588427i \(0.200253\pi\)
0.105318 + 0.994439i \(0.466414\pi\)
\(972\) 4.08060 + 15.2290i 0.130885 + 0.488471i
\(973\) 51.3354 + 29.6385i 1.64574 + 0.950167i
\(974\) −73.5404 −2.35639
\(975\) 0 0
\(976\) −17.7258 −0.567390
\(977\) −6.05123 3.49368i −0.193596 0.111773i 0.400069 0.916485i \(-0.368986\pi\)
−0.593665 + 0.804712i \(0.702320\pi\)
\(978\) 28.0749 + 104.777i 0.897735 + 3.35039i
\(979\) −1.76234 3.05246i −0.0563246 0.0975570i
\(980\) 0 0
\(981\) 0.950850 3.54862i 0.0303583 0.113299i
\(982\) 34.5265 + 59.8016i 1.10178 + 1.90835i
\(983\) 42.2337i 1.34705i −0.739166 0.673523i \(-0.764780\pi\)
0.739166 0.673523i \(-0.235220\pi\)
\(984\) 65.6611 37.9095i 2.09320 1.20851i
\(985\) 0 0
\(986\) 0.327801 + 1.22337i 0.0104393 + 0.0389600i
\(987\) −50.1407 + 50.1407i −1.59600 + 1.59600i
\(988\) −31.6376 + 42.4644i −1.00653 + 1.35097i
\(989\) 33.0464i 1.05081i
\(990\) 0 0
\(991\) 3.29979 5.71540i 0.104821 0.181556i −0.808844 0.588023i \(-0.799906\pi\)
0.913665 + 0.406468i \(0.133240\pi\)
\(992\) −4.61637 1.23695i −0.146570 0.0392733i
\(993\) −48.4078 −1.53618
\(994\) −113.724 30.4721i −3.60709 0.966517i
\(995\) 0 0
\(996\) −29.2998 + 29.2998i −0.928401 + 0.928401i
\(997\) 2.72446 10.1678i 0.0862846 0.322018i −0.909270 0.416207i \(-0.863359\pi\)
0.995554 + 0.0941888i \(0.0300257\pi\)
\(998\) 79.5747 21.3220i 2.51889 0.674935i
\(999\) −23.6998 + 6.35035i −0.749830 + 0.200916i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.2.x.c.7.1 yes 40
5.2 odd 4 325.2.s.c.293.10 yes 40
5.3 odd 4 325.2.s.c.293.1 yes 40
5.4 even 2 inner 325.2.x.c.7.10 yes 40
13.2 odd 12 325.2.s.c.132.1 40
65.2 even 12 inner 325.2.x.c.93.10 yes 40
65.28 even 12 inner 325.2.x.c.93.1 yes 40
65.54 odd 12 325.2.s.c.132.10 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.2.s.c.132.1 40 13.2 odd 12
325.2.s.c.132.10 yes 40 65.54 odd 12
325.2.s.c.293.1 yes 40 5.3 odd 4
325.2.s.c.293.10 yes 40 5.2 odd 4
325.2.x.c.7.1 yes 40 1.1 even 1 trivial
325.2.x.c.7.10 yes 40 5.4 even 2 inner
325.2.x.c.93.1 yes 40 65.28 even 12 inner
325.2.x.c.93.10 yes 40 65.2 even 12 inner